
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2022, No. 3, pp. 73–101. DOI:10.46586/tosc.v2022.i3.73-101

Algebraic Attacks against Some
Arithmetization-Oriented Primitives

Augustin Bariant1, Clémence Bouvier1,2, Gaëtan Leurent1, Léo Perrin1

1Inria, Paris, France
first-name.last-name@inria.fr

2Sorbonne University, Paris, France

Abstract. Recent advanced Zero-Knowledge protocols, along with other high-level
constructions such as Multi-Party Computations (MPC), have highlighted the need
for a new type of symmetric primitives that are not optimized for speed on the usual
platforms (desktop computers, servers, microcontrollers, RFID tags...), but for their
ability to be implemented using arithmetic circuits.
Several primitives have already been proposed to satisfy this need. In order to
enable an efficient arithmetization, they operate over large finite fields, and use round
functions that can be modelled using low degree equations. The impact of these
properties on their security remains to be completely assessed. In particular, algebraic
attacks relying on polynomial root-finding become extremely relevant. Such attacks
work by writing the cryptanalysis as systems of polynomial equations over the large
field, and solving them with off-the-shelf tools (SageMath, NTL, Magma, . . .).
The need for further analysis of these new designs has been recently highlighted
by the Ethereum Foundation, as it issued bounties for successful attacks against
round-reduced versions of several of them.
In this paper, we show that the security analysis performed by the designers (or
challenge authors) of four such primitives is too optimistic, and that it is possible to
improve algebraic attacks using insights gathered from a careful study of the round
function.
First, we show that univariate polynomial root-finding can be of great relevance
in practice, as it allows us to solve many of the Ethereum Foundation’s challenges
on Feistel–MiMC. Second, we introduce a trick to essentially shave off two full
rounds at little to no cost for Substitution-Permutation Networks (SPN). This can
be combined with univariate (resp. multivariate) root-finding, which allowed to
solve some challenges for Poseidon (resp. Rescue–Prime). Finally, we also find an
alternative way to set up a system of equations to attack Ciminion, leading to much
faster attacks than expected by the designers.
Keywords: Arithmetization-oriented hash functions · Poseidon · Feistel–MiMC ·
Rescue–Prime · Ciminion · algebraic cryptanalysis

1 Introduction
Up until a few years ago, the vast majority of new symmetric primitives were optimized
to run on the “usual” platforms, from high-end computers like desktops or servers with
sophisticated processors handling e.g. vector and AES [AES01] instructions, all the way
down to microcontrollers and RFID tags—the so-called lightweight cryptography. The
design or the analysis of a primitive intended to run in such contexts will then be based
on a vast literature, building upon decades of improvements of well-known techniques such
as the differential attack [BS92, BS91].

Licensed under Creative Commons License CC-BY 4.0.
Received: 2022-06-01 Accepted: 2022-08-01 Published: 2022-09-09

https://doi.org/10.46586/tosc.v2022.i3.73-101
mailto:first-name.last-name@inria.fr
http://creativecommons.org/licenses/by/4.0/

74 Algebraic Attacks against Some Arithmetization-Oriented Primitives

Things are different in the arithmetization-oriented (AO) world. This term describes
primitives that are not optimized for time and memory complexities on the usual platforms,
but to yield an efficient representation as an arithmetic circuit, where the arithmetic
operations considered are the addition and the multiplication in a large finite field F𝑞,
where 𝑞 is typically at least equal to 263, and is often a prime number. The subtleties of the
arithmetization considered will impact the cost of each operation, and may in fact enable
the use of more sophisticated operations (for example, Reinforced Concrete [GKL+21]
uses the ability of Plonk [GWC19] to evaluate lookup tables).

As a first approximation, AO designs must be such that there exists a low degree
model of their round function. Suppose that such a primitive operates on F𝑚

𝑞 , for some
𝑚 ≥ 1, and that its round function is 𝑅 : F𝑚

𝑞 → F𝑚
𝑞 . Then there must exist a family of 𝑚

polynomials {𝑃𝑖}0≤𝑖<𝑚 such that:

• 𝑃𝑖 : (F𝑚
𝑞)2 → F𝑞,

• 𝑃𝑖(𝑥, 𝑦) = 0 for all 𝑖 if and only if 𝑦 = 𝑅(𝑥), and

• the multiplicative complexity of each 𝑃𝑖 is low (for efficiency purposes).

A direct approach to reach this goal is to use a low degree round function, as was done
in Feistel–MiMC [AGR+16], Poseidon [GKR+21], and Ciminion [DGGK21]. A more
sophisticated approach was introduced by the designers of Rescue [AAB+20, SAD20], who
remarked that such a low degree encoding was also possible if the inverse of the round
function had a low degree.

As a direct consequence of these design criteria, such primitives may be vulnerable to
a specific form of cryptanalysis. Indeed, there exist off-the-shelf tools that are capable of
finding the roots of a system of polynomials, and which are more efficient when the degree
of the equations is lower. Such attacks have been lumped together and called algebraic
attacks, but this simplification erases some important subtleties, as we will see.

Algebraic attacks are indeed a threat. For instance, Jarvis [AD18] was found to be
vulnerable to some algebraic attacks [ACG+19]: it turns out that the system of equations
needed to model its round function envisioned by its designers could be greatly simplified
in a systematic fashion. However, that is not to say that only such algebraic methods can
be applied to such primitives. In fact, as shown in [BCD+20], more classical distinguishers
based on higher-order differentials and subspace trails can be applied to such primitives,
namely the permutations GMiMC [AGP+19], and Poseidon [GKR+21]. Subspace-based
attacks against the latter were substantially improved in [KR21]. The initial security
margin of the AO block cipher MiMC [AGR+16] against higher-order differentials was also
re-assessed twice, first by Eichlseder et al. [EGL+20], then by Bouvier et al. [BCP22].

The pressing need for a better understanding of the security of AO hash functions has
pushed the Ethereum foundation to put forward a bounty1 rewarding with thousands of
dollars the best practical attacks against round-reduced versions of the permutations under-
lying several sponge-based AO hash functions, namely Reinforced Concrete [GKL+21],
Feistel–MiMC [AGR+16], Poseidon [GKR+21], and Rescue–Prime [AAB+20, SAD20].
The specific parameter sets targeted at the time of publication of the bounties are speci-
fied in Appendix A, though some of the parameters have been updated since then as a
consequence of our work.

Our Contributions. In this paper, we investigate the security offered by four different AO
symmetric primitives, with a focus on attacks exploiting models of their round function as
low degree polynomials. Indeed, the encoding of a primitive as a system of equations is
not unique, and it is possible to find better ones than those considered by the authors in

1These bounties were published on November 1st 2021 at https://www.zkhashbounties.info/.

https://www.zkhashbounties.info/

Augustin Bariant, Clémence Bouvier, Gaëtan Leurent, Léo Perrin 75

their original cryptanalysis. This in turn leads to attacks that can violate in practice the
security claims made for round-reduced versions.

For round-reduced Feistel–MiMC, we mount an attack based on univariate root-finding
that showcases a significant issue with the initial security claims put forward by the
Ethereum Foundation, and which allowed us to find a practical attack against an instance
initially thought of as “hard”.

We also develop a general method to remove all the equations modelling the first 2
rounds of a Substitution-Permutation Network (SPN), provided that the first operation
is the S-box layer rather than the linear layer, and that the S-box is a monomial—both
of which usually hold. This has a significant impact on the complexity of solving the
resulting system of equations, which allowed us to successfully apply a univariate root-
finding algorithm to round-reduced Poseidon, and a multivariate one to round-reduced
Rescue–Prime.

Finally, we show an efficient way to build algebraic attacks against the Ciminion
encryption scheme. In particular, the asymptotic complexity of our algebraic attack is
𝒪(24𝑟𝜔), while the designers expected the best attack to have complexity 𝒪(26𝑟𝜔), with
𝑟 the number of rounds, and 𝜔 the exponent of matrix multiplication. Since they added
extra rounds as a security margin, we cannot break practical parameters, but in theory our
attack breaks parameters targeting large security levels (e.g. 𝑠 = 1024). More importantly,
it highlights the shortcomings of the initial security analysis of this algorithm.

Paper Outline. We start by introducing the necessary mathematical background and
security definitions in Section 2. We then present general results on the resolution of
polynomial systems in Section 3, both for multivariate and univariate techniques. We
attack 3 out of 4 of the functions targeted by the Ethereum Foundation, namely Feistel–
MiMC, Poseidon, and Rescue–Prime, in Section 4. Our cryptanalysis of the Ciminion
encryption is in Section 5. We also present some detailed experimental results about the
efficiency of our attacks in Section 6. Finally, Section 7 concludes the paper.

2 Preliminaries
2.1 Notations
In what follows, we use F𝑞 to denote the finite field with 𝑞 elements. 𝑞 might be a prime
number (Feistel–MiMC, Poseidon, Rescue–Prime, Ciminion) or a power of 2 (Feistel–
MiMC, Ciminion). In the challenges designed by the Ethereum fondation, 𝑞 = 264 − 59 is
prime.

The set F𝑡
𝑞 is a vector space of F𝑞 with canonical basis {𝑒0, ..., 𝑒𝑡−1}, where 𝑒𝑖 has only

zero coordinates, except at position 𝑖 where it is equal to 1. We let 𝜌𝑖 : F𝑡
𝑞 → F𝑞 be the

projection mapping (𝑥0, ..., 𝑥𝑡−1) to 𝑥𝑖.
The functions we consider operate over F𝑡

𝑞, where 𝑡 ∈ {2, 3}. We then have that
𝐹 (𝑥) = (𝐹0(𝑥), ..., 𝐹𝑡−1(𝑥)), where each 𝐹𝑖 is of a coordinate of 𝐹 with 𝐹𝑖 = 𝜌𝑖 ∘ 𝐹 . Each
𝐹𝑖 can be uniquely written as

𝐹𝑖(𝑥0, ..., 𝑥𝑡−1) =
∑︁

𝐾=(𝑘0,...,𝑘𝑡−1)

𝑐
𝑘0,...,𝑘𝑡−1
𝑖

𝑡−1∏︁
𝑗=0

𝑥
𝑘𝑗

𝑗 ,

where 𝑐
𝑘0,...,𝑘𝑡−1
𝑖 is a coefficient in F𝑞. The degree of 𝐹𝑖 is

deg(𝐹𝑖) = max
𝐾

{︁
𝑘0 + ... + 𝑘𝑡−1 | 𝑐

𝑘0,...,𝑘𝑡−1
𝑖 ̸= 0

}︁
,

and the degree of 𝐹 is the maximum degree of its coordinates.

76 Algebraic Attacks against Some Arithmetization-Oriented Primitives

2.2 Security Assessment
In this paper, we assess the security of several algorithms. Ciminion is an encryption
scheme which uses a key of length 𝑘 to encrypt a given plaintext. In this case, the goal is
simply to recover the key (or some subkeys) with a time complexity lower than 2𝑘.

