
Message Freedom in MD4 and MD5 Collisions:

Application to APOP

Gaëtan Leurent

Laboratoire d’Informatique de l’École Normale Supérieure,
Département d’Informatique,

45 rue d’Ulm, Paris 75230 Cedex 05, France
gaetan.leurent@ens.fr

Abstract. In Wang’s attack, message modifications allow to deterministically satisfy cer-
tain sufficient conditions to find collisions efficiently. Unfortunately, message modifications
significantly change the messages and one has little control over the colliding blocks. In
this paper, we show how to choose some part of the messages which collide. Consequently,
we break a security countermeasure proposed by Szydlo and Yin at CT-RSA ’06, where
they added a fixed padding at the end of each block.
Furthermore, we also apply this technique to partially recover the passwords in the Au-
thentication Protocol of the Post Office Protocol (POP). This shows that collision attacks
can be used to attack real protocols, which means that finding collisions is a real threat.
Key words: Hash function, MD4, MD5, Wang, message modification for meaningful col-
lisions, APOP security

1 Introduction

At EUROCRYPT’05 and CRYPTO’05, Wang et al. described a new class of attack on
most of the hash functions of the MD4 family, MD4, MD5, HAVAL, RIPEMD, SHA-0
and SHA-1 in [20,22,23,21], which allows to find collisions for these hash functions very
efficiently. However, even though finding collision breaks the security of these hash func-
tions, it is not clear what happens in practice when hash functions are used in real
protocols. Does it mean that any use of hash function is broken? The answer is not clear.

One drawback one Wang’s attacks when used against practical schemes is that due to
the message modification technique, the blocks which collides cannot be chosen and look
random. However, these attacks works with any IV, so one can choose a common prefix
for the two colliding messages, and the Merkle-Damgård construction allows to add a
common suffix to the colliding messages. Therefore, an attacker can choose a prefix and
a suffix, but he must somehow hide the colliding blocks (1 block in MD4 and SHA-0, and
2 blocks in MD5 and SHA-1). This has been used to create two different PostScript files
whose digests are equal but resulting in different texts when they are screening in [6] with
the poisoned message attack. For this application, the two different texts are in both PS
files and the collision blocks are used by a if-then-else to choose which part to display.
This attack was extended to other file formats in [8]. Lenstra and de Weger also applied
a similar technique to create different X.509 certificates for the same Distinguished Name

but with different secure RSA moduli in [12]. Here, the colliding blocks are hidden in the
second part of the RSA moduli.

Recently, more concrete attacks have appeared: Stevens, Lenstra and de Weger in [18]
found colliding X.509 certificates for two different Distinguished Name. In this work, the
technique used is far more complex and allow to find messages colliding under MD5 with
two different chosen prefixes. They used an approach suggested by Wang to find a near-
collision for different IVs and used different differential paths to absorb the remaining
differences. However, the messages B,B′ are not controlled, and this randomness must
still be hidden in the moduli.

Other applications of Wang collisions have been proposed to attack HMAC with
several hash functions in [3,9]. The techniques use Wang’s differential path as a black
box but with particular messages to recover some keys in the related-key model or to
construct advanced distinguisher.

Our results. In the paper we address the question of message freedom inside the col-
liding blocks: we will present some techniques to gain partial control over the colliding
blocks. This can be combined with previous work to make the colliding blocks easier to
hide. More concretely, we show that we can select some part at the end of the messages
which will collide. Our attack can use any differential path, and only requires a set a
sufficient conditions. We are able to choose up to three message words in a one-block
MD4 collision, and up to three message words in a two-block MD5 collision with almost
no overhead. We are also able to choose up to 11 words of a one-block MD4 collision
with a work factor of about 231 MD4 computations.

The important point is that the technique used is nearly as efficient as the most ef-
ficient message modifications on MD4 or MD5, even when we choose some parts of the
messages. This contradicts the usual assumption that Wang’s collisions are random. As
a first application of this new message modification technique, we show that a counter-
measure recently proposed by Szydlo and Yin at CT-RSA’06 in [19] is almost useless on
MD4 and can be partially broken in MD5. This can also be used to handle the padding
inside the colliding blocks.

The second application is a partial password-recovery in the APOP authentication
protocol. We are able to recover 3 characters of the password, therefore greatly reducing
its entropy. Even though we do not achieve the full recovery of the password, we reduce
the complexity of the exhaustive search and it is sufficient in practice to reduce this
search to a reasonable time for small passwords, i.e. less than 9 characters.

Related work. The first MD4 collision was found by Dobbertin [7], and has a time
complexity of about 220 MD4; his attack combines algebraic techniques and optimization
techniques such as genetic algorithms. His attack also allows to choose a large part a the
colliding block at some extra cost: one can choose 11 words out of 16 with a complexity
of about 230 MD4 computations (little details are given and only an experimental time
complexity).

Our work is based on Wang’s collision attack [20,22], which have the following ad-
vantage over Dobbertin’s:

– it can be adapted to other hash functions (Dobbertin’s method can give collisions on
the MD5 compression function, but has not been able to provide MD5 collisions)

– it is somewhat more efficient

We give a comparison of the efficiency of our attack against MD4 and Dobbertin’s in
Table 1: we are more efficient when we fix fewer words, and slightly less efficient when
we fix the same number of words. On the other hand, we are not aware of any previous
work allowing freedom in MD5 collisions.

More recently, Yu et al.[24] proposed a differential path for MD4 collisions with a
small number of sufficient conditions. This allows to build a collision (M,M ′) which is
close to a given message M0 (about 44 different bits). However these changed bits will be
spread all over the message, whereas our work allows to choose message words, ie. many
consecutive bits. We believe our approach is more useful, and the applications we will
present (including the APOP attack) could not work with Yu et al.’s technique. However
we studied their work and propose some improvements in Appendix B.

De Cannière and Rechberger announced at the rump session of CRYPTO ’06 that
they can find SHA-1 collisions with up to 25% of the message chosen. However, the
example they give has only two words chosen in the two colliding blocks, and they do
not give the complexity of the attack. They gave few details on their technique, and the
paper published in the proceedings of ASIACRYPT ’06 does not talk about this aspect
of their work. Their idea seems to be to compute a differential path with the chosen
message as conditions.

