Message Freedom in MD4 and MD5 Collisions: Application to APOP

Gaëtan Leurent
Laboratoire d'Informatique de l'École Normale Supérieure, Département d'Informatique, 45 rue d'Ulm, Paris 75230 Cedex 05, France
gaetan.leurent@ens.fr

Abstract

In Wang's attack, message modifications allow to deterministically satisfy certain sufficient conditions to find collisions efficiently. Unfortunately, message modifications significantly change the messages and one has little control over the colliding blocks. In this paper, we show how to choose some part of the messages which collide. Consequently, we break a security countermeasure proposed by Szydlo and Yin at CT-RSA '06, where they added a fixed padding at the end of each block. Furthermore, we also apply this technique to partially recover the passwords in the Authentication Protocol of the Post Office Protocol (POP). This shows that collision attacks can be used to attack real protocols, which means that finding collisions is a real threat. Key words: Hash function, MD4, MD5, Wang, message modification for meaningful collisions, APOP security

1 Introduction

At EUROCRYPT'05 and CRYPTO'05, Wang et al. described a new class of attack on most of the hash functions of the MD4 family, MD4, MD5, HAVAL, RIPEMD, SHA-0 and SHA-1 in [2022 2321], which allows to find collisions for these hash functions very efficiently. However, even though finding collision breaks the security of these hash functions, it is not clear what happens in practice when hash functions are used in real protocols. Does it mean that any use of hash function is broken? The answer is not clear.

One drawback one Wang's attacks when used against practical schemes is that due to the message modification technique, the blocks which collides cannot be chosen and look random. However, these attacks works with any IV, so one can choose a common prefix for the two colliding messages, and the Merkle-Damgård construction allows to add a common suffix to the colliding messages. Therefore, an attacker can choose a prefix and a suffix, but he must somehow hide the colliding blocks (1 block in MD4 and SHA-0, and 2 blocks in MD5 and SHA-1). This has been used to create two different PostScript files whose digests are equal but resulting in different texts when they are screening in [6] with the poisoned message attack. For this application, the two different texts are in both PS files and the collision blocks are used by a if-then-else to choose which part to display. This attack was extended to other file formats in [8]. Lenstra and de Weger also applied a similar technique to create different X. 509 certificates for the same Distinguished Name but with different secure RSA moduli in [12. Here, the colliding blocks are hidden in the second part of the RSA moduli.

Recently, more concrete attacks have appeared: Stevens, Lenstra and de Weger in [18] found colliding X. 509 certificates for two different Distinguished Name. In this work, the technique used is far more complex and allow to find messages colliding under MD5 with two different chosen prefixes. They used an approach suggested by Wang to find a nearcollision for different IVs and used different differential paths to absorb the remaining differences. However, the messages B, B^{\prime} are not controlled, and this randomness must still be hidden in the moduli.

Other applications of Wang collisions have been proposed to attack HMAC with several hash functions in 39. The techniques use Wang's differential path as a black box but with particular messages to recover some keys in the related-key model or to construct advanced distinguisher.

Our results. In the paper we address the question of message freedom inside the colliding blocks: we will present some techniques to gain partial control over the colliding blocks. This can be combined with previous work to make the colliding blocks easier to hide. More concretely, we show that we can select some part at the end of the messages which will collide. Our attack can use any differential path, and only requires a set a sufficient conditions. We are able to choose up to three message words in a one-block MD4 collision, and up to three message words in a two-block MD5 collision with almost no overhead. We are also able to choose up to 11 words of a one-block MD4 collision with a work factor of about 2^{31} MD4 computations.

The important point is that the technique used is nearly as efficient as the most efficient message modifications on MD4 or MD5, even when we choose some parts of the messages. This contradicts the usual assumption that Wang's collisions are random. As a first application of this new message modification technique, we show that a countermeasure recently proposed by Szydlo and Yin at CT-RSA'06 in [19] is almost useless on MD4 and can be partially broken in MD5. This can also be used to handle the padding inside the colliding blocks.

The second application is a partial password-recovery in the APOP authentication protocol. We are able to recover 3 characters of the password, therefore greatly reducing its entropy. Even though we do not achieve the full recovery of the password, we reduce the complexity of the exhaustive search and it is sufficient in practice to reduce this search to a reasonable time for small passwords, i.e. less than 9 characters.

Related work. The first MD4 collision was found by Dobbertin [7] and has a time complexity of about 2^{20} MD4; his attack combines algebraic techniques and optimization techniques such as genetic algorithms. His attack also allows to choose a large part a the colliding block at some extra cost: one can choose 11 words out of 16 with a complexity of about 2^{30} MD4 computations (little details are given and only an experimental time complexity).

Our work is based on Wang's collision attack [20122], which have the following advantage over Dobbertin's:

- it can be adapted to other hash functions (Dobbertin's method can give collisions on the MD5 compression function, but has not been able to provide MD5 collisions)
- it is somewhat more efficient

We give a comparison of the efficiency of our attack against MD4 and Dobbertin's in Table 11 we are more efficient when we fix fewer words, and slightly less efficient when we fix the same number of words. On the other hand, we are not aware of any previous work allowing freedom in MD5 collisions.

More recently, Yu et al. [24] proposed a differential path for MD4 collisions with a small number of sufficient conditions. This allows to build a collision $\left(M, M^{\prime}\right)$ which is close to a given message M_{0} (about 44 different bits). However these changed bits will be spread all over the message, whereas our work allows to choose message words, ie. many consecutive bits. We believe our approach is more useful, and the applications we will present (including the APOP attack) could not work with Yu et al.'s technique. However we studied their work and propose some improvements in Appendix B

De Cannière and Rechberger announced at the rump session of CRYPTO '06 that they can find SHA-1 collisions with up to 25% of the message chosen. However, the example they give has only two words chosen in the two colliding blocks, and they do not give the complexity of the attack. They gave few details on their technique, and the paper published in the proceedings of ASIACRYPT '06 does not talk about this aspect of their work. Their idea seems to be to compute a differential path with the chosen message as conditions.