While that case was simple to define, most of this work deals with the analysis of
cryptographic permutations, which are intended for use in a sponge construction [BDPVA07]
to build secure hash function. More precisely, we focus on Feistel–MiMC, Poseidon and
Rescue–Prime. For such objects, the security requirement is a bit more subtle, but it is
convincingly captured by the hardness of the following problem, nicknamed Constrained
Input/Constrained Output (CICO).

Let 𝑢 < 𝑡 be an integer, and let 𝒵𝑢 be the vector space spanned by {𝑒0, ..., 𝑒𝑡−𝑢−1}. In
other words, 𝒵𝑢 is the set of all the elements of F𝑡

𝑞 such that their last 𝑢 coordinates are
equal to 0 (or, equivalently, such that 𝜌𝑖(𝑥) = 0 for all 𝑡 − 1 − 𝑢 < 𝑖 < 𝑡).

Definition 1 (CICO Problem). Let 𝐹 : F𝑡
𝑞 → F𝑡

𝑞 be a function, and let 𝑢 < 𝑡 be an
integer. The CICO problem consists in finding 𝑥 ∈ F𝑡

𝑞 such that

𝑥 ∈ 𝒵𝑢 and 𝐹 (𝑥) ∈ 𝒵𝑢 .

A brute-force approach would solve this problem with a time complexity of about 𝑞𝑢

calls to the permutation: the idea would simply be to try random values 𝑥 of 𝒵𝑢 until one
of them satisfies 𝐹 (𝑥) ∈ 𝒵𝑢. The ability to solve this problem more efficiently than this
brute-force search would potentially allow an attacker to find preimages for a given digest
in a sponge mode, or could help with finding collisions, hence its relevance.

In what follows, we consider the case where 𝑢 = 1. In this case, we use the simpler
notation 𝒵 = 𝒵1.

The challenges described by the Ethereum Foundation are explicitly about solving
the CICO problem for the permutations used by several AO hash functions, namely
Feistel–MiMC, Poseidon, Rescue–Prime, and Reinforced Concrete. The details of the
challenges are provided in Appendix A.

3 Systems of Polynomial Equations and their Resolution
Our attacks are based on modelling the cryptographic primitive using a system of poly-
nomial equations, and then solving those using an off-the-shelf solver. The choice of
the solving method has a significant impact on its performance. In general, in order to
assess the security of a primitive against algebraic attacks, it is necessary to have some
grip on the complexity of the various solving algorithms. In this section, we present
some theoretical results on the resolution of univariate systems (Section 3.1), and then
of multivariate systems (Section 3.2). Some experimental results on these attacks are
presented in Section 6.

Overall, the univariate solving tends to be much more efficient. However, it cannot be
applied to all algorithms as there are efficient methods to prevent its applicability, as was
done by the designers of Rescue–Prime (see Section 4.4).

We assume that we can represent an attack against a cryptosystem with a well-defined
system of 𝑛 variables 𝑋1 . . . 𝑋𝑛 in F𝑞, i.e composed of 𝑛 polynomial equations on 𝑛
variables: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑃1(𝑋1, . . . 𝑋𝑛) = 0
𝑃2(𝑋1, . . . 𝑋𝑛) = 0

...
𝑃𝑛(𝑋1, . . . 𝑋𝑛) = 0

Augustin Bariant, Clémence Bouvier, Gaëtan Leurent, Léo Perrin 77

We assume that the system is non-trivial and that there exists a solution (in F𝑛
𝑞) of this

system that gives sufficient information to break the cryptosystem. This happens for
example if a variable is a round key, if the variables describe a preimage under an algebraic
hash function, or if we try to solve a CICO instance.

3.1 Solving Univariate Systems
In the univariate case, we have a system with a single equation and a single variable:

𝑃 (𝑋) = 0 .

Solving the system is equivalent to finding the roots of the polynomial 𝑃 ∈ F𝑞[𝑋] in a
finite field of characteristic 𝑞; we denote the degree of 𝑃 as 𝑑.

We use fast arithmetic to multiply two polynomials of degree 𝑑 with 𝒪
(︀
𝑑 log(𝑑) log(log(𝑑))

)︀
field operations using an FFT algorithm. Using the following method, finding the roots
requires only 𝒪

(︀
𝑑 log(𝑑)

(︀
log(𝑑) + log(𝑞)

)︀
log(log(𝑑))

)︀
field operations:

1. Compute 𝑄 = 𝑋𝑞 − 𝑋 mod 𝑃 .
Computing 𝑋𝑞 mod 𝑃 requires 𝒪(𝑑 log(𝑞) log(𝑑) log(log(𝑑)))) field operations using
a double-and-add algorithm.

2. Compute 𝑅 = gcd(𝑃, 𝑄).
𝑅 has the same roots as 𝑃 in the field F𝑞 since 𝑅 = gcd(𝑃, 𝑋𝑞 − 𝑋), but its degree
is much lower (it is exactly the number of roots).
This requires 𝒪(𝑑 log2(𝑑) log(log(𝑑))) field operations.

3. Factor 𝑅.
In general, 𝑅 is of degree one or two because 𝑃 has few roots in the field, and this
step is of negligible complexity.

In particular, finding the roots inside the field is significantly easier than factoring the
polynomial (it is quasi-linear in the degree).

For practical instances, we use the NTL library [Sho], a C++ library for number theory,
and the computation is feasible for a degree up to roughly 232(≈ 320) in a prime field
F𝑝 with 𝑝 ≈ 264. We present some benchmarks in Section 6.1 for polynomials given by
round-reduced version of Feistel–MiMC, of Poseidon and for random polynomials.

3.2 Solving a Multivariate System
In general, we have a system with 𝑛 polynomials in F𝑞[𝑋1, . . . , 𝑋𝑛]. A system is said to
be regular if for all 𝑖, 𝑔𝑃𝑖 ∈ ⟨𝑃1, . . . , 𝑃𝑖−1⟩ ⇒ 𝑔 ∈ ⟨𝑃1, . . . , 𝑃𝑖−1⟩. The Fröberg conjecture
states that this is the typical behaviour for random polynomial systems [Frö85]. However,
recent studies have shown that polynomial systems representing algebraic cryptographic
algorithms are often not regular [DG10, DY13, Sau22]. A thorough analysis of specific
non regular systems is very complex for the designers, therefore a common practice is
to estimate the complexity of the Gröbner basis attack for an equivalent regular system,
and to add extra rounds to account for the non-regularity of the system. If the system
is well-defined (as much equations as variables) and if the system can not be reduced
to strictly less than 𝑛 equations (which holds for regular systems), then the number
of solutions is finite in the algebraic closure of F𝑛

𝑞 . Let us denote 𝑑𝑖 the degree of the
polynomial 𝑃𝑖, 𝑑 the degree of the ideal ℐ = ⟨𝑃1, . . . , 𝑃𝑛⟩, which is also the number of
solutions in the algebraic closure of F𝑛

𝑞 , and 𝐷reg the degree of regularity of ℐ, as defined
by Dubois et al. in [DG10]. We have

𝐷reg ≤ 1 + Σ𝑛
𝑖=1(𝑑𝑖 − 1) 𝑑 ≤ Π𝑛

𝑖=1𝑑𝑖 .

78 Algebraic Attacks against Some Arithmetization-Oriented Primitives

Moreover, the bounds are reached when the system is regular2.
The main technique to solve the multivariate polynomial systems is to compute a

Gröbner basis [Buc76] of the ideal ℐ. A Gröbner basis 𝐺 of ℐ, with respect to a total
ordering on the set of monomials, is a particular generating set of ℐ. Gröbner basis become
very interesting under the lexicographic order since they take the form{︀

𝐺1(𝑋1), 𝐺2,1(𝑋1, 𝑋2), . . . 𝐺2,𝑘2(𝑋1, 𝑋2), . . . 𝐺𝑛,1(𝑋1, . . . , 𝑋𝑛), . . . 𝐺𝑛,𝑘𝑛
(𝑋1, . . . , 𝑋𝑛)

}︀
.

Indeed, the solutions of this system are easy to recover iteratively by first computing the
roots of 𝐺1 in F𝑞, then substituting 𝑋1 in polynomials 𝐺2,𝑖, then computing the roots of
𝐺2,𝑖, etc...

Computing a Gröbner basis from a polynomial system can be done with Buchberger’s
algorithm [Buc76], or with more efficient algorithms such as F4 [Fau99] and F5 [Fau02]
by Faugère. In practice, directly computing the Gröbner basis in lexicographic order
is prohibitively expensive. Instead, Faugère et al. [FGLM93] proposed to first compute
the Gröbner basis in another order, then to apply the FGLM algorithm to convert it
into a Gröbner basis under the lexicographic order. To the best of our knowledge, the
fastest algorithm to compute a Gröbner basis at the time of writing is Faugère’s F5
algorithm [Fau02] in the grevlex (for graded reverse lexicographic) monomial order. In
the end, the overall approach to solving a multivariate system of equations follows the
following steps.

1. Compute a grevlex order Gröbner basis with the F5 algorithm.

2. Convert it into a lexicographic order Gröbner basis using the FGLM algorithm.

3. Find the roots in F𝑛
𝑞 of the Gröbner basis polynomials using univariate system

resolution of subsection 3.1 and substitution.

Complexity. The complexity depends on the number of variables 𝑛, the degree of the
ideal 𝑑 and the degree of regularity 𝐷reg. Below, we give estimates for the complexity of
each step of the algorithm above.

1. Under the hypothesis that the polynomial system is regular, the complexity of the
F5 algorithm is bounded by3

𝒪
(︂

𝑛𝐷reg ×
(︂

𝑛 + 𝐷reg − 1
𝐷reg

)︂𝜔)︂
,

where 2 ≤ 𝜔 ≤ 3 is the matrix multiplication exponent [BFS15, Proposition 1].

2. The original FGLM algorithm [FGLM93] has a complexity of 𝒪(𝑛𝑑3), but more
recent variants achieve a better complexity with probabilistic methods. In particular,
[FGHR14] reaches complexity 𝒪(𝑛𝑑𝜔), and [FM17] has complexity 𝒪(

√
𝑛𝑑2+ 𝑛−1

𝑛).

3. Since all the roots are computed in F𝑞, we can use the fast univariate system solving
of subsection 3.1 with substitution. Experimentally, in most cases we have a small
number of roots and 𝐺𝑖,1(𝑋𝑖) is of degree 1 after substitution of 𝑋1 . . . 𝑋𝑖−1. This
step is of complexity roughly 𝒪(𝑑 log2(𝑑)).

2Note that the upper bound does not require the system to be regular.
3In the security analysis of Ciminion, Rescue–Prime and Poseidon, another correct upper bound(︀

𝑛+𝐷reg
𝐷reg

)︀𝜔
of [BFS04] is used. For small 𝑛, the bound that we give is sharper, but not necessarily for

large 𝑛. In particular, our bound is better to estimate the complexity of the Ciminion attack of Section 5.