Organization of the paper. This paper is divided in three sections: we will first give
background on MD4, MD5, Wang’s attack and APOP; then we describe our new collision
finding algorithm and how to choose a part of the message, and eventually we describe
some applications of these results, including the attack against APOP.

2 Background and notation

2.1 MD4 and MD5

MD4 and MD5 follow the Merkle-Damgård construction. Their compression function are
designed to be very efficient using 32-bit words and operations implemented in hardware
in most processors:

– rotation ≪;

– addition mod 232 ⊞;

– bitwise boolean functions Φi.

The message M is first split into 16 words 〈Mi〉
15
i=0, then expanded to provide one word

mi for each step of the compression function. In MD4 and MD5 this message expansion
is simple, it just reuses many time the words Mi. More precisely, the full message is read
in a different order at each round: we have mi = Mπ(i) (π is given below).

The compression function uses an internal state of four words, and updates them one
by one in 48 steps for MD4, and 64 steps for MD5. Here, we will assign a name to every
different value of these registers, so the description is different from the standard one:
the value changed on step i is called Qi (this follows the notations of Daum [5]).

Then MD4 is given by:

Step update: Qi = (Qi−4 ⊞ Φi(Qi−1, Qi−2, Qi−3) ⊞ mi ⊞ ki) ≪ si

Input: Q−4||Q−1||Q−2||Q−3

Output: Q−4 ⊞ Q44||Q−1 ⊞ Q47||Q−2 ⊞ Q46||Q−3 ⊞ Q45

π(0..15): 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
π(16..31): 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15
π(32..47): 0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

And for MD5, we have:

Step update: Qi = Qi−1 ⊞ (Qi−4 ⊞ Φi(Qi−1, Qi−2, Qi−3) ⊞ mi ⊞ ki) ≪ si

Input: Q−4||Q−1||Q−2||Q−3

Output: Q−4 ⊞ Q60||Q−1 ⊞ Q63||Q−2 ⊞ Q62||Q−3 ⊞ Q61

π(0..15): 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
π(16..31): 1 6 11 0 5 10 15 4 9 14 3 8 13 2 7 12
π(32..47): 5 8 11 14 1 4 7 10 13 0 3 6 9 12 15 2
π(48..64): 0 7 14 5 12 3 10 1 8 15 6 13 4 11 2 9

The security of the compression function was based on the fact that such operations
are not “compatible” and mix the properties of the input.

We will also use x[k] to represent the k + 1-th bit of x, that is x[k] = (x ≫ k) mod 2
(note that we count bits and steps starting from 0).

2.2 Wang’s Attack against MD4 and MD5

Wang et al. attacks against the hash functions of the MD4 family are differential attacks,
and follows the same scheme with two main parts:

1. A precomputation phase:
– choose a message difference ∆

– find a differential path
– compute a set of sufficient conditions

2. Search for a message M that satisfies the conditions; then MD4(M) = MD4(M +∆).

The differential path specifies how the computations of MD4(M) and MD4(M + ∆)
are related: it tells how the differences introduced in the message will evolve in the internal
state Qi. If we choose ∆ with a low hamming weight, and some extra properties, we can
find some differences in the Qi that are very likely. Then we look at each step of the
compression function, and we can express a set of sufficient conditions that will make
the Qi’s follow the path. These conditions are on the bits of Qi, so we can not directly
find a message satisfying them; however some of them can be fulfilled deterministically
through message modifications, and the rest will be statistical by trial and error.

2.3 APOP

APOP is a command of the Post Office Protocol Version 3 [13]; it was introduced in
the POP protocol to avoid sending the password in clear over the network. Servers
implementing the APOP command send a nonce (formatted as a msg-id) in their greeting
message, and the client authenticates itself by sending the username, and the MD5 of the
nonce concatenated with the password. The server performs the same computation on his
side, and checks if his hash matches. Thanks to this trick, an eavesdropper will not learn
the password. As there is no integrity protection and no authentication of the server, this
protocol is subject to a to man-in-the-middle attack, but the man-in-the-middle should
not be able to learn the password or to re-authenticate later. Quoting RFC 1939 [13]:

It is conjectured that use of the APOP command provides origin identification
and replay protection for a POP3 session.

We will present an attack against APOP, in the man-in-the-middle setting, which will
give us knowledge of the first 3 characters of the password. We believe most password
in real use are short enough to be found by exhaustive search once we know these first
characters, and this attack will allow us to re-authenticate later. This attack is practical:
it needs less than one hour of computation, and a few hundreds authentications.

Since people often read their mail from different places (including insecure wireless
networks and Internet cafés), we believe that the man-in-the-middle setting is rather
realistic for an attack against APOP. Moreover most mail client checks their mailbox on
a regular basis, so it seems reasonable to ask for a few hundreds authentications.

This construction can be viewed as a MAC algorithm MACk(M) = MD5(M ||k), and
it is known as the suffix method. This construction is weak for at least two reasons: first,
it allows off-line collision search so there is a generic forgery attack with 2n/2 compu-
tations and one chosen-text MAC; second, the key-recovery attack against the envelope
method of Preneel and van Oorschot [15] can be used on the suffix method with 267

offline computations and 213 chosen text MACs. However, these weaknesses do not give
a practical attack as long as the birthday paradox is out of reach. Our attack against
APOP translates into an attack against the suffix method with MD5 which recovers 32
bits of the key with 211 chosen text MACs, and 231 offline hash computations. With MD4
we recover a 128 bit key with 213 chosen-text MACs and 228 offline hash computations.

3 A new approach to collision finding

In this paper we assume that we are given a set of sufficient conditions on the internal
state variables Qi that produces collisions. We will try to find a message M such that
when one computes a hash of this message, the conditions on the Qi’s hold. We will first
describe the general idea that applies to both MD4 and MD5, and we will then study in
more details those two hash functions.

In contrast to previous works [14,11,2], we will not focus on a particular path and
give message modification techniques for every single condition, but we will give a generic
algorithm that can take any path as input. This approach was already present in Klima’s

work [10], and extended by Stevens [17], but we will do things in a different order; in
the next section we will see that this allow us to choose some parts of the message. Our
method is nearly as efficient as the best known message modification technique[14,11],
and is very useful if we are able to create new differential paths.