Organization of the paper. This paper is divided in three sections: we will first give background on MD4, MD5, Wang's attack and APOP; then we describe our new collision finding algorithm and how to choose a part of the message, and eventually we describe some applications of these results, including the attack against APOP.

2 Background and notation

2.1 MD4 and MD5

MD4 and MD5 follow the Merkle-Damgård construction. Their compression function are designed to be very efficient using 32-bit words and operations implemented in hardware in most processors:

- rotation <<;
- addition $\bmod 2^{32} \boxplus ;$
- bitwise boolean functions Φ_{i}.

The message M is first split into 16 words $\left\langle M_{i}\right\rangle_{i=0}^{15}$, then expanded to provide one word m_{i} for each step of the compression function. In MD4 and MD5 this message expansion is simple, it just reuses many time the words M_{i}. More precisely, the full message is read in a different order at each round: we have $m_{i}=M_{\pi(i)}$ (π is given below) .

The compression function uses an internal state of four words, and updates them one by one in 48 steps for MD4, and 64 steps for MD5. Here, we will assign a name to every different value of these registers, so the description is different from the standard one: the value changed on step i is called Q_{i} (this follows the notations of Daum (5).

Then MD4 is given by:

Step update: $Q_{i}=\left(Q_{i-4} \boxplus \Phi_{i}\left(Q_{i-1}, Q_{i-2}, Q_{i-3}\right) \boxplus m_{i} \boxplus k_{i}\right) \lll s_{i}$																			
Input:	$Q_{-4}\left\\|Q_{-1}\right\\| Q_{-2} \\| Q_{-3}$																		
Output:	$Q_{-4} \boxplus Q_{44}\left\\|Q_{-1} \boxplus Q_{47}\right\\| Q_{-2} \boxplus Q_{46} \\| Q_{-3} \boxplus Q_{45}$																		
$\pi(0 . .15):$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15			
$\pi(16 . .31):$	0	4	8	12	1	5	9	13	2	6	10	14	3	7	11	15			
$\pi(32 . .47):$	0	8	4	12	2	10	6	14	1	9	5	13	3	11	7	15			

And for MD5, we have:

$\begin{aligned} & \hline \text { Step update: } Q_{i}=Q_{i-1} \boxplus\left(Q_{i-4} \boxplus \Phi_{i}\left(Q_{i-1}, Q_{i-2}, Q_{i-3}\right) \boxplus m_{i} \boxplus k_{i}\right) \lll s_{i} \\ & \text { Input: } Q_{-4}\left\\|Q_{-1}\right\\| Q_{-2} \\| Q_{-3} \\ & \text { Output: } Q_{-4} \boxplus Q_{60}\left\\|Q_{-1} \boxplus Q_{63}\right\\| Q_{-2} \boxplus Q_{62} \\| Q_{-3} \boxplus Q_{61} \\ & \hline \hline \end{aligned}$																			
$\pi(0 . .15):$			2																
16..31)			11		5	10	15												
$\pi(32 . .47)$:			11																
$\pi(48 . .64)$	0		14		12		10				5			13					

The security of the compression function was based on the fact that such operations are not "compatible" and mix the properties of the input.

We will also use $x^{[k]}$ to represent the $k+1$-th bit of x, that is $x^{[k]}=(x \ggg k) \bmod 2$ (note that we count bits and steps starting from 0).

2.2 Wang's Attack against MD4 and MD5

Wang et al. attacks against the hash functions of the MD4 family are differential attacks, and follows the same scheme with two main parts:

1. A precomputation phase:

- choose a message difference Δ
- find a differential path
- compute a set of sufficient conditions

2. Search for a message M that satisfies the conditions; then $\operatorname{MD} 4(M)=\operatorname{MD} 4(M+\Delta)$.

The differential path specifies how the computations of MD4 (M) and $\operatorname{MD} 4(M+\Delta)$ are related: it tells how the differences introduced in the message will evolve in the internal state Q_{i}. If we choose Δ with a low hamming weight, and some extra properties, we can find some differences in the Q_{i} that are very likely. Then we look at each step of the compression function, and we can express a set of sufficient conditions that will make the Q_{i} 's follow the path. These conditions are on the bits of Q_{i}, so we can not directly find a message satisfying them; however some of them can be fulfilled deterministically through message modifications, and the rest will be statistical by trial and error.

2.3 APOP

APOP is a command of the Post Office Protocol Version 3 [13]; it was introduced in the POP protocol to avoid sending the password in clear over the network. Servers implementing the APOP command send a nonce (formatted as a msg-id) in their greeting message, and the client authenticates itself by sending the username, and the MD5 of the nonce concatenated with the password. The server performs the same computation on his side, and checks if his hash matches. Thanks to this trick, an eavesdropper will not learn the password. As there is no integrity protection and no authentication of the server, this protocol is subject to a to man-in-the-middle attack, but the man-in-the-middle should not be able to learn the password or to re-authenticate later. Quoting RFC 1939 [13]:

It is conjectured that use of the APOP command provides origin identification and replay protection for a POP3 session.

We will present an attack against APOP, in the man-in-the-middle setting, which will give us knowledge of the first 3 characters of the password. We believe most password in real use are short enough to be found by exhaustive search once we know these first characters, and this attack will allow us to re-authenticate later. This attack is practical: it needs less than one hour of computation, and a few hundreds authentications.

Since people often read their mail from different places (including insecure wireless networks and Internet cafés), we believe that the man-in-the-middle setting is rather realistic for an attack against APOP. Moreover most mail client checks their mailbox on a regular basis, so it seems reasonable to ask for a few hundreds authentications.

This construction can be viewed as a MAC algorithm $\operatorname{MAC}_{k}(M)=\operatorname{MD5}(M \| k)$, and it is known as the suffix method. This construction is weak for at least two reasons: first, it allows off-line collision search so there is a generic forgery attack with $2^{n / 2}$ computations and one chosen-text MAC; second, the key-recovery attack against the envelope method of Preneel and van Oorschot 15 can be used on the suffix method with 2^{67} offline computations and 2^{13} chosen text MACs. However, these weaknesses do not give a practical attack as long as the birthday paradox is out of reach. Our attack against APOP translates into an attack against the suffix method with MD5 which recovers 32 bits of the key with 2^{11} chosen text MACs, and 2^{31} offline hash computations. With MD4 we recover a 128 bit key with 2^{13} chosen-text MACs and 2^{28} offline hash computations.