Augustin Bariant, Clémence Bouvier, Gaëtan Leurent, Léo Perrin 79

When the polynomials have the same degree 𝑑𝑖 = 𝛿 and 𝑛 is small, the complexity of F5 is
asymptotically smaller than the complexity of FGLM. With 𝑑 = 𝛿𝑛 and 𝐷reg = 𝑛×𝛿−𝑛+1,
we obtain (︂

𝑛 + 𝐷reg − 1
𝐷reg

)︂
=

(︂
𝑛𝛿

𝑛 − 1

)︂
≤ (𝑛𝛿)𝑛−1

(𝑛 − 1)! = 𝒪(𝛿𝑛−1) .

On the other hand, when the polynomials have small degrees 𝑑𝑖 = 𝛿 and 𝑛 is high, the
complexity of F5 is asymptotically higher than the complexity of FGLM. Indeed, in this
case we have 𝑑 = 𝛿𝑛 and 𝐷reg = 𝑛 × 𝛿 − 𝑛 + 1, which implies(︂

𝑛 + 𝐷reg − 1
𝐷reg

)︂
=

(︂
𝑛𝛿

𝑛 − 1

)︂
= 𝑛𝛿

𝑛 − 1 · 𝑛𝛿 − 1
𝑛 − 2 · · · · · 𝑛𝛿 − 𝑛 + 2

1 ≥ 𝛿𝑛−2 .

Note that these two properties are only valid for regular systems. In the case of
non-regular systems, these upper bounds are not tight and the complexity of F5 may be
smaller than expected, as shown in Section 6.2.

Experimental results. In practice, we use the Magma system, and the computation is
feasible up to roughly a degree 𝑑 = 39 in a prime field F𝑝 with 𝑝 ≈ 264. Our experimental
results for round-reduced versions of Rescue–Prime, Ciminion and random systems are
summarized in Section 6.2. In practice, FGLM (step 2) is the bottleneck; Magma uses the
F4 algorithm for step 1, which is almost as fast as F5, but its implementation of FGLM
seems to have a complexity that is cubic in 𝑑.

4 CICO Cryptanalysis of Several Primitives
We now report our experimental results in solving the CICO problem for the challenges
put forward by the Ethereum Foundation.

The complexities of some of our attacks are in line with designers’ claims. However, we
have found that, in practice, the exact claimed security level for a given number of rounds
is not always clear. Furthermore, breaking challenges in practice gives a more concrete
understanding of the security of reduced versions since we focus on upper bounds rather
than lower bounds. Besides, some designers’ security analysis rely on optimistic complexity
assumptions (eg. ignoring log factors, or taking a small omega), so our attack may give
more accurate security estimates.

4.1 Attacks Against Round-Reduced Feistel–MiMC
Design description. Feistel–MiMC is a Feistel network, based on the simple structure
of MiMC, introduced by Albretch et al. at Asiacrypt 2016 [AGR+16]. It operates on
F2

𝑝 (𝑡 = 2) using a basic 𝑟-round Feistel structure with the 𝑖-th round function being
𝑥 ↦→ (𝑥 + 𝑐𝑖)𝛼 (in this paper we take 𝛼 = 3, as fixed by the author of the Ethereum’s
challenges).

𝑥𝐿 𝑥𝑅
𝑐𝑖

⊞ ⊞𝑥𝛼

Figure 1: Round 𝑖 of Feistel–MiMC.

80 Algebraic Attacks against Some Arithmetization-Oriented Primitives

Attack description. In order to build a polynomial system representing the CICO
problem, we consider an input state (𝑃0, 𝑄0) = (X, 0). Then we evaluate the round
function iteratively, as polynomials in F𝑝[X]:

𝑃0 = X 𝑄0 = 0
𝑃𝑖 = 𝑄𝑖−1 + (𝑃𝑖−1 + 𝑐𝑖)3 𝑄𝑖 = 𝑃𝑖−1 .

The CICO problem becomes 𝑄𝑟 = 0: we just have to find the roots of 𝑄𝑟 = 𝑃𝑟−1.
In practice, we use SageMath to generate the polynomial, and we compute the roots

either directly from SageMath, or with an external program using NTL. The corresponding
code is given in the Supplementary Material.

Complexity Analysis. Since the round function has degree 3, we obtain a univariate
polynomial 𝑃𝑟−1 of degree 𝑑 = 3𝑟−1 after 𝑟 − 1 rounds. We can estimate the complexity
of finding the roots as:

𝑑 log(𝑑)
(︀

log(𝑑) + log(𝑝)
)︀

log(log(𝑑)) ≈ 3𝑟−1 × (𝑟 − 1) × 1.58 × 64 × log2(𝑟 − 1).

We give explicit values for the proposed challenges in Table 1. Parameters have changed
while we were working on it, so “original” (Table 1a) and “new parameters” (Table 1b)
are two sets of parameters proposed by the Ethereum Fondation, the first ones being less
secure than the latter ones.

We observe that the security claims from the Ethereum Foundation are close to 32𝑟.
This likely corresponds to an estimation of the complexity of a Gröbner base attack using
𝑟 equations of degree 3 in 𝑟 variables: the corresponding complexity would be 3𝜔𝑟 ≥ 32𝑟.

Besides, the original specification of Feistel–MiMC states that Lagrange interpolation
attacks are espected to have a complexity of 𝑟 · 32𝑟−3, while GCDs attacks are espected
to have a complexity of 𝑟2 · 3𝑟/2−3. As the latter leaves more freedom to the attacker, it
does not apply in our context. However, we have chosen to put both in Table 1 for a fairer
comparison.

4.2 Bypassing SPN Steps
Let 𝜋 = 𝜋0∘𝜋1 be a permutation of F𝑡

𝑝, and 𝒵 be the vector space spanned by {𝑒0, . . . , 𝑒𝑡−2}.
Suppose that there exists two vectors 𝑉 and 𝐺 in F𝑡

𝑝 such that

𝜋−1
0 (X𝑉 + 𝐺) ∈ 𝒵

for all X ∈ F𝑝. In this case, we write all the intermediate variables of 𝜋1 as polynomials
in X, starting from the state X𝑉 + 𝐺, and evaluating round operations one by one
as polynomials. Then we can find 𝑟 such that 𝜋1(𝑟𝑉 + 𝐺) ∈ 𝒵 by finding a root 𝑟
of the polynomial corresponding to the last coordinate of the output. Finally, setting
𝑥 = (𝑥0, 𝑥1, . . . 𝑥𝑡−1) = 𝜋−1

0 (𝑟𝑉 + 𝐺) will yield a solution to the CICO problem, while the
solver has to handle a polynomial based on 𝜋1 rather than the full 𝜋. This approach is
summarized in Figure 2, and we used it against both Poseidon (see Section 4.3) and
Rescue–Prime (see Section 4.4).

Let us describe this trick in more detail. First, for the sake of consistency, we will use
steps when referring to the constant addition, the S-box, and the linear part. Then one
round of Poseidon consists of one step, and one round of Rescue–Prime of two steps: one
using 𝑆 as S-box, the other using 𝑆−1.

We consider 𝜋0 to be two steps of an SPN construction without the final linear layer:
addition of rounds constants, S-box layer 𝑆1, linear layer consisting of a multiplication by
an MDS matrix, and S-Box layer 𝑆2. We require the S-boxes to be monomial functions, so

Augustin Bariant, Clémence Bouvier, Gaëtan Leurent, Léo Perrin 81

Table 1: Complexity of our attack against Feistel–MiMC, compared with the security
claims given by the authors and by the challenges. Complexity figures in bold correspond
to attacks that we have implemented in practice.

𝑟
Authors claims Ethereum claims 𝑑 complexityLagrange GCD

6 216 25 218 35 219

10 230 29 230 39 226

14 243 213 244 313 233

18 256 217 256 317 240

22 269 221 268 321 247

(a) Original parameters.

𝑟
Authors claims Ethereum claims 𝑑 complexityLagrange GCD

22 269 221 236 321 247

25 279 224 240 324 252

30 295 228 248 329 260

35 2111 233 256 334 269

40 2127 237 264 339 277

(b) New parameters.

that 𝑆(𝐴X) = 𝑆(𝐴)𝑆(X). The question of whether the attack can be adapted to the case
where the condition is not verified is an open problem.

We use 𝑐𝑟
𝑖 to denote the 𝑖-th round constant used in step 𝑟. We let the linear layer 𝑀

be such that:

𝑀−1 =

⎡⎢⎢⎢⎣
𝛼0,0 𝛼1,0 . . . 𝛼𝑡−1,0
𝛼0,1 𝛼1,1 . . . 𝛼𝑡−1,1

...
...

𝛼0,𝑡−1 𝛼1,𝑡−1 . . . 𝛼𝑡−1,𝑡−1

⎤⎥⎥⎥⎦ .

Case 𝑡 = 3. We start with the special case 𝑡 = 3, and we denote the state after 𝜋0 as
(X, Y, Z), with three variables. As seen in Figure 3, we have 𝜋−1

0 (X, Y, Z) ∈ 𝒵 if and only
if

𝑆1(𝑐0
2) = 𝛼0,2(𝑆−1

2 (X) − 𝑐1
0) + 𝛼1,2(𝑆−1

2 (Y) − 𝑐1
1) + 𝛼2,2(𝑆−1

2 (Z) − 𝑐1
2)

= 𝛼0,2𝑆−1
2 (X) + 𝛼1,2𝑆−1

2 (Y) + 𝛼2,2𝑆−1
2 (Z) − (𝛼0,2𝑐1

0 + 𝛼1,2𝑐1
1 + 𝛼2,2𝑐1

2)

In order to simplify the equation, we fix Z to a constant value 𝑔 with:
𝑔 = 𝑆2(𝛼−1

2,2(𝛼0,2𝑐1
0 + 𝛼1,2𝑐1

1 + 𝛼2,2𝑐1
2 + 𝑆1(𝑐0

2))). We obtain

𝜋−1
0 (X, Y, 𝑔) ∈ 𝒵 ⇐⇒ 𝛼0,2(𝑆−1

2 (X)) = −𝛼1,2(𝑆−1
2 (Y))

⇐⇒ 𝑆2(𝛼0,2)X = 𝑆2(−𝛼1,2)Y

Therefore, we obtain an affine space with 𝜋1(X𝑉 + 𝐺) ∈ 𝒵 by choosing:

𝑉 = (1, 𝑆2(𝛼0,2)/𝑆2(−𝛼1,2), 0) and 𝐺 = (0, 0, 𝑔) .

General case (𝑡 ≥ 3). In general, we take 𝑉 = (𝑆2(𝐴0), . . . , 𝑆2(𝐴𝑡−2), 0) and 𝐺 =
(0, . . . , 0, 𝑔)), such that we can consider an input state after the S-box layer of the second

82 Algebraic Attacks against Some Arithmetization-Oriented Primitives

𝑥 ∈ 𝒵

X𝑉 + 𝐺

𝜋(𝑥) = 𝑦 ∈ 𝒵

𝜋0

𝜋1

Po
ly

no
m

ia
ls

ys
te

m
Pr

=
1

Figure 2: A 2-staged trick.

step of the form (𝑆2(𝐴0)X, . . . , 𝑆2(𝐴𝑡−2)X, 𝑔), and study the first two steps as shown in
Figure 4.