We will heavily use the following basic fact: if Qi+1, Qi+2 and Qi+3 are known, then
we can compute any one of Qi, Qi+4 or mi from the two others. See Algorithm 2 for
details.

3.1 Previous works

Wang’s method to find a message satisfying a set of conditions is roughly described in
Algorithm 3: one basically picks many messages at random, modifies them to fulfill some
of the conditions, and checks if the other conditions are fulfilled.

The best message modifications known allow to satisfy every condition up to round
22 in MD4 (which gives a collision probability of 2−2) and up to round 24 in MD5 (which
gives a collision probability of 2−29). Basically, message modification for the conditions
in the first round are very easy, but in the second round it becomes much more difficult
because we cannot freely change message words without breaking the Qi in the first
round (and therefore also in the second round). At the beginning of the second round it
is still possible to find message modifications, but it become increasingly difficult as we
go forward. Wang’s differential paths are chosen with this constraint in mind, and most
of their conditions are in the first round and at the beginning of the second.

The algorithm can be rewritten more efficiently: instead of choosing a random message
and modify it, we can choose the Qi in the first round and compute the corresponding
message. Since all the conditions in MD4 and MD5 are on the Qi’s, this will avoid the
need for message modification in the first round.

To further enhance this algorithm, Klima introduced the idea of tunnels in [11], which
is closely related to Biham and Chen’s neutral bits used in the cryptanalysis of SHA-0 [1].
A tunnel is a message modification that does not affect the conditions up to some step
pv−1 (point of verification). Therefore, if we have one message that fulfills the conditions
up to pv − 1 and τ tunnels, we can generate 2τ messages that fulfills conditions up to
step pv − 1. This does not change the number of messages we have to try, but it greatly
reduces the cost of a single try, and therefore speeds up collision search a lot. This is
described in Algorithm 4.

In MD4 and MD5, the point of verification will be in the second round, and we place
it after the last condition in the second round (step 22 in MD4, 24 in MD5). We have
message modification for almost every condition before the point of verification, and it
seems impossible to find message modification for round 3 and later.

3.2 Our method

Our method is somewhat different: we will not fix the Qi from the beginning to the end,
but we will start from the middle, and this will allow us to deal with the first round and
the beginning of the second round at the same time.

First we choose a point of choice pc of and a point of verification pv. The point of
verification is the step where we will start using tunnels, and the point of choice is the
first step whose conditions will not be satisfied deterministically. The value of pc depends
on the message expansion used in the second round: we must have π(16) < π(17) < ... <

π(pc − 1) < 12, so we will choose pc = 19 in MD4 (π(18) = 8), and pc = 19 in MD5
(π(18) = 11).

The key idea of our collision search is to first choose the end of the first round, ie. Q12

to Q15. Then we can follow the computations in the first round and in the second round
at the same time, and choose mi’s that satisfies both conditions. There is no difficulty
when the first round meets the values we fixed in the beginning: since we only fixed the
Qi’s, we just have to compute the corresponding mi’s. More precisely, we will chose the
Qi from step 0 to π(pc−1), and when we hit a message mi that is also used in the second
round with i = π(j), we can modify it to generate a good Qj since we have already fixed
Qj−4, Qj−3, Qj−2 and Qj−1. Thus, we can fulfill conditions up to round pc − 1 almost
for free.

In the end, we will make random choices for the remaining step (Qπ(pc−1)+1 to Q11),
until we have a message that follows the path up to step pv − 1, and we use the tunnels.
For a more detailed description of the algorithm, see Algorithm 1, and take t = 0 (this
algorithm is more generic and will be described in the next section).

Since we do not choose the Qi’s in the natural order, we have to modify a little bit

the set of sufficient conditions: if we have a condition Q
[k]
12 = Q

[k]
11 , we will instead use

Q
[k]
11 = Q

[k]
12 because we choose Q12 before Q11.

Comparing to standard messages modifications, our algorithm has an extra cost when
we try to satisfy conditions in steps pc to pv − 1. However, this is not so important for
two reasons:

– Testing one message only requires to compute a few steps, and we will typically have
less than 10 conditions to satisfy, so this step will only cost about a hundred hash
computations.

– This cost will be shared between all the messages which we find with the tunnels. In
the case of MD5, we have to use a lot of tunnels to satisfy the 29 conditions in round
3 and 4 anyway, and in MD4 we will use a lot of tunnels if we look for many collisions
(if one only needs one MD4 collisions, the cost of the collision search should not be a
problem).

3.3 Choosing a part of the message

This method can be extended to allow some message words to be fixed in the collision
search. This will make the search for a first message following the path up to the point
of verification harder, and it will forbid the use of some tunnels. Actually, we are buy-
ing some message freedom with computation time, but we can still find collisions very
efficiently. We will show which message words can be chosen, and how to adapt the algo-
rithm to find a first message following the path up to the step pv − 1 with some message
words chosen.

Choosing the beginning. If the first steps in the first round are such that in the
second round m0...mi are only used after the step pc or in a step j with no conditions
on Qj , then we can choose m0...mi before running the algorithm. The choice of m0...mi

will only fix Q0...Qi (if there are some conditions on Q0...Qi, we must make sure they
are satisfied by the message chosen), and the algorithm will work without needing any
modifications.

On MD5, this allows to choose m0. Using Wang’s path, there are no conditions on Q0

for the first block, so m0 is really free, but in the second block there are many conditions.
On MD4, we have π(16) = 0, so this can only be used if we use pc = 16, which will
significantly increase the cost of the collision search.

Choosing the end. The main advantage of our algorithm is that it allows to choose the
end of the message. This is an unsuspected property of Wang’s attack, and it will be the
core of our attack against APOP. Our idea is to split the search in two: first deal with
fixed message words, then choose the other internal state variables. This is made possible
because our algorithm starts at the end of the first round; the conditions in those steps
do not directly fix bits of the message, they also depend on the beginning of the message.

More precisely, if we are looking for collisions where the last t words are chosen, we
begin by fixing Q12−t, Q13−t, Q14−t and Q15−t, and we compute Q16−t to Q15 using the
chosen message words. We can modify Q12−t if the conditions on the first state Q16−t are
not satisfied, but for the remaining t − 1 steps this is impossible because it would break
the previous steps. So, these conditions will be fulfilled only statistically, and we might
have to try many choices of Q12−t, Q13−t, Q14−t, Q15−t (note that each choice does not
cost a full MD4 computation, but only a few steps).