3 A new approach to collision finding

In this paper we assume that we are given a set of sufficient conditions on the internal state variables Q_{i} that produces collisions. We will try to find a message M such that when one computes a hash of this message, the conditions on the Q_{i} 's hold. We will first describe the general idea that applies to both MD4 and MD5, and we will then study in more details those two hash functions.

In contrast to previous works 14112, we will not focus on a particular path and give message modification techniques for every single condition, but we will give a generic algorithm that can take any path as input. This approach was already present in Klima's
work [10, and extended by Stevens [17], but we will do things in a different order; in the next section we will see that this allow us to choose some parts of the message. Our method is nearly as efficient as the best known message modification technique [1411, and is very useful if we are able to create new differential paths.

We will heavily use the following basic fact: if Q_{i+1}, Q_{i+2} and Q_{i+3} are known, then we can compute any one of Q_{i}, Q_{i+4} or m_{i} from the two others. See Algorithm 2 for details.

3.1 Previous works

Wang's method to find a message satisfying a set of conditions is roughly described in Algorithm 3. one basically picks many messages at random, modifies them to fulfill some of the conditions, and checks if the other conditions are fulfilled.

The best message modifications known allow to satisfy every condition up to round 22 in MD4 (which gives a collision probability of 2^{-2}) and up to round 24 in MD5 (which gives a collision probability of 2^{-29}). Basically, message modification for the conditions in the first round are very easy, but in the second round it becomes much more difficult because we cannot freely change message words without breaking the Q_{i} in the first round (and therefore also in the second round). At the beginning of the second round it is still possible to find message modifications, but it become increasingly difficult as we go forward. Wang's differential paths are chosen with this constraint in mind, and most of their conditions are in the first round and at the beginning of the second.

The algorithm can be rewritten more efficiently: instead of choosing a random message and modify it, we can choose the Q_{i} in the first round and compute the corresponding message. Since all the conditions in MD4 and MD5 are on the Q_{i} 's, this will avoid the need for message modification in the first round.

To further enhance this algorithm, Klima introduced the idea of tunnels in [11, which is closely related to Biham and Chen's neutral bits used in the cryptanalysis of SHA-0 [1]. A tunnel is a message modification that does not affect the conditions up to some step $p_{v}-1$ (point of verification). Therefore, if we have one message that fulfills the conditions up to $p_{v}-1$ and τ tunnels, we can generate 2^{τ} messages that fulfills conditions up to step $p_{v}-1$. This does not change the number of messages we have to try, but it greatly reduces the cost of a single try, and therefore speeds up collision search a lot. This is described in Algorithm 4

In MD4 and MD5, the point of verification will be in the second round, and we place it after the last condition in the second round (step 22 in MD4, 24 in MD5). We have message modification for almost every condition before the point of verification, and it seems impossible to find message modification for round 3 and later.

3.2 Our method

Our method is somewhat different: we will not fix the Q_{i} from the beginning to the end, but we will start from the middle, and this will allow us to deal with the first round and the beginning of the second round at the same time.

First we choose a point of choice p_{c} of and a point of verification p_{v}. The point of verification is the step where we will start using tunnels, and the point of choice is the first step whose conditions will not be satisfied deterministically. The value of p_{c} depends on the message expansion used in the second round: we must have $\pi(16)<\pi(17)<\ldots<$ $\pi\left(p_{c}-1\right)<12$, so we will choose $p_{c}=19$ in $\operatorname{MD} 4(\pi(18)=8)$, and $p_{c}=19$ in MD5 $(\pi(18)=11)$.

The key idea of our collision search is to first choose the end of the first round, ie. Q_{12} to Q_{15}. Then we can follow the computations in the first round and in the second round at the same time, and choose m_{i} 's that satisfies both conditions. There is no difficulty when the first round meets the values we fixed in the beginning: since we only fixed the Q_{i} 's, we just have to compute the corresponding m_{i} 's. More precisely, we will chose the Q_{i} from step 0 to $\pi\left(p_{c}-1\right)$, and when we hit a message m_{i} that is also used in the second round with $i=\pi(j)$, we can modify it to generate a good Q_{j} since we have already fixed $Q_{j-4}, Q_{j-3}, Q_{j-2}$ and Q_{j-1}. Thus, we can fulfill conditions up to round $p_{c}-1$ almost for free.

In the end, we will make random choices for the remaining step $\left(Q_{\pi\left(p_{c}-1\right)+1}\right.$ to $\left.Q_{11}\right)$, until we have a message that follows the path up to step $p_{v}-1$, and we use the tunnels. For a more detailed description of the algorithm, see Algorithm and take $t=0$ (this algorithm is more generic and will be described in the next section).

Since we do not choose the Q_{i} 's in the natural order, we have to modify a little bit the set of sufficient conditions: if we have a condition $Q_{12}^{[k]}=Q_{11}^{[k]}$, we will instead use $Q_{11}^{[k]}=Q_{12}^{[k]}$ because we choose Q_{12} before Q_{11}.

Comparing to standard messages modifications, our algorithm has an extra cost when we try to satisfy conditions in steps p_{c} to $p_{v}-1$. However, this is not so important for two reasons:

- Testing one message only requires to compute a few steps, and we will typically have less than 10 conditions to satisfy, so this step will only cost about a hundred hash computations.
- This cost will be shared between all the messages which we find with the tunnels. In the case of MD5, we have to use a lot of tunnels to satisfy the 29 conditions in round 3 and 4 anyway, and in MD4 we will use a lot of tunnels if we look for many collisions (if one only needs one MD4 collisions, the cost of the collision search should not be a problem).