Following Figure 4, the value 𝑆1(𝑐0
𝑡−1) must satisfy

𝑆1(𝑐0
𝑡−1) =

𝑡−2∑︁
𝑗=0

𝛼𝑗,2(𝐴𝑗𝑆−1
2 (X) − 𝑐1

𝑗) + 𝛼𝑡−1,2(𝑆−1
2 (𝑔) − 𝑐1

𝑡−1)

= 𝑆−1
2 (X)

⎛⎝𝑡−2∑︁
𝑗=0

𝛼𝑗,2𝐴𝑗

⎞⎠ + 𝛼𝑡−1,2𝑆−1
2 (𝑔) −

𝑡−1∑︁
𝑗=0

𝛼𝑗,2𝑐1
𝑗 .

It is the case provided for instance that:⎧⎨⎩𝐴𝑡−2 = −
∑︀𝑡−3

𝑗=0
𝛼𝑗,2

𝛼𝑡−2,2
𝐴𝑗

𝑔 = 𝑆2

(︁
1

𝛼𝑡−1,2

∑︀𝑡−1
𝑗=0 𝛼𝑗,2𝑐1

𝑗 + 𝑆1(𝑐0
𝑡−1)

)︁
.

(1)

As a consequence, if we find a value X such that the image of (𝑆2(𝐴0)X, . . . , 𝑆2(𝐴𝑡−2)X, 𝑔)
through 𝑅 − 2 steps of the primitive is equal to (*, . . . , *, 0), then we will always be able
to deduce an input (𝑥0, 𝑥1, . . . , 𝑥𝑡−2, 0) for 𝑅 steps of the primitive that is mapped to 𝒵.

4.3 Application to Round-Reduced Poseidon
Design description. Poseidon [GKR+21] is a family of hash functions, based on the
HADES design strategy [GLR+20]. The internal permutation is composed of 𝑟 = RF + RP
rounds of two different types: full rounds have 𝑡 S-box functions, and partial rounds have
only 1 S-box and 𝑡 − 1 identity functions. Each round function consists of adding the
round constants4, applying partial or full S-box layers 𝑆, and then multiplying the state
by an MDS matrix (M). The permutation starts with Rf = RF/2 full rounds, followed by
RP partial rounds, and finally Rf = RF/2 full rounds.

The challenges from the Ethereum Foundation use 𝑡 = 3, the S-Box is 𝑥 ↦→ 𝑥3 and
RF = 8 is fixed, while RP varies according to the security level required.

4For the sake of consistency of the different hash functions presented in this paper, we will note the
addition of constants: “AddC”.

Augustin Bariant, Clémence Bouvier, Gaëtan Leurent, Léo Perrin 83

?

𝑐0
0⊞

?

𝑐0
1⊞

0

𝑐0
2⊞

𝑆1 𝑆1 𝑆1

? ? 𝑆1(𝑐0
2)

𝑀

𝑆−1
2 (X) − 𝑐1

0 𝑆−1
2 (Y) − 𝑐1

1 𝑆−1
2 (Z) − 𝑐1

2

𝑐1
0 𝑐1

1 𝑐1
2⊞ ⊞ ⊞

𝑆2 𝑆2 𝑆2

X Y Z

Figure 3: Bypassing Two SPN Steps (𝑡 = 3).

Attack description. A basic encoding of Poseidon into equations can be solved quickly
for a small number of rounds. In fact, it was sufficient for us to be able to claim the first
bounty offered by the Ethereum Foundation for this algorithm. However, targeting the
next ones requires to use the technique described in Section 4.2. The idea is to decrease
the degree and the complexity of the polynomial system by more carefully choosing its
variables.

Let 𝑡 = 3, and 𝑆1, 𝑆2 such that 𝑆1(𝑥) = 𝑆2(𝑥) = 𝑥3. Then, applying our trick for SPN
rounds, we consider an input state after the S-box layer of the second round of the form
(𝐴0

3X, 𝐴1
3X, 𝑔) (i.e. we use 𝑉 = (𝐴0

3, 𝐴1
3, 0) and 𝐺 = (0, 0, 𝑔)). We obtain⎧⎨⎩𝐴1 = − 𝛼0,2

𝛼1,2
𝐴0

𝑔 =
(︁

1
𝛼2,2

(︀
𝛼0,2𝑐1

0 + 𝛼1,2𝑐1
1
)︀

+ 𝑐1
2 + (𝑐0

2)3
)︁3

.
(2)

As previously mentioned, if we find a value X such that the image of (𝐴0
3X, 𝐴1

3X, 𝑔)
through 𝑅 − 2 rounds of Poseidon (and a linear layer) is equal to (*, *, 0), then we will
always be able to deduce an input (𝑥, 𝑦, 0) for 𝑅-round of Poseidon that is mapped to 𝒵.

Therefore, we evaluate the permutation as polynomials in F𝑝[X] starting from the state
(𝐴3X, 𝐵3X, 𝑔) with 𝐴, 𝐵, 𝑔 satisfying System (2), and the CICO problem is equivalent to
finding the root of the polynomial corresponding to the rightmost branch of the output.

In practice, we use SageMath to generate the polynomial, and we compute the roots
either directly from SageMath, or with an external program using NTL. The corresponding
code is given in the Supplementary Material.

Complexity Analysis. Poseidon has 𝑟 = RF + RP rounds in total, but we skip the
first two rounds using the trick. Therefore, we obtain a univariate polynomial of degree
𝑑 = 3𝑟−2, and we can estimate the complexity of finding the roots as:

𝑑 log(𝑑)
(︀

log(𝑑) + log(𝑝)
)︀

log(log(𝑑))
)︀

≈ 3𝑟−2 × (𝑟 − 2) × 1.58 × 64 × log2(𝑟 − 2).

We give explicit values for the proposed challenges in Table 2, along with the corresponding
security claims. For the challenges issued by the Ethereum foundation, the claim was that

84 Algebraic Attacks against Some Arithmetization-Oriented Primitives

?

𝑐0
0⊞

?

𝑐0
𝑡−2⊞

0

𝑐0
𝑡−1⊞

𝑆1 . . . 𝑆1 𝑆1

? ? 𝑆1(𝑐0
𝑡−1)

𝑀

𝐴0𝑆−1
2 (X) − 𝑐1

0 𝐴𝑡−2𝑆−1
2 (X) − 𝑐1

𝑡−2 𝑆−1
2 (𝑔) − 𝑐1

𝑡−1

𝑐1
0 𝑐1

𝑡−2 𝑐1
𝑡−1⊞ ⊞ ⊞

𝑆2 . . . 𝑆2 𝑆2

𝑆2(𝐴0)X 𝑆2(𝐴𝑡−2)X 𝑔

Figure 4: Bypassing Two SPN Steps (general case).

...
AddC

𝑆

𝑆

𝑆

MDS . . .

Rf rounds

...
AddC

𝑆

MDS . . .

RP rounds

...
AddC

𝑆

𝑆

𝑆

MDS

Rf rounds

Figure 5: Overview of the construction of Poseidon.

an attack would require at least 237+𝑠 steps, where 𝑠 is a “security” level specified in bits,
and is equal to 8, 16, 34, 32 and 40 when RP is equal to 3, 8, 13, 19 and 24 respectively.

The original specification of Poseidon states that interpolation attacks are expected
to have a complexity similar to the one of our attacks, namely about 𝛼RP+RF [GKR+21,
Equation (3)]. However, the challenges of the Ethereum Foundation5 appear to claim a
higher security level.

4.4 Application to Round-Reduced Rescue–Prime
Design description. Rescue is a family of AO hash functions, that was first proposed as
part of Marvellous designs [AAB+19]. Rescue has the particularity of using both a low
degree S-box and its inverse. Indeed, each round of Rescue, consists of two steps: while the
first one involves an S-box 𝑆, an MDS matrix 𝑀 , and the addition of the round constants,
the second one is quite similar but replaces 𝑆 with its inverse 𝑆−1. The two steps of each
round are described in Figure 6.

5We observe that this claim is close to 33RF+RP, but it is unclear which attack it corresponds to.

Augustin Bariant, Clémence Bouvier, Gaëtan Leurent, Léo Perrin 85

Table 2: Complexity of our attack against Poseidon, compared with the security claims
given by the authors and by the challenges, with RF = 8. Complexity figures in bold
correspond to attacks that we have implemented in practice.

RP Authors claims Ethereum claims 𝑑 Complexity
3 217 245 39 226

8 225 253 314 235

13 233 261 319 244

19 242 269 325 254

24 250 277 330 262

For our study, we will use the specifications of Rescue–Prime [SAD20], which means in
particular that in each round, we first apply 𝑆 and then 𝑆−1 (rather than the contrary as
described in the original paper [AAB+19]).

The challenges from the Ethereum Foundation use 𝑡 = 3 or 𝑡 = 2, and the S-boxes are
𝑥 ↦→ 𝑥3 and its inverse 𝑥 ↦→ 𝑥1/3.

𝑋𝑖

𝑌𝑖

...

𝑆

𝑆

𝑆

MDS
...

AddC
...

𝑆−1

𝑆−1

𝑆−1

MDS
...

AddC

𝑋𝑖+1

𝑌𝑖+1

...

𝑃𝑖 𝑄𝑖

Figure 6: Round 𝑖 of Rescue–Prime.

Attack description. Rescue–Prime cannot be efficiently written as a univariate polynomial
system, because it uses both the S-boxes 𝑥 ↦→ 𝑥3 and 𝑥 ↦→ 𝑥1/3. Each S-box has a low
univariate degree in one direction, but a high degree in the other direction. Therefore, we
add intermediate variables so that each S-box can be described with a low-degree equation,
and we build a multivariate system.

More precisely, let us consider Rescue–Prime with a 𝑡-element state (𝑡 = 2 or 𝑡 = 3)
and 𝑁 rounds. We use variables (𝑋0, 𝑌0, . . .) to represent the input and (𝑋𝑖, 𝑌𝑖, . . .) to
represent the internal state after the 𝑖-th round (𝑡(𝑁 + 1) variables in total). As shown in
Figure 6, we can write 𝑡 equations linking the 𝑡 variables at the input and output of round
𝑖, using only the direct S-box 𝑥 ↦→ 𝑥3. Therefore, we have degree-3 equations:

∀𝑗 ∈ {1, . . . , 𝑡}, 𝑃𝑖,𝑗(𝑋𝑖, 𝑌𝑖, . . .) − 𝑄𝑖,𝑗(𝑋𝑖+1, 𝑌𝑖+1, . . .) = 0 .