Once we have a partial state that matches the chosen message, we run the same
algorithm as in the previous section, but we will be able to deal with less steps of the
second round due to the extra fixed states Q12−t to Q11. The full algorithm is given in
Algorithm 1.

3.4 MD4 message freedom

Using Wang’s EUROCRYPT path [20]. If we use Wang’s EUROCRYPT path, we
will choose pv = 23 so as to use tunnels only for the third round. Therefore, the tunnels
will have to preserve the values of m0, m4, m8, m12, m1, m5 and m9 when they modify
the Qi’s in the first round.

There are two easy tunnels we can use, in Q2 and Q6. If we change the value of Q2,
we will have to recompute m2 to m6 as we do not want to change any other Qi, but if we
look at step 4, we see that Q2 is only used trough IF(Q3, Q2, Q1). So some bits of Q2 can

be changed without changing Q4: if Q
[k]
3 = 0 then we can modify Q

[k]
2 . The same thing

happens is step 5: Q2 is only used in IF(Q4, Q3, Q2), and we can switch Q
[k]
2 if Q

[k]
4 = 1.

So on average, we have 8 bits of Q2 that can be used as a tunnel. The same thing occurs

in Q6: if Q
[k]
7 = 0 and Q

[k]
8 = 1, then we can change Q

[k]
6 without altering m8 and m9. If

we add some extra conditions on the path we can enlarge these tunnels, but we believe
it’s not necessary for MD4.

We can use our collision finding algorithm with up to 5 fixed word; Table 1 gives the
number of conditions we will have to satisfy probabilistically. Of course, the cost of the
search increases with t, but with t = 3 it should be about one 29 MD4 computations,
which is still very low. Note that this cost is only for the first collision; if one is looking
for a bunch of collisions, this cost will be shared between all the collisions found through
the tunnels, and we expect 214 of them. Another important remark is that this path has
a non-zero difference in m12; therefore when choosing more than 3 words, the chosen part
in M and M ′ will have a one bit difference.

Table 1: Complexity estimates for MD4 collision search with t fixed word, and comparison
with Dobbertin[7] technique. We assume that a single trial costs on average 2−3 MD4
due to early abort techniques.

message words chosen: t 0 1 2 3 4 5 0 11 0 11
path used [20] [24] [7]

point of choice: pc 19 19 19 18 18 18 19 17
point of verification: pv 23 23 23 23 23 23 23 17

conditions in steps 17− t to 15 0 0 6 12 18 24 0 17
conditions in steps pc to pv − 1 8 8 8 11 11 11 11 0

conditions in steps pv to N 2 2 2 2 2 2 17 34
complexity (MD4 computations log

2
) 5 5 5 9 15 21 14 31 20 30

Using Yu et al.’s CANS path [24]. To push this technique to the limit, we will try
to use t = 11: this leaves only m0 to m4 free, which is the minimum freedom to keep a
tunnel. In this setting, the conditions in steps 6 to 15 can only be satisfied statistically,
which will be very expensive with Wang’s path [20] (its goal was to concentrate the
conditions in the first round). Therefore we will use the path from [24], which has only
17 conditions in steps 6 to 15.

Since we fix almost the full message, the second phase of the search were we satisfy
conditions in the first ans second round at the same time will be very limited, and we
have pc = 17. Then we use the tunnel in Q0, which is equivalent to iterating over the
possible Q16’s, computing m0 from Q16, and then recomputing Q0 and m1, m2, m3, m4.
There are 34 conditions remaining, so we will have to use the tunnel about 234 times.
Roughly, we break the message search in two: first find m0..m4 such that the message
follows steps 0 to 16, then modify it to follow up to the end by changing Q0. This path
is well suited for this approach, with few conditions well spread over the first two round.

This gives us a lot of freedom in MD4 collisions, but the collision search become more
expensive. Another interesting property of this path is that it only introduces a difference
in m4, so the 11 chosen words will be the same in M and M ′.

3.5 MD5 message freedom

Using Wang’s MD5 path [22], we will choose pv = 24 so as to use tunnels only for the
third round. Therefore, when we modify the Qi’s in the first round to use the tunnels, we
have to keep the values of m1, m6, m11, m0, m5, m10, m15 and m4. We will not describe
the available tunnels here, since they are extensively described in Klima’s paper [11].

We will set pc = 19, so we have 7 conditions in steps pc to pv − 1, and 23 conditions
after pv. As already stated, our algorithm allow to choose m0 in the first block, and we
will also be able to select the last word m15 in both blocks. With t = 1, we will use
pc = 18, which make 9 conditions between steps pc and pv −1, but since we will use a lot
of tunnels, there is virtually no overhead in choosing these message words. We can also
try to set t = 2, but this adds a lot of conditions when we search the states in the end
of the first round. According to our experiments, the conditions on the Qi’s also imply
some conditions on m14, so m14 could not be chosen freely anyway.

We will use the set of conditions from Stevens [17], which adds the conditions on
the rotations that were missing in Wang’s paper [22]. We had to remove the condition1

Q
[17]
15 6= Q

[17]
14 because it is incompatible with some choices of m15, so we check the less

restrictive condition on Φ15 instead (Φ
[31]
15 = 0). We also found out that some conditions

that Stevens claimed to be only needed to optimize the algorithm were actually needed
for the set of conditions to be sufficient.

We only implemented a little number of tunnels, but we find the first block in a few
minutes with m0 and m15 chosen, and the second block in a few seconds with m15 chosen.
This is close to Klima’s results in [11].

4 Applications

The freedom in the colliding blocks can be used to break some protocols are to create
collisions with some special shape. The applications we show here requires that the chosen
part in M and M ′ is the same, ie. the differential path must not use a difference there.

Fixing the padding. We can use this technique to find messages with the padding
included in the colliding block. For instance, this can be useful to build pseudo-collision
of the hash function: if there is a padding block after the pseudo-colliding messages, the
pseudo-collision will be completely broken.

We can also find collisions on messages shorter than one block, if we fix the rest of the
block to the correct padding. An example of a 160 bit MD4 collision is given in Table 2
in Appendix C.