3.3 Choosing a part of the message

This method can be extended to allow some message words to be fixed in the collision search. This will make the search for a first message following the path up to the point of verification harder, and it will forbid the use of some tunnels. Actually, we are buying some message freedom with computation time, but we can still find collisions very efficiently. We will show which message words can be chosen, and how to adapt the algorithm to find a first message following the path up to the step $p_{v}-1$ with some message words chosen.

Choosing the beginning. If the first steps in the first round are such that in the second round $m_{0} \ldots m_{i}$ are only used after the step p_{c} or in a step j with no conditions on Q_{j}, then we can choose $m_{0} \ldots m_{i}$ before running the algorithm. The choice of $m_{0} \ldots m_{i}$ will only fix $Q_{0} \ldots Q_{i}$ (if there are some conditions on $Q_{0} \ldots Q_{i}$, we must make sure they are satisfied by the message chosen), and the algorithm will work without needing any modifications.

On MD5, this allows to choose m_{0}. Using Wang's path, there are no conditions on Q_{0} for the first block, so m_{0} is really free, but in the second block there are many conditions. On MD4, we have $\pi(16)=0$, so this can only be used if we use $p_{c}=16$, which will significantly increase the cost of the collision search.

Choosing the end. The main advantage of our algorithm is that it allows to choose the end of the message. This is an unsuspected property of Wang's attack, and it will be the core of our attack against APOP. Our idea is to split the search in two: first deal with fixed message words, then choose the other internal state variables. This is made possible because our algorithm starts at the end of the first round; the conditions in those steps do not directly fix bits of the message, they also depend on the beginning of the message.

More precisely, if we are looking for collisions where the last t words are chosen, we begin by fixing $Q_{12-t}, Q_{13-t}, Q_{14-t}$ and Q_{15-t}, and we compute Q_{16-t} to Q_{15} using the chosen message words. We can modify Q_{12-t} if the conditions on the first state Q_{16-t} are not satisfied, but for the remaining $t-1$ steps this is impossible because it would break the previous steps. So, these conditions will be fulfilled only statistically, and we might have to try many choices of $Q_{12-t}, Q_{13-t}, Q_{14-t}, Q_{15-t}$ (note that each choice does not cost a full MD4 computation, but only a few steps).

Once we have a partial state that matches the chosen message, we run the same algorithm as in the previous section, but we will be able to deal with less steps of the second round due to the extra fixed states Q_{12-t} to Q_{11}. The full algorithm is given in Algorithm 1

3.4 MD4 message freedom

Using Wang's EUROCRYPT path [20]. If we use Wang's EUROCRYPT path, we will choose $p_{v}=23$ so as to use tunnels only for the third round. Therefore, the tunnels will have to preserve the values of $m_{0}, m_{4}, m_{8}, m_{12}, m_{1}, m_{5}$ and m_{9} when they modify the Q_{i} 's in the first round.

There are two easy tunnels we can use, in Q_{2} and Q_{6}. If we change the value of Q_{2}, we will have to recompute m_{2} to m_{6} as we do not want to change any other Q_{i}, but if we look at step 4 , we see that Q_{2} is only used trough $\operatorname{IF}\left(Q_{3}, Q_{2}, Q_{1}\right)$. So some bits of Q_{2} can be changed without changing Q_{4} : if $Q_{3}^{[k]}=0$ then we can modify $Q_{2}^{[k]}$. The same thing happens is step 5: Q_{2} is only used in $\operatorname{IF}\left(Q_{4}, Q_{3}, Q_{2}\right)$, and we can switch $Q_{2}^{[k]}$ if $Q_{4}^{[k]}=1$. So on average, we have 8 bits of Q_{2} that can be used as a tunnel. The same thing occurs in Q_{6} : if $Q_{7}^{[k]}=0$ and $Q_{8}^{[k]}=1$, then we can change $Q_{6}^{[k]}$ without altering m_{8} and m_{9}. If
we add some extra conditions on the path we can enlarge these tunnels, but we believe it's not necessary for MD4.

We can use our collision finding algorithm with up to 5 fixed word; Table 1 gives the number of conditions we will have to satisfy probabilistically. Of course, the cost of the search increases with t, but with $t=3$ it should be about one $2^{9} \mathrm{MD} 4$ computations, which is still very low. Note that this cost is only for the first collision; if one is looking for a bunch of collisions, this cost will be shared between all the collisions found through the tunnels, and we expect 2^{14} of them. Another important remark is that this path has a non-zero difference in m_{12}; therefore when choosing more than 3 words, the chosen part in M and M^{\prime} will have a one bit difference.

Table 1: Complexity estimates for MD4 collision search with t fixed word, and comparison with Dobbertin 7 technique. We assume that a single trial costs on average 2^{-3} MD4 due to early abort techniques.

message words chosen: t	0	1	2	3	4	5	0	11	0	11
path used	$[20]$							$[24]$	$[7$	
point of choice: p_{c}	19	19	19	18	18	18	19	17		
point of verification: p_{v}	23	23	23	23	23	23	23	17		
conditions in steps $17-t$ to 15	0	0	6	12	18	24	0	17		
conditions in steps p_{c} to $p_{v}-1$	8	8	8	11	11	11	11	0		
conditions in steps p_{v} to N	2	2	2	2	2	2	17	34		
complexity (MD4 computations $\left.\log _{2}\right)$	5	5	5	9	15	21	14	31	20	30

Using Yu et al.'s CANS path [24]. To push this technique to the limit, we will try to use $t=11$: this leaves only m_{0} to m_{4} free, which is the minimum freedom to keep a tunnel. In this setting, the conditions in steps 6 to 15 can only be satisfied statistically, which will be very expensive with Wang's path [20] (its goal was to concentrate the conditions in the first round). Therefore we will use the path from [24], which has only 17 conditions in steps 6 to 15 .