If we add equations 𝑋0 = 0 and 𝑋𝑁 = 0, we obtain a system of polynomial equations
representing the CICO problem. We observe that the input variables can be removed.
Indeed, each 𝑆(𝑋0), 𝑆(𝑌0), . . . can be written as degree-3 polynomial of 𝑋1, 𝑌1, Given
that 𝑆(𝑋0) = 0, it follows that we can only keep the corresponding polynomial equal to 0,
and then remove the input variables. We can also remove 𝑋𝑁 because it is fixed to zero,
and we obtain a system of 𝑡(𝑁 − 1) + 1 equations and 𝑡𝑁 − 1 variables.

With 𝑡 = 2, we have the same number of equations and variables. However, with 𝑡 ≥ 3
we have more variables than equations, and we can use the trick of Section 4.2 to obtain a

86 Algebraic Attacks against Some Arithmetization-Oriented Primitives

smaller system corresponding to a subset of the solutions with one solution on average.

Bypassing the First Round when t = 3. Let us repeat the idea described in Section 4.3
and apply it to Rescue–Prime.

Let 𝑡 = 3, and 𝑆1, 𝑆2 such that 𝑆1(𝑥) = 𝑥3, and 𝑆2(𝑥) = 𝑆−1
1 (𝑥) = 𝑥1/3. We consider

an input state after the S-box layer of the second round of the form (𝐴0
1/3X, 𝐴1

1/3X, 𝑔)
(i.e. we use 𝑉 = (𝐴0

1/3, 𝐴1
1/3, 0) and 𝐺 = (0, 0, 𝑔)).

We first notice that we can switch the order of the multiplication by the MDS matrix
and the addition of the constants. Let⎛⎝ 𝐶0

0
𝐶0

1
𝐶0

2

⎞⎠ = 𝑀−1

⎛⎝ 𝑐0
0

𝑐0
1

𝑐0
2

⎞⎠ .

In particular, we have:

𝐶0
2 = 𝛼0,2𝑐0

0 + 𝛼1,2𝑐0
1 + 𝛼2,2𝑐0

2 .

As a consequence, using the same notations as above, the value 𝐶0
2 , in Figure 7, must

satisfy

𝐶0
2 = 𝛼0,2𝐴0X3 + 𝛼1,2𝐴1X3 + 𝛼2,2𝑔3

= X3 (𝛼0,2𝐴0 + 𝛼1,2𝐴1) + 𝛼2,2𝑔3 .

It is the case provided for instance when:⎧⎨⎩𝐴1 = − 𝛼0,2
𝛼1,2

𝐴0

𝑔 =
(︁

1
𝛼2,2

(︀
𝛼0,2𝑐0

0 + 𝛼1,2𝑐0
1
)︀

+ 𝑐0
2

)︁1/3
.

(3)

Recalling that one round corresponds to two steps, it follows that, if we find a value X
such that the image of (𝐴0

1/3X, 𝐴1
1/3X, 𝑔) through 𝑅 − 1 rounds of Rescue–Prime (and a

linear layer) is equal to (*, *, 0), then we will always be able to deduce an input (𝑥, 𝑦, 0)
for 𝑅-round Rescue–Prime that is mapped to 𝒵.

? ? 0

𝑆 𝑆 𝑆

𝐶0
0⊞ 𝐶0

1⊞ 𝐶0
2⊞

? ? 𝐶0
2

𝑀

𝐴0X3 𝐴1X3 𝑔3

𝑆−1 𝑆−1 𝑆−1

𝐴01/3X 𝐴11/3X 𝑔

Figure 7: How to bypass the first round of Rescue–Prime.

Then, for the remaining 𝑅 − 1 rounds, Figure 6 shows how we generate the following
polynomial equations to avoid the inverse S-box.

∀𝑗 ∈ {0, 1, 2}, 𝑃𝑖,𝑗(𝑋𝑖, 𝑌𝑖, 𝑍𝑖) − 𝑄𝑖,𝑗(𝑋𝑖+1, 𝑌𝑖+1, 𝑍𝑖+1) = 0 .

Augustin Bariant, Clémence Bouvier, Gaëtan Leurent, Léo Perrin 87

Finally, this results in the following system of polynomial equations:{︃
∀ 1 ≤ 𝑖 ≤ 𝑁 − 1, ∀ 𝑗 ∈ {0, 1, 2},

𝑃𝑖,𝑗(𝑋𝑖, 𝑌𝑖, 𝑍𝑖) − 𝑄𝑖,𝑗(𝑋𝑖+1, 𝑌𝑖+1, 𝑍𝑖+1) = 0 ,
(4)

where 𝑍𝑁 = 0 and ⎛⎝ 𝑋1
𝑌1
𝑍1

⎞⎠ = 𝑀

⎛⎝ 𝐴0
1/3X

𝐴1
1/3X
𝑔

⎞⎠ +

⎛⎝ 𝑐1
0

𝑐1
1

𝑐1
2

⎞⎠ .

This system has 𝑡(𝑁 −1) variables and 𝑡(𝑁 −1) equations. As before, we used SageMath
to generate our system of equation. However, we used Magma to find the solutions of the
corresponding multivariate system. Again, our code is given in the Supplementary Material.

Complexity Analysis. With 𝑡 = 3 branches and 𝑁 rounds, we obtain a system of 3(𝑁 − 1)
degree-3 equations with the same number of variables. In our experiments, the system
behaves like a generic system and has 𝑑 = 33(𝑁−1) solutions in the algebraic closure of the
field. Therefore, the complexity of solving the system is approximately:

𝑑𝜔 ≤ 𝑑3 = 39(𝑁−1).

With 𝑡 = 2 branches and 𝑁 rounds, we obtain a system of 2𝑁 − 1 degree-3 equations with
the same number of variables. Therefore, 𝑑 = 32𝑁−1 and the complexity of solving the
system is approximately:

𝑑𝜔 ≤ 𝑑3 = 36𝑁−3.

Besides, the original paper of Rescue–Prime states that Gröbner basis attacks are
expected to have the following complexity(︂

(0.5(𝛼 − 1) + 1)𝑡(N − 1) + 3
𝑡(N − 1) + 1

)︂2
[SAD20, 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 2.5].

We give explicit values for the proposed challenges in Table 3.

Table 3: Complexity of our attack against Rescue–Prime, compared with the security
claims given by the authors and by the challenges. Complexity figures in bold correspond
to attacks that we have implemented in practice.

N 𝑡 Authors claims Ethereum claims 𝑑 complexity
4 3 236 237.5 39 243

6 2 240 237.5 311 253

7 2 248 243.5 313 262

5 3 248 245 312 257

8 2 256 249.5 315 272

5 Attacks Against Ciminion
Design description. Ciminion is a symmetric encryption scheme from Dobraunig et al.
published at Eurocrypt 2021 [DGGK21] that aims to minimize the number of multiplica-
tions in large finite fields. Unlike Feistel–MiMC, Poseidon and Rescue–Prime, Ciminion
does not use a power map S-box (such as 𝑥 → 𝑥3) and the non-linear diffusion instead
comes from the use of Toffoli gates (𝑎, 𝑏, 𝑐) ↦→ (𝑎, 𝑏, 𝑐 + 𝑎𝑏). In addition, Ciminion uses a

88 Algebraic Attacks against Some Arithmetization-Oriented Primitives

𝑝𝐶

𝐾2

𝐾1

ℵ

rol

⊞
⊞

𝐾3
𝐾4

⊞
⊞ 𝐾2𝑙−1

𝐾2𝑙

rol

𝑝𝐸 𝐶2

𝐶1⊞

⊞

𝑃1

𝑃2

𝑝𝐸

𝐶3

𝐶4

⊞

⊞

𝑃3

𝑃4

𝑝𝐸

𝐶2𝑙−1

𝐶2𝑙

⊞

⊞

𝑃2𝑙−1

𝑃2𝑙

Figure 8: The Ciminion Encryption over F𝑝 (replace + by ⊕ over F2𝑛).

𝑡𝑎

𝑡𝑏

𝑡𝑐

𝑤𝑎

𝑤𝑏

𝑤𝑐

.
⊞

Figure 9: rolling function rol.

𝑎𝑖−1

𝑏𝑖−1

𝑐𝑖−1

𝑎𝑖

𝑏𝑖

𝑐𝑖

.
⊞

⊞

·RC4ℓ

⊞

RC1ℓ

RC2ℓ

RC3ℓ

⊞

⊞

⊞

Figure 10: Ciminion round function.

light linear layer instead of an MDS matrix. Ciminion’s encryption scheme is presented
in Figure 8. For the sake of consistency with previous figures, we show it on F𝑝 rather
than F2𝑛 as presented in the original paper. 𝑝𝐶 and 𝑝𝐸 are both permutations based on
the same round function, presented in Figure 10. For a security level of 𝑠, 𝑝𝐶 possesses
𝑠 + 6 rounds and 𝑝𝐸 max{⌈ 𝑠+37

12 ⌉, 6} rounds. rol is a non-linear rolling function described
in Figure 9.

Dobraunig et al. performed a thorough security analysis of Ciminion, exploring all
cryptanalysis techniques, such as linear cryptanalysis, differential cryptanalysis, higher-
order differentials, interpolation and Gröbner basis attacks. For the latter however,
they studied a modified Ciminion that they conjectured to be weaker than the real
Ciminion. In the modified Ciminion, they came up with a system of 6 equations of degrees
{2𝑟−1, 2𝑟, 2𝑟, 2𝑟+1, 2𝑟+1, 2𝑟+2} over 6 variables, where 𝑟 is the number of rounds of 𝑝𝐸 .

The value of 𝑟 was chosen so that this attack has complexity at least 2𝑠. More precisely,

Augustin Bariant, Clémence Bouvier, Gaëtan Leurent, Léo Perrin 89

ℵ
𝐾1

𝐾2

𝑝𝐶

𝑄𝛼1,𝛼2
0 (𝑋)

𝑄𝛼1,𝛼2
1 (𝑋)

𝑄𝛼1,𝛼2
2 (𝑋)

𝑝𝐸

𝛼1

𝛼2

𝑋

𝑃1 𝑃2

⊞

⊞

𝐶1

𝐶2

⊞

⊞

𝐾3

𝐾4

⊞ .

𝑄𝛼3,𝛼4
0 (𝑌)

𝑄𝛼3,𝛼4
1 (𝑌)

𝑄𝛼3,𝛼4
2 (𝑌)

𝑝𝐸

𝛼3

𝛼4

𝑌

𝑃3 𝑃4

⊞

⊞

𝐶3

𝐶4

Figure 11: How to generate equations for Ciminion.

the authors estimated the complexity of the F5 algorithm with parameters

𝑛 = 6 𝐷reg = 21 · 2𝑟−1 − 5 ≈ 2𝑟+3.4 .

Following [BFS04], they estimated the complexity6 as(︂
𝑛 + 𝐷reg

𝐷reg

)︂𝜔

≤
(︂

(𝐷reg + 𝑛)𝑛

𝑛!

)︂𝜔

≈ 2(6𝑟+10.9)𝜔 .