Zeroed collisions. Szydlo and Yin proposed some message preprocessing techniques to
avoid collisions attacks against MD5 and SHA-1 in [19]. Their idea is to impose some
restrictions on the message, so that collision attacks become harder. One of their schemes

1 Using Stevens notations, it is Q16[17] = Q15[17]

is called message whitening : the message is broken into blocks smaller than 16 words, and
the last t words are filled with zeroes. Using our technique we can break this strengthening
for MD4 and MD5: in Appendix C we show a 11-whitened MD4 collision in Table 3 and
a 1-whitened MD5 collision in Table 4.

4.1 An efficient partial key-recovery attack against APOP

We can use this freedom in MD5 collision to build an attack against APOP. In our at-
tack, we have to act as a server, so as to choose the nonce and receive the hashes. We
will use the fact that the nonce sent by the server has no fixed-length, so we can choose
a particular size to control the location of the password in the message to be hashed.
This property was also used in the attack against the envelope method [15], and we will
combine it with our freedom in MD5 collisions to make an efficient attack. More precisely,
the first part of the attack is to generate a MD5 collision with some specific format: M =
“<‽‽‽...‽‽‽>x” and M ′ = “<���...���>x”, where M and M ′ have both size 128 bytes
(2 MD5 blocks). The ‘‽’ and ‘�’ represent any character chosen by the collision finding
algorithm. Then we send “<‽‽‽...‽‽‽>” and “<���...���>” as a nonce, and the client re-
turns MD5(“<‽‽‽...‽‽‽>p0p1p2...pn−1”) and MD5(“<���...���>p0p1p2...pn−1”), where
“p0p1p2...pn−1” is the user password (the pi’s are the characters of the password).

Now, if p0 = ‘x’, the two hashes will collide after the second block, and since the end
of the password and the padding are the same, we will see this collision in the full hashes
(and it is very unlikely that the two hashes collides for p0 6= ‘x’). Therefore we are able
to test the first password character without knowing the others. We will construct pairs
of nonce to test the 256 possible values, and stop once we have found the first password
character.

Then we generate a new collision pair to recover the second character of the password:
M = “<‽‽‽...‽‽‽>p0y” and M ′ = “<���...���>p0y”, so as to test if p1 = ‘y’. Thus, we
can learn the password characters one by one in linear time.

Unfortunately, Wang’s path for MD5 collisions uses a difference δM14 = 232 and
this makes a difference in character 60. In order to learn the i-th password character
pi−1, we need to generate a collision where we fix the last i + 1 characters (i password
characters, plus a ‘>’ to form a correct msg-id). Therefore, we will only be able to retrieve
3 characters of the password with Wang’s path. This points out a need for new paths
following Wang’s ideas, but adapted to other specific attack; here a path less efficient for
collision finding but with better placed differences could be used to learn more characters
of the password. Note that if APOP was implemented using MD4 instead of MD5, we
could easily recover 13 characters, and up to 43 characters with more computations!

Implementation. To implement this attack, we need to efficiently generate MD5 colli-
sions with some chosen parts: we mainly have to fix the last word. The POP3 RFC [13]
requires the nonce to be a msg-id2, but most mail clients does not check this require-

2 in particular, it should use only ASCII characters, but Wang’s path can not find two colliding ASCII
message because there must be a difference on some most significant bit

ment, leaving us a lot of freedom. According to our experiments with Thunderbird3 and
Evolution4 there are only four characters which they reject in the nonce:

– 0x00 Null: used as end-of-string in the C language
– 0x3e Greater-Than Sign (‘>’): used to mark the end of the msg-id
– 0x0a Line-Feed: used for end-of-line (POP is a text-based protocol)
– 0x0d Carriage-Return: also used for end-of-line

Additionally, Thunderbird needs a ‘@’ in the msg-id (but there can be more than one).
We will use Wang’s path [22], which gives two-block collisions. The first block is more
expensive to find, so we will use the same for every msg-id, and we will fix the first
character as a ‘<’, and the last character as a ‘@’. Then we have to generate a second
block for every password character test, each time the last word is chosen, and we must
avoid 4 characters in the message. Using the ideas from Section 3.5 we can do this in
about 5 seconds per collision on a standard desktop computer.

Complexity. To estimate the complexity of this attack, we will assume the user’s pass-
word is 8-characters long, and each character has 6 bits of entropy5. This seems to be
the kind of password most people use (when they don’t use a dictionary word...). Under
these assumptions, we will have to generate 3 × 25 collisions, and wait for about 3 × 26

identifications. Each collision takes about 5 seconds to generate; if we assume that the
client identifies once per minute this will be the limiting factor, and our attack will take
about 3 hours. In a second phase we can do an offline exhaustive search over the missing
password characters. We expect to find them after 230 MD5 computations and this will
take about half an hour according to typical OpenSSL benchmarks.

5 Conclusion

We have shown that Wang’s attack allows some message freedom for MD4 and MD5 colli-
sions, and how to exploit some of this freedom with little computational cost by tweaking
the collision search algorithm. We believe that this freedom was widely underestimated
and we built some examples to exploit it.

The main contribution of our paper is an attack against the APOP authentication
protocol. This attack is highly practical, and we suggest users to switch to an other
authentication protocol if possible. As a protection measure, mail clients should strictly
check if the msg-id follows the RFC, but this could be defeated by an improved attack.

To the best of our knowledge, this is the first practical attack to recover a secret
hidden in a hash function. This shows that collisions are a real security threat when the
attacker has some freedom over the messages.

Acknowledgement. Part of this work is supported by the Commission of the European
Communities through the IST program under contract IST-2002-507932 ECRYPT.

3 available at http://www.mozilla.com/en-US/thunderbird/
4 available at http://www.gnome.org/projects/evolution/
5 if we consider ASCII characters without control characters, there are only 96 of them

http://www.mozilla.com/en-US/thunderbird/
http://www.gnome.org/projects/evolution/

References

1. Eli Biham and Rafi Chen. Near-Collisions of SHA-0. In Matthew K. Franklin, editor, CRYPTO,
volume 3152 of Lecture Notes in Computer Science, pages 290–305. Springer, 2004.