Since we fix almost the full message, the second phase of the search were we satisfy conditions in the first ans second round at the same time will be very limited, and we have $p_{c}=17$. Then we use the tunnel in Q_{0}, which is equivalent to iterating over the possible Q_{16} 's, computing m_{0} from Q_{16}, and then recomputing Q_{0} and $m_{1}, m_{2}, m_{3}, m_{4}$. There are 34 conditions remaining, so we will have to use the tunnel about 2^{34} times. Roughly, we break the message search in two: first find $m_{0} . . m_{4}$ such that the message follows steps 0 to 16 , then modify it to follow up to the end by changing Q_{0}. This path is well suited for this approach, with few conditions well spread over the first two round.

This gives us a lot of freedom in MD4 collisions, but the collision search become more expensive. Another interesting property of this path is that it only introduces a difference in m_{4}, so the 11 chosen words will be the same in M and M^{\prime}.

3.5 MD5 message freedom

Using Wang's MD5 path [22], we will choose $p_{v}=24$ so as to use tunnels only for the third round. Therefore, when we modify the Q_{i} 's in the first round to use the tunnels, we have to keep the values of $m_{1}, m_{6}, m_{11}, m_{0}, m_{5}, m_{10}, m_{15}$ and m_{4}. We will not describe the available tunnels here, since they are extensively described in Klima's paper [11.

We will set $p_{c}=19$, so we have 7 conditions in steps p_{c} to $p_{v}-1$, and 23 conditions after p_{v}. As already stated, our algorithm allow to choose m_{0} in the first block, and we will also be able to select the last word m_{15} in both blocks. With $t=1$, we will use $p_{c}=18$, which make 9 conditions between steps p_{c} and $p_{v}-1$, but since we will use a lot of tunnels, there is virtually no overhead in choosing these message words. We can also try to set $t=2$, but this adds a lot of conditions when we search the states in the end of the first round. According to our experiments, the conditions on the Q_{i} 's also imply some conditions on m_{14}, so m_{14} could not be chosen freely anyway.

We will use the set of conditions from Stevens [17, which adds the conditions on the rotations that were missing in Wang's paper [22]. We had to remove the condition ${ }^{11}$ $Q_{15}^{[17]} \neq Q_{14}^{[17]}$ because it is incompatible with some choices of m_{15}, so we check the less restrictive condition on $\Phi_{15} \operatorname{instead}\left(\Phi_{15}^{[31]}=0\right)$. We also found out that some conditions that Stevens claimed to be only needed to optimize the algorithm were actually needed for the set of conditions to be sufficient.

We only implemented a little number of tunnels, but we find the first block in a few minutes with m_{0} and m_{15} chosen, and the second block in a few seconds with m_{15} chosen. This is close to Klima's results in [11.

4 Applications

The freedom in the colliding blocks can be used to break some protocols are to create collisions with some special shape. The applications we show here requires that the chosen part in M and M^{\prime} is the same, $i e$. the differential path must not use a difference there.

Fixing the padding. We can use this technique to find messages with the padding included in the colliding block. For instance, this can be useful to build pseudo-collision of the hash function: if there is a padding block after the pseudo-colliding messages, the pseudo-collision will be completely broken.

We can also find collisions on messages shorter than one block, if we fix the rest of the block to the correct padding. An example of a 160 bit MD4 collision is given in Table 2 in Appendix \mathbb{C}

Zeroed collisions. Szydlo and Yin proposed some message preprocessing techniques to avoid collisions attacks against MD5 and SHA-1 in [19. Their idea is to impose some restrictions on the message, so that collision attacks become harder. One of their schemes

[^0]is called message whitening: the message is broken into blocks smaller than 16 words, and the last t words are filled with zeroes. Using our technique we can break this strengthening for MD4 and MD5: in Appendix \mathbb{C} we show a 11-whitened MD4 collision in Table 3 and a 1-whitened MD5 collision in Table 4

4.1 An efficient partial key-recovery attack against APOP

We can use this freedom in MD5 collision to build an attack against APOP. In our attack, we have to act as a server, so as to choose the nonce and receive the hashes. We will use the fact that the nonce sent by the server has no fixed-length, so we can choose a particular size to control the location of the password in the message to be hashed. This property was also used in the attack against the envelope method [15, and we will combine it with our freedom in MD5 collisions to make an efficient attack. More precisely, the first part of the attack is to generate a MD5 collision with some specific format: $M=$
 (2 MD5 blocks). The ' \boldsymbol{P} ' and ' $\dot{\boldsymbol{q}}$ ' represent any character chosen by the collision finding algorithm. Then we send "<p!
 " $p_{0} p_{1} p_{2} \ldots p_{n-1}$ " is the user password (the p_{i} 's are the characters of the password).

Now, if $p_{0}=$ ' x ', the two hashes will collide after the second block, and since the end of the password and the padding are the same, we will see this collision in the full hashes (and it is very unlikely that the two hashes collides for $p_{0} \neq$ ' x '). Therefore we are able to test the first password character without knowing the others. We will construct pairs of nonce to test the 256 possible values, and stop once we have found the first password character.

Then we generate a new collision pair to recover the second character of the password:
 can learn the password characters one by one in linear time.

Unfortunately, Wang's path for MD5 collisions uses a difference $\delta M_{14}=2^{32}$ and this makes a difference in character 60. In order to learn the i-th password character p_{i-1}, we need to generate a collision where we fix the last $i+1$ characters (i password characters, plus a '>' to form a correct msg-id). Therefore, we will only be able to retrieve 3 characters of the password with Wang's path. This points out a need for new paths following Wang's ideas, but adapted to other specific attack; here a path less efficient for collision finding but with better placed differences could be used to learn more characters of the password. Note that if APOP was implemented using MD4 instead of MD5, we could easily recover 13 characters, and up to 43 characters with more computations!