The designers took 𝜔 = 2 as a lower bound, obtaining a minimum number of rounds
𝑟 ≥ ⌈ 𝑠−21.8

12 ⌉, and added 5 rounds as a security margin.

A new polynomial system. Instead of looking at a system of equations resulting from a
presumed weaker scheme, we study the real scheme and propose a better way to set up a
system of equations.

For a given nonce ℵ, we consider the first two output blocks. We denote 𝛼𝑖 = 𝐶𝑖 − 𝑃𝑖

and 𝛼′
𝑖 = 𝐶 ′

𝑖 − 𝑃 ′
𝑖 , for 𝑖 = 1 . . . 4, and introduce two variables 𝑋, 𝑌 ∈ F𝑞 for the missing

output words (not given as part of the ciphertext) after the first and second permutations
𝑝𝐸 (see Figure 11). The output of the first permutation 𝑝𝐸 is (𝛼1, 𝛼2, 𝑋), therefore, we
can write the input as polynomials in 𝑋:

(𝑄𝛼1,𝛼2
0 (𝑋), 𝑄𝛼1,𝛼2

1 (𝑋), 𝑄𝛼1,𝛼2
2 (𝑋)) = 𝑝−1

𝐸 (𝛼1, 𝛼2, 𝑋)

Similarly, the output of the second permutation 𝑝𝐸 is (𝛼3, 𝛼4, 𝑌), and we can write the
corresponding input as polynomials in 𝑌 :

(𝑄𝛼3,𝛼4
0 (𝑌), 𝑄𝛼3,𝛼4

1 (𝑌), 𝑄𝛼3,𝛼4
2 (𝑌)) = 𝑝−1

𝐸 (𝛼3, 𝛼4, 𝑌)

6This estimation is actually an upper bound, and a sharper upper bound of 𝒪
(︁

𝑛𝐷reg ×
(︀

𝑛+𝐷reg−1
𝐷reg

)︀𝜔
)︁

is given in [BFS15, Proposition 1] as mentioned in Section 3.2.

90 Algebraic Attacks against Some Arithmetization-Oriented Primitives

Then, we write equations linking the input of the first two 𝑝𝐸 through the rol function:

𝑄𝛼1,𝛼2
0 (𝑋) = 𝑄𝛼3,𝛼4

1 (𝑌) − 𝐾4

𝑄𝛼1,𝛼2
1 (𝑋) = 𝑄𝛼3,𝛼4

2 (𝑌) − 𝐾3

𝑄𝛼1,𝛼2
2 (𝑋) = 𝑄𝛼3,𝛼4

0 (𝑌) − 𝑄𝛼3,𝛼4
1 (𝑌) ⊙ 𝑄𝛼3,𝛼4

2 (𝑌)

Finally, taking two nonces ℵ, ℵ′, we eliminate the keys 𝐾3, 𝐾4 and obtain a system of four
equations in the four variables (𝑋, 𝑌, 𝑋 ′, 𝑌 ′), using two blocks of ciphertexts from each
nonce: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑄𝛼1,𝛼2
0 (𝑋) − 𝑄

𝛼′
1,𝛼′

2
0 (𝑋 ′) = 𝑄𝛼3,𝛼4

1 (𝑌) − 𝑄
𝛼′

3,𝛼′
4

1 (𝑌 ′)
𝑄𝛼1,𝛼2

1 (𝑋) − 𝑄
𝛼′

1,𝛼′
2

1 (𝑋 ′) = 𝑄𝛼3,𝛼4
2 (𝑌) − 𝑄

𝛼′
3,𝛼′

4
2 (𝑌 ′)

𝑄𝛼1,𝛼2
2 (𝑋) = 𝑄𝛼3,𝛼4

0 (𝑌) − 𝑄𝛼3,𝛼4
1 (𝑌)𝑄𝛼3,𝛼4

2 (𝑌)
𝑄

𝛼′
1,𝛼′

2
2 (𝑋 ′) = 𝑄

𝛼′
3,𝛼′

4
0 (𝑌 ′) − 𝑄

𝛼′
3,𝛼′

4
1 (𝑌 ′)𝑄𝛼′

3,𝛼′
4

2 (𝑌 ′) .

(5)

Solving this system allows to recover the full internal state, and to deduce the keys
𝐾1, 𝐾2, 𝐾3, 𝐾4. In order to solve the system, we use the approach explained in Section 3.2.

Solving complexity. Let us denote 𝒫𝑖 the polynomial corresponding to the 𝑖-th row of the
system, such that we have for all 𝑖 = 1 . . . 4, 𝒫𝑖(𝑋, 𝑋 ′, 𝑌, 𝑌 ′) = 0. We notice that 𝒫𝑖 is a
sum of univariate polynomials: 𝒫𝑖(𝑋, 𝑋 ′, 𝑌, 𝑌 ′) = 𝒫𝑋

𝑖 (𝑋) + 𝒫𝑋′

𝑖 (𝑋 ′) + 𝒫𝑌
𝑖 (𝑌) + 𝒫𝑌 ′

𝑖 (𝑌 ′).
Then, it is sufficient to determine max𝑗 deg(𝒫𝑗

𝑖) for each 𝒫𝑖. Given that deg(𝑄0) = 2𝑟−1,
deg(𝑄1) = 2𝑟−1, and deg(𝑄2) = 2𝑟, the degree of the 𝒫𝑖 polynomials in 𝑋, 𝑋 ′, 𝑌 and 𝑌 ′

are:

𝑋 𝑋 ′ 𝑌 𝑌 ′

𝒫1 2𝑟−1 2𝑟−1 2𝑟−1 2𝑟−1

𝒫2 2𝑟−1 2𝑟−1 2𝑟 2𝑟

𝒫3 2𝑟 0 3 · 2𝑟−1 0
𝒫4 0 2𝑟 0 3 · 2𝑟−1

In particular, system (5) has 2 equations of degree 3 · 2𝑟−1, 1 of degree 2𝑟, and 1 of degree
2𝑟−1. Therefore, we have the following parameters:

𝑛 = 4 𝐷reg ≤ 1 +
𝑟∑︁

𝑖=1
(𝑑𝑖 − 1) ≈ 2𝑟+2.2 𝑑 ≤ Π𝑛

𝑖=1𝑑𝑖 ≈ 24𝑟+0.2 .

We can deduce upper bounds on the cost of the steps required to solve the system.
Computing a Gröbner basis with respect to the grevlex order using Faugère’s F5

algorithm has asymptotic complexity

𝑛𝐷reg ×
(︂

𝑛 + 𝐷reg − 1
𝐷reg

)︂𝜔

= 4 × 2𝑟+2.2 ×
(︂

2𝑟+2.2 + 3
2𝑟+2.2

)︂𝜔

≤ 2𝑟+4.2
(︂

(2𝑟+2.2 + 3)3

3!

)︂𝜔

≈ 2𝑟+4.2+(3𝑟+4)𝜔 .

On the other hand, performing the change of order with a fast variant of FGLM has
asymptotic complexity

𝑑𝜔 ≈ 2(4𝑟+0.2)𝜔 .

FGLM is therefore the bottleneck.

Augustin Bariant, Clémence Bouvier, Gaëtan Leurent, Léo Perrin 91

From an attacker point of view, we assume that linear algebra is implemented with
Strassen’s algorithm, resulting in 𝜔 = 2.807 (asymptotically, the best algorithm known
has 𝜔 < 2.373, but only for implausibly large sizes). Taking the designer’s recommended
number of rounds 𝑟 = ⌈ 𝑠+37

12 ⌉, this attack is slightly faster than 2𝑠 for large values of 𝑠,
with a time complexity

2(4𝑟+0.2)𝜔 = 2(4⌈ 𝑠+37
12 ⌉+0.2)𝜔 ≈ 2 4𝜔

12 𝑠+35.2 ≈ 20.94𝑠+35.2 .

For practical values of 𝑠, the attack is not faster than 2𝑠, but it shows that the design
has much less security margin than anticipated by the designers. In particular, if we
take an optimistic value 𝜔 = 2 as in the security analysis of the designers, we obtain an
attack with complexity roughly 2112.4 for the 128-bit security version recommended by the
designers with 14 rounds.

6 Experimental Results
In order to better understand the behaviour of the root-finding tools we relied on in our
attacks, we performed additional benchmarks on top of our attacks against the Ethereum
challenges. We treat the cases of univariate and multivariate equations separately.

6.1 Univariate Solving
For root-finding of univariate polynomials, we investigated the FLINT [Har11] and NTL C
libraries. Both support operations related to big polynomials in finite fields, but NTL was
considerably faster for different sizes of toy polynomials, therefore we chose to benchmark
only NTL. In order to work with high degree polynomials with NTL, we need to apply a
small patch to the library source files to increase the value of NTL_FFTMaxRoot.

Table 4 presents our experimental results, with 𝑝 = 18446744073709551557 ≈ 264.
Given a degree 𝑑 = 3𝑘, we generate the polynomial modeling the CICO problem for
Poseidon with (RP, RF) = (𝑘 − 6, 8) and for Feistel–MiMC with 𝑘 + 1 rounds , and
random polynomials (each of the 𝑑 + 1 coefficients is taken randomly in F𝑝). For each
instance and degree, we launched min(32, 218−𝑘) jobs, with varying random polynomials.
For all instances, the standard deviation of the memory consumption is negligible (in
average 10−5 times the average value), and the standard deviation of time stays under 3
percent of the average value.

The data is represented in Figure 12, and we performed a linear regression of the time
and memory usage of random polynomials root finding. We notice that the structure of
the polynomials of Feistel–MiMC and Poseidon does not offer a significant speed up to
the root finding compared to random polynomials.

Because the theoretical complexity is quasi-linear, the linear regression should be treated
cautiously. In addition, the benchmarks apply only on 1 core and do not account for
parallelization. We expect to speed up the univariate root finding with NTL parallelization
(which, officially, is supported), but some tests showed that NTL CPU usage does not
exceed 300%, even with more than 3 threads.

6.2 Multivariate Solving
For benchmarks of multivariate solving, we chose to use Magma [BCP97]. We compare the
resources needed for the resolution of the Rescue–Prime and Ciminion polynomial systems
to the resources needed for random equivalent systems. It should be noted that Magma
implements the F4 algorithm [FGHR14] to find the grevlex Gröbner basis, and the FGLM
algorithm [FGLM93] in cubic complexity for the change of ordering. Also, there seems to

92 Algebraic Attacks against Some Arithmetization-Oriented Primitives

Table 4: Benchmarks of univariate root finding with NTL (using 1 core of an Intel Xeon
E7-4860), for Poseidon, Feistel–MiMC and random polynomials of several degrees, with
𝑝 = 18446744073709551557 ≈ 264. Times are given in seconds and memory usage in
MegaBytes.