2. John Black, Martin Cochran, and Trevor Highland. A Study of the MD5 Attacks: Insights and
Improvements. In Matthew Robshaw, editor, FSE, volume 4047 of Lecture Notes in Computer

Science, pages 262–277. Springer, 2006.
3. Scott Contini and Yiqun Lisa Yin. Forgery and Partial Key-Recovery Attacks on HMAC and NMAC

Using Hash Collisions. In Xuejia Lai and Kefei Chen, editors, ASIACYPT, volume 4284 of Lecture

Notes in Computer Science. Springer, 2006.
4. Ronald Cramer, editor. Advances in Cryptology - EUROCRYPT 2005, 24th Annual International

Conference on the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, May

22-26, 2005, Proceedings, volume 3494 of Lecture Notes in Computer Science. Springer, 2005.
5. M. Daum. Cryptanalysis of Hash Functions of the MD4-Family. PhD thesis, Ruhr-University of

Bochum, 2005.
6. Magnus Daum and Stefan Lucks. Hash Collisions (The Poisoned Message Attack) “The Story of

Alice and her Boss”. Presented at the rump session of Eurocrypt ’05. http://th.informatik.
uni-mannheim.de/people/lucks/HashCollisions/.

7. Hans Dobbertin. Cryptanalysis of MD4. J. Cryptology, 11(4):253–271, 1998.
8. Max Gebhardt, Georg Illies, and Werner Schindler. A Note on the Practical Value of Single Hash

Collisions for Special File Formats. In Jana Dittmann, editor, Sicherheit, volume 77 of LNI, pages
333–344. GI, 2006.

9. Jongsung Kim, Alex Biryukov, Bart Preneel, and Seokhie Hong. On the Security of HMAC and
NMAC Based on HAVAL, MD4, MD5, SHA-0 and SHA-1. In Roberto De Prisco and Moti Yung,
editors, SCN, volume 4116 of Lecture Notes in Computer Science, pages 242–256. Springer, 2006.

10. Vlastimil Klima. Finding MD5 Collisions on a Notebook PC Using Multi-message Modifications.
Cryptology ePrint Archive, Report 2005/102, 2005. http://eprint.iacr.org/.

11. Vlastimil Klima. Tunnels in Hash Functions: MD5 Collisions Within a Minute. Cryptology ePrint
Archive, Report 2006/105, 2006. http://eprint.iacr.org/.

12. Arjen K. Lenstra and Benne de Weger. On the Possibility of Constructing Meaningful Hash Collisions
for Public Keys. In Colin Boyd and Juan Manuel González Nieto, editors, ACISP, volume 3574 of
Lecture Notes in Computer Science, pages 267–279. Springer, 2005.

13. J. Myers and M. Rose. Post Office Protocol - Version 3. RFC 1939 (Standard), May 1996. Updated
by RFCs 1957, 2449.

14. Yusuke Naito, Yu Sasaki, Noboru Kunihiro, and Kazuo Ohta. Improved Collision Attack on MD4
with Probability Almost 1. In Dongho Won and Seungjoo Kim, editors, ICISC, volume 3935 of
Lecture Notes in Computer Science, pages 129–145. Springer, 2005.

15. Bart Preneel and Paul C. van Oorschot. On the Security of Two MAC Algorithms. In EUROCRYPT,
pages 19–32, 1996.

16. Victor Shoup, editor. Advances in Cryptology - CRYPTO 2005: 25th Annual International Cryptol-

ogy Conference, Santa Barbara, California, USA, August 14-18, 2005, Proceedings, volume 3621 of
Lecture Notes in Computer Science. Springer, 2005.

17. Marc Stevens. Fast Collision Attack on MD5. Cryptology ePrint Archive, Report 2006/104, 2006.
http://eprint.iacr.org/.

18. Marc Stevens, Arjen Lenstra, and Benne de Weger. Target Collisions for MD5 and Colliding X.509
Certificates for Different Identities. Cryptology ePrint Archive, Report 2006/360, 2006. http://
eprint.iacr.org/.

19. Michael Szydlo and Yiqun Lisa Yin. Collision-Resistant Usage of MD5 and SHA-1 Via Message
Preprocessing. In David Pointcheval, editor, CT-RSA, volume 3860 of Lecture Notes in Computer

Science, pages 99–114. Springer, 2006.
20. Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Cryptanalysis of the Hash

Functions MD4 and RIPEMD. In Cramer [4], pages 1–18.
21. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full SHA-1. In Shoup

[16], pages 17–36.

http://th.informatik.uni-mannheim.de/people/lucks/HashCollisions/
http://th.informatik.uni-mannheim.de/people/lucks/HashCollisions/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

22. Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions. In Cramer [4],
pages 19–35.

23. Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient Collision Search Attacks on SHA-0. In
Shoup [16], pages 1–16.

24. Hongbo Yu, Gaoli Wang, Guoyan Zhang, and Xiaoyun Wang. The Second-Preimage Attack on
MD4. In Yvo Desmedt, Huaxiong Wang, Yi Mu, and Yongqing Li, editors, CANS, volume 3810 of
Lecture Notes in Computer Science, pages 1–12. Springer, 2005.

A Algorithms

Algorithm 1 Our collision finding algorithm
1: repeat

2: choose Q12−t, Q13−t, Q14−t, Q15−t

3: if t 6= 0 then

4: StepForward(16− t)
5: FixState(16− t)
6: StepBackward(16− t)
7: if not CheckConditions(12− t) then

8: goto 2

9: for 17− t ≤ i < 16 do

10: StepForward(i)
11: if not CheckConditions(i) then

12: goto 2

13: i← 0
14: for 16 ≤ j < pc do

15: while i < π(j) do

16: choose Qi

17: StepMessage(i)
18: i← i + 1

19: StepForward(j)
20: FixState(j)
21: StepMessage(j)
22: StepForward(i)
23: if not CheckConditions(i) then

24: goto 15

25: for π(pc − 1) + 1 ≤ i < 12− t do

26: choose Qi

27: StepMessage(i)

28: StepMessage(12-t ... 15-t)
29: for pc ≤ i < pv do

30: StepForward(i)
31: if not CheckConditions(i) then

32: goto 25

33: for all tunneled message do

34: for pv ≤ i < N do

35: StepForward(i)
36: if not CheckConditions(i) then

37: use the next message

38: until all conditions are fulfilled

Algorithm 2 Step functions
1: function MD4StepForward(i)
2: Qi ← (Qi−4 ⊞ Φi(Qi−1, Qi−2, Qi−3) ⊞ mi ⊞ ki) ≪ si