Implementation. To implement this attack, we need to efficiently generate MD5 collisions with some chosen parts: we mainly have to fix the last word. The POP3 RFC [13] requires the nonce to be a msg-id ${ }^{2}$, but most mail clients does not check this require-

[^1]ment, leaving us a lot of freedom. According to our experiments with Thunderbird ${ }^{3}$ and Evolution 4 there are only four characters which they reject in the nonce:

- 0x00 Null: used as end-of-string in the C language
- 0x3e Greater-Than Sign ('>'): used to mark the end of the msg-id
- 0x0a Line-Feed: used for end-of-line (POP is a text-based protocol)
- 0x0d Carriage-Return: also used for end-of-line

Additionally, Thunderbird needs a ' $₫$ ' in the msg-id (but there can be more than one). We will use Wang's path [22], which gives two-block collisions. The first block is more expensive to find, so we will use the same for every msg-id, and we will fix the first character as a ' <', and the last character as a ' $@$ '. Then we have to generate a second block for every password character test, each time the last word is chosen, and we must avoid 4 characters in the message. Using the ideas from Section 3.5 we can do this in about 5 seconds per collision on a standard desktop computer.

Complexity. To estimate the complexity of this attack, we will assume the user's password is 8 -characters long, and each character has 6 bits of entropy 5 . This seems to be the kind of password most people use (when they don't use a dictionary word...). Under these assumptions, we will have to generate 3×2^{5} collisions, and wait for about 3×2^{6} identifications. Each collision takes about 5 seconds to generate; if we assume that the client identifies once per minute this will be the limiting factor, and our attack will take about 3 hours. In a second phase we can do an offline exhaustive search over the missing password characters. We expect to find them after 2^{30} MD5 computations and this will take about half an hour according to typical OpenSSL benchmarks.

5 Conclusion

We have shown that Wang's attack allows some message freedom for MD4 and MD5 collisions, and how to exploit some of this freedom with little computational cost by tweaking the collision search algorithm. We believe that this freedom was widely underestimated and we built some examples to exploit it.

The main contribution of our paper is an attack against the APOP authentication protocol. This attack is highly practical, and we suggest users to switch to an other authentication protocol if possible. As a protection measure, mail clients should strictly check if the msg-id follows the RFC, but this could be defeated by an improved attack.

To the best of our knowledge, this is the first practical attack to recover a secret hidden in a hash function. This shows that collisions are a real security threat when the attacker has some freedom over the messages.

Acknowledgement. Part of this work is supported by the Commission of the European Communities through the IST program under contract IST-2002-507932 ECRYPT.

[^2]
References

1. Eli Biham and Rafi Chen. Near-Collisions of SHA-0. In Matthew K. Franklin, editor, CRYPTO, volume 3152 of Lecture Notes in Computer Science, pages 290-305. Springer, 2004.
2. John Black, Martin Cochran, and Trevor Highland. A Study of the MD5 Attacks: Insights and Improvements. In Matthew Robshaw, editor, FSE, volume 4047 of Lecture Notes in Computer Science, pages 262-277. Springer, 2006.
3. Scott Contini and Yiqun Lisa Yin. Forgery and Partial Key-Recovery Attacks on HMAC and NMAC Using Hash Collisions. In Xuejia Lai and Kefei Chen, editors, ASIACYPT, volume 4284 of Lecture Notes in Computer Science. Springer, 2006.
4. Ronald Cramer, editor. Advances in Cryptology - EUROCRYPT 2005, 24th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings, volume 3494 of Lecture Notes in Computer Science. Springer, 2005.
5. M. Daum. Cryptanalysis of Hash Functions of the MD4-Family. PhD thesis, Ruhr-University of Bochum, 2005.
6. Magnus Daum and Stefan Lucks. Hash Collisions (The Poisoned Message Attack) "The Story of Alice and her Boss'. Presented at the rump session of Eurocrypt '05. http://th.informatik. uni-mannheim.de/people/lucks/HashCollisions/
7. Hans Dobbertin. Cryptanalysis of MD4. J. Cryptology, 11(4):253-271, 1998.
8. Max Gebhardt, Georg Illies, and Werner Schindler. A Note on the Practical Value of Single Hash Collisions for Special File Formats. In Jana Dittmann, editor, Sicherheit, volume 77 of LNI, pages 333-344. GI, 2006.
9. Jongsung Kim, Alex Biryukov, Bart Preneel, and Seokhie Hong. On the Security of HMAC and NMAC Based on HAVAL, MD4, MD5, SHA-0 and SHA-1. In Roberto De Prisco and Moti Yung, editors, SCN, volume 4116 of Lecture Notes in Computer Science, pages 242-256. Springer, 2006.
10. Vlastimil Klima. Finding MD5 Collisions on a Notebook PC Using Multi-message Modifications. Cryptology ePrint Archive, Report 2005/102, 2005. http://eprint.iacr.org/
11. Vlastimil Klima. Tunnels in Hash Functions: MD5 Collisions Within a Minute. Cryptology ePrint Archive, Report 2006/105, 2006. http://eprint.iacr.org/
12. Arjen K. Lenstra and Benne de Weger. On the Possibility of Constructing Meaningful Hash Collisions for Public Keys. In Colin Boyd and Juan Manuel González Nieto, editors, ACISP, volume 3574 of Lecture Notes in Computer Science, pages 267-279. Springer, 2005.
13. J. Myers and M. Rose. Post Office Protocol - Version 3. RFC 1939 (Standard), May 1996. Updated by RFCs 1957, 2449.
14. Yusuke Naito, Yu Sasaki, Noboru Kunihiro, and Kazuo Ohta. Improved Collision Attack on MD4 with Probability Almost 1. In Dongho Won and Seungjoo Kim, editors, ICISC, volume 3935 of Lecture Notes in Computer Science, pages 129-145. Springer, 2005.
15. Bart Preneel and Paul C. van Oorschot. On the Security of Two MAC Algorithms. In EUROCRYPT, pages 19-32, 1996.
16. Victor Shoup, editor. Advances in Cryptology - CRYPTO 2005: 25th Annual International Cryptology Conference, Santa Barbara, California, USA, August 14-18, 2005, Proceedings, volume 3621 of Lecture Notes in Computer Science. Springer, 2005.
17. Marc Stevens. Fast Collision Attack on MD5. Cryptology ePrint Archive, Report 2006/104, 2006. http://eprint.iacr.org/
18. Marc Stevens, Arjen Lenstra, and Benne de Weger. Target Collisions for MD5 and Colliding X. 509 Certificates for Different Identities. Cryptology ePrint Archive, Report 2006/360, 2006. http:// eprint.iacr.org/
19. Michael Szydlo and Yiqun Lisa Yin. Collision-Resistant Usage of MD5 and SHA-1 Via Message Preprocessing. In David Pointcheval, editor, CT-RSA, volume 3860 of Lecture Notes in Computer Science, pages 99-114. Springer, 2006.
20. Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Cryptanalysis of the Hash Functions MD4 and RIPEMD. In Cramer 4], pages 1-18.
21. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full SHA-1. In Shoup [16], pages 17-36.
22. Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions. In Cramer 4, pages 19-35.
23. Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient Collision Search Attacks on SHA-0. In Shoup 16], pages 1-16.
24. Hongbo Yu, Gaoli Wang, Guoyan Zhang, and Xiaoyun Wang. The Second-Preimage Attack on MD4. In Yvo Desmedt, Huaxiong Wang, Yi Mu, and Yongqing Li, editors, CANS, volume 3810 of Lecture Notes in Computer Science, pages 1-12. Springer, 2005.