System
Feistel–MiMC

Poseidon

Random

Degree 311 312 313 314 315 316 317 318

𝑋𝑝 mod 𝑃 time 13 54 148 535 1,426 5,119 14,243 46,256
GCD time 7 23 78 261 889 2,970 9,687 36,451
Total time 20 77 226 796 2,315 8,089 23,930 82,707
Memory 104 293 822 2,431 6,967 20,696 59,227 2.07 · 105

𝑋𝑝 mod 𝑃 time 13 54 148 534 1,454 5,083 14,241 47,963
GCD time 8 23 78 262 893 2,964 9,699 38,541
Total time 21 77 226 796 2,347 8,047 23,940 86,504
Memory 104 293 838 2,431 6,968 20,696 60,538 2.07 · 105

𝑋𝑝 mod 𝑃 time 14 56 152 547 1,433 5,117 14,406 47,964
GCD time 7 23 80 269 903 2,976 9,790 38,693
Total time 21 79 232 816 2,336 8,093 24,196 86,657
Memory 102 293 822 2,431 6,935 20,696 60,538 2.07 · 105

311 312 313 314 315 316 317 318

102

103

104

105

𝑑

T
im

e
(s

)

Time
Feistel-MiMC 𝑋𝑝 mod 𝑃
Feistel-MiMC GCD
Poseidon 𝑋𝑝 mod 𝑃
Poseidon GCD
Random 𝑋𝑝 mod 𝑃
Random GCD
5.31 · 10−5 · 𝑑1.04

9.96 · 10−6 · 𝑑1.11

102

103

104

105

M
em

or
y

(M
B)

Memory
Feistel-MiMC
Poseidon
Random
7.06 · 10−4 · 𝑑0.98

Figure 12: Benchmarks of univariate root finding with NTL (using 1 core of an Intel Xeon
E7-4860).

Augustin Bariant, Clémence Bouvier, Gaëtan Leurent, Léo Perrin 93

be a fixed memory overhead of 32 MB when using Magma for Gröbner basis, therefore we
did not take into account low-memory points in the linear regressions.

Rescue–Prime and Rescue–Prime-like systems Table 5 and Figure 13 present the
results for the resolution of a 𝑘-round Rescue–Prime instance, 𝑘 = 3, 4, with 𝑚 = 3 and
𝑝 = 18446744073709551557 ≈ 264. These are compared to random equivalent systems of 𝑛
equations of degree 3 on 𝑛 variables, generated randomly by affecting a random coefficient
of F𝑝 to each possible monomial of degree ≤ 3. In order to give a better insight on the
evolution of the resources consumption, we chose to additionnaly benchmark random
systems with 𝑛 = 5, 7, 8, which do not correspond to any version of Rescue–Prime.

For systems of 𝑛 equations, we launched min(22(9−𝑛), 64) jobs. The standard deviation
of time and memory consumption never exceeds 2% of the average value. The program
was cut after 7 days for random systems with 𝑛 = 9. The F4 step finished, but the FGLM
step did not finish (after approximately 44 hours). The linear regression of Rescue system
FGLM time might be biased compared to Random FGLM time, because only Rescue
possesses a data point with 𝑛 = 9, which demands heavy resources in memory, potentially
causing some overhead.

The results highlight several properties:

• We observe that the theoretical maximal ideal degree is reached, for all systems: 3𝑛

for 𝑛 equations of degree 3.

• The F4 run time varies considerably between the Rescue–Prime system and a random
system. For 4-round Rescue–Prime (𝑛 = 9), there is almost a factor 50 between the
run time of F4 on the Rescue–Prime system and on a random system.

• F4 dominates in time for random system, but FGLM heavily dominates for Rescue–
Prime systems.

• The case with 6 equations is the only point of comparison between the Rescue–
Prime system and the random system, but on this data point, FGLM is faster on
Rescue–Prime than on a random system, despite having the same ideal degree (729).

• The memory consumption seems to essentially follow the same linear regression for
both Rescue–Prime systems and Random systems.

Ciminion and Ciminion-like systems For 𝑟 rounds of Ciminion, in Section 5, we present
a modelization of the cryptosystem with 4 equations on 4 variables, of degrees respectively
2𝑟−1, 2𝑟, 3 · 2𝑟−1, and 3 · 2𝑟−1. For the sake of simplicity, we kept the same prime number
𝑝 = 18446744073709551557 = 264 − 59, although it is less than 264 (Ciminion normally
requires a prime 𝑝 > 264). We chose to add the concept of half rounds to increase the
number of data points: 𝑟 + 0.5 rounds of Ciminion is Ciminion where the first branch 𝑝𝐸

has undergone 𝑟 + 1 rounds while the second branch 𝑝𝐸 has only been through 𝑟 rounds.
With the same technique as in Section 5, we can represent this instance of Ciminion with
a system of 4 equations on 4 variables, of degrees 2𝑟−1, 2𝑟−1, 2𝑟−1, and 2𝑟−1. We compare
the Ciminion systems to random systems of 4 equations on 4 variables with the same
degrees, where a random coefficient of F𝑝 is assigned to every possible monomial in each
equation. The 4-round Ciminion was cut off due to memory insufficiency (≥ 192 GB).
Table 6 and Figure 14 present the results. We did not take into account the memory points
with 𝑟 = 2 in the linear regression, because it seems to be a fixed overhead when solving
Gröbner bases with Magma (regardless of their sizes).

The results allow us to make the following observations.

94 Algebraic Attacks against Some Arithmetization-Oriented Primitives

Table 5: Benchmarks of multivariate root finding with Magma using 1 CPU core of an
Intel Xeon Gold 5218, for Rescue and Rescue-like systems. Times are given in seconds and
memory usage in MegaBytes.

System
Rescue–Prime

Random

Number of equations 5 6 7 8 9
Rounds 3 4
F4 time 1.41 8,500
FGLM time 7.77 2.5 · 105

Memory 112 58,675
Ideal degree 729 19,683
F4 time 0.25 8.23 299 11,120 4.46 · 105

FGLM time 0.58 11.15 263 6,490
Memory 32 134 936 7,945
Ideal degree 243 729 2,187 6,561 19,683

5 6 7 8 9
10−1

100

101

102

103

104

105

106

Number of equations 𝑛

T
im

e
(s

)

Time
Rescue F4 3.88 · 10−8 · 24.19𝑛

Random F4 3.57 · 10−9 · 25.19𝑛

Rescue FGLM 7.48 · 10−9 · 24.99𝑛

Random FGLM 9.4 · 10−8 · 24.49𝑛

10−1

100

101

102

103

104

105

106

M
em

or
y

(M
B)

Memory
Rescue 4.08 · 10−4 · 23.01𝑛

Random 6.22 · 10−4 · 22.95𝑛

Figure 13: Benchmarks of multivariate root finding with Magma using 1 CPU core of an
Intel Xeon Gold 5218, for Rescue–Prime and Rescue–Prime-like systems (𝑛 equations of
degree 3), with 𝑝 = 18446744073709551557 and 𝑚 = 3. 3-round and 4-round Rescue-prime
respectively correspond to 𝑛 = 6 and 𝑛 = 9.

Augustin Bariant, Clémence Bouvier, Gaëtan Leurent, Léo Perrin 95

• The Ciminion system of equation does not reach the maximal ideal degree. We did
not succeed to find a simple reduction of the system to explain this fact. This is
surprising and not accounted for in the security analysis of the designer of Ciminion.

• The FGLM step heavily dominates the time complexity for Ciminion-like systems.
For half rounds, the 4 equations all have the same degree, and this confirms the
property showed in Section 3.2.

• We observe a factor 20 between the time complexity of the F4 step of the Ciminion
system and random equivalent systems.

• We observe a factor at least 2.5 between the time complexity of the FGLM step of
the Ciminion system and random equivalent systems. This is partially due to the
suboptimal ideal degree of the Ciminion system.

• Extrapolating the results to 𝑠 = 64 and 𝑟 = 9 (since 𝑞 ≈ 264 it does not make sense
to consider larger security levels), the expected time complexity of the FGLM step
is 9 · 10−8 · 210.52·9 = 260.8 seconds (and not operations), which gives a comfortable
security margin: our modelization does not break Ciminion.

For Ciminion and for Rescue–Prime systems, the FGLM step is predominant. However,
the implementation of FGLM in Magma is in cubic complexity on the ideal degree. With a
more performant implementation of FGLM [FGHR14, FM17], we should reduce the time
complexity for both systems.

7 Conclusion
Our results show that properly choosing the parameters for arithmetization-oriented
primitives is still non-trivial. In particular, some of the parameters chosen for the Ethereum
Foundation challenge were apparently erroneous.

More specifically, we suggest a few lessons that can be learnt from our findings:

Encodings. There are many different ways to set up a system of equations corresponding
to an attack against a primitive, but different encoding can result in different attack
complexities. Designers should consider as many variants as possible when evaluating
the complexity of algebraic attacks.

Univariate solving. When a primitive can be modelled as a univariate polynomial, this is
usually the most efficient way to mount an algebraic attack. Indeed, finding the roots
(in the field) of a random univariate polynomial has a complexity that is quasi-linear
in the degree. Therefore, the number of rounds should be defined by the degree of
the univariate polynomial, rather than by the complexity of computing a Gröbner
basis.

First round. If the first round starts with a layer of S-boxes, this layer can be ignored
when attacking the CICO problem. It is then better to start (and end) with a linear
diffusion layer.

Second round. When 𝑡 ≥ 3, the linearization trick from Section 4.2 allows to skip one
additional round when attacking the CICO problem with 𝑢 = 1.

Acknowledgments
We thank the ToSC reviewers for their detailed comments which helped improve the clarity
of this paper, and Lorenzo Grassi for shepherding it. We also thank Jules Baudrin and

96 Algebraic Attacks against Some Arithmetization-Oriented Primitives

Table 6: Benchmarks of multivariate root finding with Magma using 1 CPU core of an Intel
Xeon Gold 5218, for Ciminion and Ciminion-like systems. Times are given in seconds and
memory usage in MegaBytes, for systems of 𝑛 equations of degree 3-round and 4-round
Rescue-prime respectively correspond to 𝑛 = 6 and 𝑛 = 9.

System
Ciminion

Random

Expected Ideal degree 288 1024 4608 16384 73728
Rounds 2 2.5 3 3.5 4
F4 Time 2 · 10−2 0.41 4.6 127 5,624
FGLM Time 0.23 6.7 209.1 13,848
Memory 32 125.66 1,279 19,040
Ideal degree 170 680 2,736 10,944 43,840
F4 time 0.1 2.36 92.9 3,030
FGLM time 0.74 18.96 1,011 32,069
Memory 32 226 3,480 47,444
Ideal degree 288 1,024 4,608 16,384

2 2.5 3 3.5 4
10−2

10−1

100

101

102

103

104

105

106

Number of rounds 𝑟

T
im

e
(s

)

Time
Ciminion F4 7.12 · 10−8 · 28.9𝑟

Random F4 8.59 · 10−8 · 29.99𝑟

Ciminion FGLM 9 · 10−8 · 210.52𝑟

Random FGLM 3.66 · 10−7 · 210.39𝑟

10−2

10−1

100

101

102

103

104

105

106

M
em

or
y

(M
B)

Memory
Ciminion 4.17 · 10−4 · 24.57𝑟

Random Ciminion 3.61 · 10−4 · 24.87𝑟

Figure 14: Benchmarks of multivariate root finding with Magma using 1 CPU core of an
Intel Xeon Gold 5218, for Ciminion and Ciminion-like systems (4 equations of high degree).