3: function MD4StepBackward(i)
4: Qi−4 ← (Qi ≫ si) ⊟ Φi(Qi−1, Qi−2, Qi−3) ⊟ mi ⊟ ki

5: function MD4StepMessage(i)
6: mi ← (Qi ≫ si) ⊟ Qi−4 ⊟ Φi(Qi−1, Qi−2, Qi−3) ⊟ ki

7: function MD5StepForward(i)
8: Qi ← Qi−1 ⊞ (Qi−4 ⊞ Φi(Qi−1, Qi−2, Qi−3) ⊞ mi ⊞ ki) ≪ si

9: function MD5StepBackward(i)
10: Qi−4 ← (Qi ⊟ Qi−1) ≫ si ⊟ Φi(Qi−1, Qi−2, Qi−3) ⊟ mi ⊟ ki

11: function MD5StepMessage(i)
12: mi ← (Qi ⊟ Qi−1) ≫ si ⊟ Qi−4 ⊟ Φi(Qi−1, Qi−2, Qi−3) ⊟ ki

Algorithm 3 Wang’s message finding algorithm
1: repeat

2: choose a random message
3: for 0 ≤ i < N do

4: StepForward(i)
5: if not CheckConditions(i) then

6: try to modify the message

7: until all conditions are fulfilled

Algorithm 4 Klima’s message finding algorithm
1: repeat

2: for 0 ≤ i < 16 do

3: choose Qi

4: StepMessage(i)

5: for 16 ≤ i < pv do

6: StepForward(i)
7: if not CheckConditions(i) then

8: modify the message

9: for all tunneled message do

10: for pv ≤ i < N do

11: StepForward(i)
12: if not CheckConditions(i) then

13: use the next message

14: until all conditions are fulfilled

B Collisions with a High Number of Chosen Bits

In this paper we considered the problem of finding collisions with some chosen words but
some other works addressed the problem of choosing bits (mainly [24]). We believe it is
more useful to choose consecutive bits and the applications we give in Section 4 all need
this property. Specifically, the APOP attack requires to choose consecutive bits in the
end of the block; it will fail if one of these bits is uncontrolled. However let us say a few
word about collisions with many chosen bits.

Following the ideas of Yu et al.[24], we will use a collision path with very few con-
ditions. Such paths are only know in the case of MD4, and we found out that the path
from [24] can be slightly enhanced: if we put the difference in the bit 25 instead of the bit
22, we get only 58 conditions (instead of 62). Now the basic idea is to take a message M ,
and apply message modifications in the first round: the will give a message M∗ that has
about 10 bit difference from M (there are 20 conditions in the first round) and it gives
a collision with probability 2−38. Then we will generate about 238 messages Mi close to
M and the corresponding M∗

i , and one of them will give a collision.
Little detail is given in Yu et al. paper, but we can guess from their collision example

that they generated the Mi’s by changing m14 and m15. This make the attack more
efficient since the M∗

i will all have the same first 14 words, but it will modify about 32
extra bits. Actually, one only need to iterate over 38 bits, which make on average 19
modified bits, but Yu et al. modified the whole 32 bits.

In fact, if the goal is to have a high number of chosen bits, it is better to chose the
Mi in another way: instead of iterating over some bits, we will switch a few bits in the
whole message, and iterate over the positions of the differences. We have

(

512
5

)

≈ 238,
so it should be enough to select 5 positions, but we will have to run the full message
modifications in the first round for every message, which is quite expensive (about 237

MD4 computations). Instead, one can choose 4 positions in the first 480 bits, and two
in the last 32 bits: we have

(480
4

)(32
2

)

≈ 240, and the message modification on the first
15 bits will only be run about 27 times; the cost will be that of testing 238 message for
the second and third round: using early abort techniques this cost will be of 233 MD46.
An example of such message is given in Table 6, it has 18 bit differences from the target
(a block consisting only of 1’s), which is much better that achieved by Yu et al. (43 bit
differences).

6 There are two conditions on step 15, three on step 16 and one on step 17: so 3 · 236 messages will stop
after 1 step, 7 · 233 after 2 steps, 232 after 3 steps, and the remaining 232 messages will need at most
16 steps. This gives less than 95 · 232 MD4 steps, that is less than 233 full MD4.

C Collision Examples

Table 2: A 160-bit MD4 collision.

Message M

42 79 2d 65 f0 f8 4f d8 d5 7d 86 bf 78 54 9d 67
3f b3 8c aa

Message M ′

42 79 2d 65 f0 f8 4f d8 d5 7d 86 bf 78 54 9d 67
3f b3 8c ac

Message M padded to one block
42 79 2d 65 f0 f8 4f d8 d5 7d 86 bf 78 54 9d 67
3f b3 8c aa 80 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 a0 00 00 00 00 00 00 00

Message M ′ padded to one block
42 79 2d 65 f0 f8 4f d8 d5 7d 86 bf 78 54 9d 67
3f b3 8c ac 80 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 a0 00 00 00 00 00 00 00

MD4
46 6d cb bd 04 66 2c 43 75 12 18 f6 f4 e5 68 71

Table 3: A 11-whitened MD4 collision.

Message M

b9 39 4f 51 3b 43 68 dd d6 1d 6f 1c 5d b6 a0 b2
44 d4 69 18

Message M ′

b9 39 4f 51 3b 43 68 dd d6 1d 6f 1c 5d b6 a0 b2
44 d4 69 1a

Whitened Message M

b9 39 4f 51 3b 43 68 dd d6 1d 6f 1c 5d b6 a0 b2
44 d4 69 18 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Whitened Message M ′

b9 39 4f 51 3b 43 68 dd d6 1d 6f 1c 5d b6 a0 b2
44 d4 69 1a 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

MD4 without padding
1d ba e9 89 02 22 9f a6 a9 bb 88 f8 30 c1 38 ab

MD4 with padding
e1 54 1e 65 46 d8 4b 79 db b3 5b b2 13 00 06 9b

Table 4: A 1-whitened MD5 collision.