A Algorithms

```
Algorithm 1 Our collision finding algorithm
    repeat
        choose \(Q_{12-t}, Q_{13-t}, Q_{14-t}, Q_{15-t}\)
        if \(t \neq 0\) then
            StepForward \((16-t)\)
            FixState \((16-t)\)
            StepBackward \((16-t)\)
            if not CheckConditions \((12-t)\) then
                goto 2
            for \(17-t \leq i<16\) do
                StepForward \((i)\)
                    if not CheckConditions \((i)\) then
                    goto 2
        \(i \leftarrow 0\)
        for \(16 \leq j<p_{c}\) do
            while \(i<\pi(j)\) do
                choose \(Q_{i}\)
                StepMessage \((i)\)
                \(i \leftarrow i+1\)
            StepForward \((j)\)
            FixState ( \(j\) )
            StepMessage \((j)\)
            StepForward \((i)\)
            if not CheckConditions \((i)\) then
                    goto 15
        for \(\pi\left(p_{c}-1\right)+1 \leq i<12-t\) do
            choose \(Q_{i}\)
            StepMessage \((i)\)
        StepMessage(12-t ... 15-t)
        for \(p_{c} \leq i<p_{v}\) do
            StepForward \((i)\)
            if not CheckConditions \((i)\) then
                goto 25
        for all tunneled message do
            for \(p_{v} \leq i<N\) do
                StepForward \((i)\)
                    if not CheckConditions \((i)\) then
                        use the next message
    until all conditions are fulfilled
```

```
Algorithm 2 Step functions
    function MD4StepForward \((i)\)
                \(Q_{i} \leftarrow\left(Q_{i-4} \boxplus \Phi_{i}\left(Q_{i-1}, Q_{i-2}, Q_{i-3}\right) \boxplus m_{i} \boxplus k_{i}\right) \lll s_{i}\)
    function MD4StepBackward \((i)\)
                \(Q_{i-4} \leftarrow\left(Q_{i} \ggg s_{i}\right) \boxminus \Phi_{i}\left(Q_{i-1}, Q_{i-2}, Q_{i-3}\right) \boxminus m_{i} \boxminus k_{i}\)
    function MD4StepMessage \((i)\)
        \(m_{i} \leftarrow\left(Q_{i} \ggg s_{i}\right) \boxminus Q_{i-4} \boxminus \Phi_{i}\left(Q_{i-1}, Q_{i-2}, Q_{i-3}\right) \boxminus k_{i}\)
    function MD5StepForward \((i)\)
        \(Q_{i} \leftarrow Q_{i-1} \boxplus\left(Q_{i-4} \boxplus \Phi_{i}\left(Q_{i-1}, Q_{i-2}, Q_{i-3}\right) \boxplus m_{i} \boxplus k_{i}\right) \lll s_{i}\)
    function MD5StepBackward \((i)\)
        \(Q_{i-4} \leftarrow\left(Q_{i} \boxminus Q_{i-1}\right) \ggg s_{i} \boxminus \Phi_{i}\left(Q_{i-1}, Q_{i-2}, Q_{i-3}\right) \boxminus m_{i} \boxminus k_{i}\)
    function MD5StepMessage \((i)\)
        \(m_{i} \leftarrow\left(Q_{i} \boxminus Q_{i-1}\right) \ggg s_{i} \boxminus Q_{i-4} \boxminus \Phi_{i}\left(Q_{i-1}, Q_{i-2}, Q_{i-3}\right) \boxminus k_{i}\)
```

```
Algorithm 3 Wang's message finding algorithm
    repeat
        choose a random message
        for \(0 \leq i<N\) do
            StepForward \((i)\)
            if not CheckConditions \((i)\) then
                try to modify the message
    until all conditions are fulfilled
```

```
Algorithm 4 Klima's message finding algorithm
    repeat
        for \(0 \leq i<16\) do
            choose \(Q_{i}\)
            StepMessage \((i)\)
        for \(16 \leq i<p_{v}\) do
            StepForward \((i)\)
            if not CheckConditions \((i)\) then
                modify the message
        for all tunneled message do
            for \(p_{v} \leq i<N\) do
                    StepForward \((i)\)
                    if not CheckConditions \((i)\) then
                        use the next message
    until all conditions are fulfilled
```


B Collisions with a High Number of Chosen Bits

In this paper we considered the problem of finding collisions with some chosen words but some other works addressed the problem of choosing bits (mainly [24). We believe it is more useful to choose consecutive bits and the applications we give in Section \square all need this property. Specifically, the APOP attack requires to choose consecutive bits in the end of the block; it will fail if one of these bits is uncontrolled. However let us say a few word about collisions with many chosen bits.