Augustin Bariant, Clémence Bouvier, Gaëtan Leurent, Léo Perrin 97

Clara Pernot for proof reading a first draft of this manuscript, and Magali Bardet and
Pierre Briaud for helpful discussions about solving multivariate systems.

Finally, we thank the Ethereum foundation for putting forward the challenges that
kickstarted the research presented in this paper.

References
[AAB+19] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan

Szepieniec. Design of symmetric-key primitives for advanced cryptographic
protocols. Cryptology ePrint Archive, Report 2019/426, 2019. https://
eprint.iacr.org/2019/426.

[AAB+20] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan
Szepieniec. Design of symmetric-key primitives for advanced cryptographic
protocols. IACR Trans. Symm. Cryptol., 2020(3):1–45, 2020.

[ACG+19] Martin R. Albrecht, Carlos Cid, Lorenzo Grassi, Dmitry Khovratovich, Rein-
hard Lüftenegger, Christian Rechberger, and Markus Schofnegger. Algebraic
cryptanalysis of STARK-friendly designs: Application to MARVELlous and
MiMC. In Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019,
Part III, volume 11923 of LNCS, pages 371–397. Springer, Heidelberg, De-
cember 2019.

[AD18] Tomer Ashur and Siemen Dhooghe. MARVELlous: a STARK-friendly family
of cryptographic primitives. Cryptology ePrint Archive, Report 2018/1098,
2018. https://eprint.iacr.org/2018/1098.

[AES01] Advanced Encryption Standard (AES). National Institute of Standards and
Technology (NIST), FIPS PUB 197, U.S. Department of Commerce, November
2001.

[AGP+19] Martin R. Albrecht, Lorenzo Grassi, Léo Perrin, Sebastian Ramacher, Chris-
tian Rechberger, Dragos Rotaru, Arnab Roy, and Markus Schofnegger. Feistel
structures for MPC, and more. In Kazue Sako, Steve Schneider, and Peter
Y. A. Ryan, editors, ESORICS 2019, Part II, volume 11736 of LNCS, pages
151–171. Springer, Heidelberg, September 2019.

[AGR+16] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and
Tyge Tiessen. MiMC: Efficient encryption and cryptographic hashing with
minimal multiplicative complexity. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 191–219.
Springer, Heidelberg, December 2016.

[BCD+20] Tim Beyne, Anne Canteaut, Itai Dinur, Maria Eichlseder, Gregor Leander,
Gaëtan Leurent, María Naya-Plasencia, Léo Perrin, Yu Sasaki, Yosuke Todo,
and Friedrich Wiemer. Out of oddity - new cryptanalytic techniques against
symmetric primitives optimized for integrity proof systems. In Daniele Mic-
ciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume
12172 of LNCS, pages 299–328. Springer, Heidelberg, August 2020.

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra
system. I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997.
Computational algebra and number theory (London, 1993).

https://eprint.iacr.org/2019/426
https://eprint.iacr.org/2019/426
https://eprint.iacr.org/2018/1098

98 Algebraic Attacks against Some Arithmetization-Oriented Primitives

[BCP22] Clémence Bouvier, Anne Canteaut, and Léo Perrin. On the algebraic degree
of iterated power functions. Cryptology ePrint Archive, Report 2022/366,
2022. https://eprint.iacr.org/2022/366.

[BDPVA07] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge
functions. In ECRYPT hash workshop, volume 2007. Citeseer, 2007.

[BFS04] Magali Bardet, Jean-Charles Faugere, and Bruno Salvy. On the complexity of
Gröbner basis computation of semi-regular overdetermined algebraic equations.
In Proceedings of the International Conference on Polynomial System Solving,
pages 71–74, 2004.

[BFS15] Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. On the complexity of
the F5 Gröbner basis algorithm. Journal of Symbolic Computation, 70:49–70,
2015.

[BS91] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosys-
tems. Journal of Cryptology, 4(1):3–72, January 1991.

[BS92] Eli Biham and Adi Shamir. Differential cryptanalysis of Snefru, Khafre,
REDOC-II, LOKI and Lucifer. In Joan Feigenbaum, editor, CRYPTO’91,
volume 576 of LNCS, pages 156–171. Springer, Heidelberg, August 1992.

[Buc76] Bruno Buchberger. A theoretical basis for the reduction of polynomials to
canonical forms. ACM SIGSAM Bulletin, 10(3):19–29, 1976.

[DG10] Vivien Dubois and Nicolas Gama. The degree of regularity of HFE systems.
In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages
557–576. Springer, Heidelberg, December 2010.

[DGGK21] Christoph Dobraunig, Lorenzo Grassi, Anna Guinet, and Daniël Kuijsters. Ci-
minion: Symmetric encryption based on Toffoli-gates over large finite fields. In
Anne Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021,
Part II, volume 12697 of LNCS, pages 3–34. Springer, Heidelberg, October
2021.

[DY13] Jintai Ding and Bo-Yin Yang. Degree of regularity for HFEv and HFEv-.
In Philippe Gaborit, editor, Post-Quantum Cryptography - 5th International
Workshop, PQCrypto 2013, pages 52–66. Springer, Heidelberg, June 2013.

[EGL+20] Maria Eichlseder, Lorenzo Grassi, Reinhard Lüftenegger, Morten Øygarden,
Christian Rechberger, Markus Schofnegger, and Qingju Wang. An algebraic
attack on ciphers with low-degree round functions: Application to full MiMC.
In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part I,
volume 12491 of LNCS, pages 477–506. Springer, Heidelberg, December 2020.

[Fau99] Jean-Charles Faugere. A new efficient algorithm for computing gröbner bases
(f4). Journal of pure and applied algebra, 139(1-3):61–88, 1999.

[Fau02] Jean Charles Faugere. A new efficient algorithm for computing gröbner bases
without reduction to zero (f 5). In Proceedings of the 2002 international
symposium on Symbolic and algebraic computation, pages 75–83, 2002.

[FGHR14] Jean-Charles Faugère, Pierrick Gaudry, Louise Huot, and Guénaël Renault.
Sub-cubic change of ordering for gröbner basis: a probabilistic approach. In
Proceedings of the 39th International Symposium on Symbolic and Algebraic
Computation, pages 170–177, 2014.

https://eprint.iacr.org/2022/366

Augustin Bariant, Clémence Bouvier, Gaëtan Leurent, Léo Perrin 99

[FGLM93] Jean-Charles Faugere, Patrizia Gianni, Daniel Lazard, and Teo Mora. Efficient
computation of zero-dimensional gröbner bases by change of ordering. Journal
of Symbolic Computation, 16(4):329–344, 1993.

[FM17] Jean-Charles Faugère and Chenqi Mou. Sparse fglm algorithms. Journal of
Symbolic Computation, 80:538–569, 2017.

[Frö85] Ralf Fröberg. An inequality for hilbert series of graded algebras. Mathematica
Scandinavica, 56(2):117–144, 1985.

[GKL+21] Lorenzo Grassi, Dmitry Khovratovich, Reinhard Lüftenegger, Christian Rech-
berger, Markus Schofnegger, and Roman Walch. Reinforced concrete: A fast
hash function for verifiable computation. Cryptology ePrint Archive, Paper
2021/1038, 2021. https://eprint.iacr.org/2021/1038.

[GKR+21] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and
Markus Schofnegger. Poseidon: A new hash function for zero-knowledge proof
systems. In Michael Bailey and Rachel Greenstadt, editors, USENIX Security
2021, pages 519–535. USENIX Association, August 2021.

[GLR+20] Lorenzo Grassi, Reinhard Lüftenegger, Christian Rechberger, Dragos Rotaru,
and Markus Schofnegger. On a generalization of substitution-permutation
networks: The HADES design strategy. In Anne Canteaut and Yuval Ishai,
editors, EUROCRYPT 2020, Part II, volume 12106 of LNCS, pages 674–704.
Springer, Heidelberg, May 2020.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Per-
mutations over lagrange-bases for oecumenical noninteractive arguments of
knowledge. Cryptology ePrint Archive, Report 2019/953, 2019. https:
//eprint.iacr.org/2019/953.

[Har11] William B Hart. Flint: Fast library for number theory. Computeralgebra-
Rundbrief: Vol. 49, 2011.

[KR21] Nathan Keller and Asaf Rosemarin. Mind the middle layer: The HADES
design strategy revisited. In Anne Canteaut and François-Xavier Standaert,
editors, EUROCRYPT 2021, Part II, volume 12697 of LNCS, pages 35–63.
Springer, Heidelberg, October 2021.

[SAD20] Alan Szepieniec, Tomer Ashur, and Siemen Dhooghe. Rescue-prime: a
standard specification (SoK). Cryptology ePrint Archive, Report 2020/1143,
2020. https://eprint.iacr.org/2020/1143.

[Sau22] Jan Ferdinand Sauer. Gröbner basis-attacking a tiny sponge. Available
online at https://asdm.gmbh/2021/06/28/gb_experiment_summary/; re-
trieved on August 19, 2022, 2022.

[Sho] V. et al. Shoup. NTL: A library for doing number theory. https://libntl.
org/.

https://eprint.iacr.org/2021/1038
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2020/1143
https://asdm.gmbh/2021/06/28/gb_experiment_summary/
https://libntl.org/
https://libntl.org/

100 Algebraic Attacks against Some Arithmetization-Oriented Primitives

A Challenge Parameters

The challenges set out by the Etheureum foundation had the following parameters and
claims7:

Rescue–Prime [SAD20]:

Feistel-MIMC [AGR+16]:

Poseidon [GKR+21]:

7An archived version of the challenge page is available at https://web.archive.org/web/
20211101211629/https://www.zkhashbounties.info/ but the images are missing.

https://web.archive.org/web/20211101211629/https://www.zkhashbounties.info/
https://web.archive.org/web/20211101211629/https://www.zkhashbounties.info/

Augustin Bariant, Clémence Bouvier, Gaëtan Leurent, Léo Perrin 101

Reinforced Concrete [GKL+21]:

On November 23rd (after we had sent solution to the first three Feistel–MiMC chal-
lenges), the Feistel–MiMC challenges were modified as follows:

Feistel-MIMC:

	Introduction
	Preliminaries
	Notations
	Security Assessment

	Systems of Polynomial Equations and their Resolution
	Solving Univariate Systems
	Solving a Multivariate System

	CICO Cryptanalysis of Several Primitives
	Attacks Against Round-Reduced Feistel–MiMC
	Bypassing SPN Steps
	Application to Round-Reduced Poseidon
	Application to Round-Reduced Rescue–Prime

	Attacks Against Ciminion
	Experimental Results
	Univariate Solving
	Multivariate Solving

	Conclusion
	Challenge Parameters