Following the ideas of Yu et al. [24], we will use a collision path with very few conditions. Such paths are only know in the case of MD4, and we found out that the path from [24] can be slightly enhanced: if we put the difference in the bit 25 instead of the bit 22 , we get only 58 conditions (instead of 62). Now the basic idea is to take a message M, and apply message modifications in the first round: the will give a message M^{*} that has about 10 bit difference from M (there are 20 conditions in the first round) and it gives a collision with probability 2^{-38}. Then we will generate about 2^{38} messages M_{i} close to M and the corresponding M_{i}^{*}, and one of them will give a collision.

Little detail is given in Yu et al. paper, but we can guess from their collision example that they generated the M_{i} 's by changing m_{14} and m_{15}. This make the attack more efficient since the M_{i}^{*} will all have the same first 14 words, but it will modify about 32 extra bits. Actually, one only need to iterate over 38 bits, which make on average 19 modified bits, but Yu et al. modified the whole 32 bits.

In fact, if the goal is to have a high number of chosen bits, it is better to chose the M_{i} in another way: instead of iterating over some bits, we will switch a few bits in the whole message, and iterate over the positions of the differences. We have $\binom{512}{5} \approx 2^{38}$, so it should be enough to select 5 positions, but we will have to run the full message modifications in the first round for every message, which is quite expensive (about 2^{37} MD4 computations). Instead, one can choose 4 positions in the first 480 bits, and two in the last 32 bits: we have $\binom{480}{4}\binom{32}{2} \approx 2^{40}$, and the message modification on the first 15 bits will only be run about 2^{7} times; the cost will be that of testing 2^{38} message for the second and third round: using early abort techniques this cost will be of 2^{33} MD46. An example of such message is given in Table [6 it has 18 bit differences from the target (a block consisting only of 1's), which is much better that achieved by Yu et al. (43 bit differences).

[^3]
C Collision Examples

Table 2: A 160-bit MD4 collision.

Table 3: A 11-whitened MD4 collision.

Table 4: A 1-whitened MD5 collision.

Message M		
00000000	$23 \mathrm{f9} 5 \mathrm{a} 1 \mathrm{c}$ c8 4 f 18	1 b ef 74 a9
027 a b6 b	ff 4753 be c3 29 a9 d	b1 1e 6294
d1 2c 2405	075 e b4 42 1b e2 587	2583 b2 52
1297 d8 2	ca 8c ae 13 e1 e9 34	5401426 f
b4 b5 4a 77	d2 15905 a 7a 42 cf	9 f 765 b 37
90 dd 7e 3	0a fd 77 d7 d1 4c 55	49 ff 3 e f2
f5 52 b8 86	72 c0 $497 \mathrm{7e} 80 \mathrm{ac}$ d1	c7 38 b4 96
a8 d3 73 f	4b 5c d8 f2	
Message M^{\prime}		
00000000	23 f9 5a 1c c8 4f 18	1 b ef 74 a9
02 7a b6 3	ff 4753 be c3 29 a9	b1 1e 6294
d1 2c 2405	07 5e b4 42 1b e2 58	2503 b3 52
1297 d8 24	ca 8c ae 13 e1 e9 34	5401426 f
b4 b5 4a 77	d2 15905 a 7a 42 cf	9 f 765 b b7
90 dd 7e 3	0a fd 77 d7 d1 4c 55	$49 \mathrm{ff} \mathrm{3e} \mathrm{f2}$
f5 52 b8 86	72 c0 49 7e 802 c d1	c7 38 b4 96
a8 d3 73 f 0	4b 5c d8 72	
Whitened Message M		
000000	23 f9 5a 1c c8 4f 18	1 b ef 74
027 a b6 b	ff 4753 be c3 29 a9	b1 1e 6294
d1 2c 2405	07 5e b4 42 1b e2 58	2583 b2 52
1297 d8 24	ca 8c ae 13 e1 e9 34	00000000
5401426	b4 b5 4a 77 d2 1590	7a 42 cf dd
9f $765 b 37$	90 dd 7e 3d 0a fd 77	d1 4c 55 de
49 ff 3e f2	f5 52 b8 8672 c0 49	80 ac d1 1f
c7 38 b4 96	a8 d3 73 f0 4b 5c d8	00000000
Whitened Message M^{\prime}		
000000	23 f9 5a 1c c8 4f 18	1 b ef 74 a9
02 7a b6 3	ff 4753 be c3 29 a9	b1 1e 6294
d1 2c 2405	07 5e b4 42 1b e2 58	2503 b3 52
1297 d8 24	ca 8c ae 13 e1 e9 34	00000000
5401426	b4 b5 4a 77 d2 1590	7 a 42 cf dd
9 f 765 b b	90 dd 7e 3d 0a fd 77	d1 4c 55 de
$49 \mathrm{ff} \mathrm{3e} \mathrm{f2}$	f5 52 b8 8672 c0 49	80 2c d1 1f
c7 38 b4 96	a8 d3 73 f0 4b 5c d8	00000000
MD5 without padding		
982890	7575 ae 7a 25 f9 80	62 ea 5276
MD5 with padding		
7c c4 3c db	a7 a6 f6 9e c5 10 8e 4	9500 fd 82

Table 5: APOP MD5 collision. These two msg-id's collides if padded with "bar"

Table 6: A MD4 collision close to 1^{512}.

[^0]: ${ }^{1}$ Using Stevens notations, it is $Q_{16}[17]=\overline{Q_{15}[17]}$

[^1]: ${ }^{2}$ in particular, it should use only ASCII characters, but Wang's path can not find two colliding ASCII message because there must be a difference on some most significant bit

[^2]: ${ }^{3}$ available at http://www.mozilla.com/en-US/thunderbird/
 4 available at http://www.gnome.org/projects/evolution/
 5 if we consider ASCII characters without control characters, there are only 96 of them

[^3]: ${ }^{6}$ There are two conditions on step 15 , three on step 16 and one on step 17 : so $3 \cdot 2^{36}$ messages will stop after 1 step, $7 \cdot 2^{33}$ after 2 steps, $2^{3} 2$ after 3 steps, and the remaining $2^{3} 2$ messages will need at most 16 steps. This gives less than $95 \cdot 2^{32} \mathrm{MD} 4$ steps, that is less than 2^{33} full MD4.