Message M

00 00 00 00 23 f9 5a 1c c8 4f 18 59 1b ef 74 a9
02 7a b6 bf ff 47 53 be c3 29 a9 dd b1 1e 62 94
d1 2c 24 05 07 5e b4 42 1b e2 58 72 25 83 b2 52
12 97 d8 24 ca 8c ae 13 e1 e9 34 77 54 01 42 6f
b4 b5 4a 77 d2 15 90 5a 7a 42 cf dd 9f 76 5b 37
90 dd 7e 3d 0a fd 77 d7 d1 4c 55 de 49 ff 3e f2
f5 52 b8 86 72 c0 49 7e 80 ac d1 1f c7 38 b4 96
a8 d3 73 f0 4b 5c d8 f2

Message M ′

00 00 00 00 23 f9 5a 1c c8 4f 18 59 1b ef 74 a9
02 7a b6 3f ff 47 53 be c3 29 a9 dd b1 1e 62 94
d1 2c 24 05 07 5e b4 42 1b e2 58 72 25 03 b3 52
12 97 d8 24 ca 8c ae 13 e1 e9 34 f7 54 01 42 6f
b4 b5 4a 77 d2 15 90 5a 7a 42 cf dd 9f 76 5b b7
90 dd 7e 3d 0a fd 77 d7 d1 4c 55 de 49 ff 3e f2
f5 52 b8 86 72 c0 49 7e 80 2c d1 1f c7 38 b4 96
a8 d3 73 f0 4b 5c d8 72

Whitened Message M

00 00 00 00 23 f9 5a 1c c8 4f 18 59 1b ef 74 a9
02 7a b6 bf ff 47 53 be c3 29 a9 dd b1 1e 62 94
d1 2c 24 05 07 5e b4 42 1b e2 58 72 25 83 b2 52
12 97 d8 24 ca 8c ae 13 e1 e9 34 77 00 00 00 00
54 01 42 6f b4 b5 4a 77 d2 15 90 5a 7a 42 cf dd
9f 76 5b 37 90 dd 7e 3d 0a fd 77 d7 d1 4c 55 de
49 ff 3e f2 f5 52 b8 86 72 c0 49 7e 80 ac d1 1f
c7 38 b4 96 a8 d3 73 f0 4b 5c d8 f2 00 00 00 00

Whitened Message M ′

00 00 00 00 23 f9 5a 1c c8 4f 18 59 1b ef 74 a9
02 7a b6 3f ff 47 53 be c3 29 a9 dd b1 1e 62 94
d1 2c 24 05 07 5e b4 42 1b e2 58 72 25 03 b3 52
12 97 d8 24 ca 8c ae 13 e1 e9 34 f7 00 00 00 00
54 01 42 6f b4 b5 4a 77 d2 15 90 5a 7a 42 cf dd
9f 76 5b b7 90 dd 7e 3d 0a fd 77 d7 d1 4c 55 de
49 ff 3e f2 f5 52 b8 86 72 c0 49 7e 80 2c d1 1f
c7 38 b4 96 a8 d3 73 f0 4b 5c d8 72 00 00 00 00

MD5 without padding
98 28 90 7a 75 75 ae 7a 25 f9 80 94 62 ea 52 76

MD5 with padding
7c c4 3c db a7 a6 f6 9e c5 10 8e 46 95 00 fd 82

Table 5: APOP MD5 collision. These two msg-id’s collides if padded with “bar”

Message M

<xxxÑÕç\HSØºä4PD<HO 3c 78 78 78 d1 d5 e7 5c 88 d8 ba e4 34 8b 3c 81
mXÀACn]EBØ\4UBSµiQP1 6d 58 c0 9f 6e 5d 17 d8 5c 34 55 08 b5 69 51 91
Åì"AKSXxô!¿ïFsc’áÒ c5 ec 22 06 02 78 f4 21 bf ef 46 73 63 27 e1 d2
ÝìVSôGECû49¾VHJxxx@ dd ec 8a f4 47 1b fb 34 39 be 56 89 78 78 78 40
ÚcCòßPºEQÙÖHTNHRIRéý da 63 43 f2 df 50 ba 05 d9 d6 09 83 8d 52 e9 fd
ÄCC4$½MH-:y6ÇÊ©ÜFS c4 94 34 24 bd 4d 48 2d 3a 79 36 c7 ca a9 dc 1c
-0:ÞñMW|enPUë5{DCþ¾ 2d 30 3a de f1 95 7c 65 6e 8c eb 35 7b 90 fe be
ïL´ïªØ#»ì])ü> ef 4c b4 ef aa d8 23 bb ec 5d 29 fc 3e

Message M ′

<xxxÑÕç\HSØºä4PD<HO 3c 78 78 78 d1 d5 e7 5c 88 d8 ba e4 34 8b 3c 81
mXÀUSn]EBØ\4UBSµiQP1 6d 58 c0 1f 6e 5d 17 d8 5c 34 55 08 b5 69 51 91
Åì"AKSXxô!¿ïFsc§áÒ c5 ec 22 06 02 78 f4 21 bf ef 46 73 63 a7 e1 d2
ÝìVSôGECû49¾VHTxxx@ dd ec 8a f4 47 1b fb 34 39 be 56 09 78 78 78 40
ÚcCòßPºEQÙÖHTNHRIRéý da 63 43 f2 df 50 ba 05 d9 d6 09 83 8d 52 e9 fd
ÄCC4¤½MH-:y6ÇÊ©ÜFS c4 94 34 a4 bd 4d 48 2d 3a 79 36 c7 ca a9 dc 1c
-0:ÞñMW|enPUë5{DLþ¾ 2d 30 3a de f1 95 7c 65 6e 8c eb 35 7b 10 fe be
ïL´ïªØ#»ì])|> ef 4c b4 ef aa d8 23 bb ec 5d 29 7c 3e

MD5(M ||“bar”) b8 98 53 57 f8 06 8c 23 72 cf f8 c2 4c 22 c3 81
MD5(M ′||“bar”) b8 98 53 57 f8 06 8c 23 72 cf f8 c2 4c 22 c3 81
MD5(M ||“ban”) 40 c6 ee cc 6f e1 e5 2b 53 74 a0 e8 3e f7 4f 54
MD5(M ′||“ban”) 02 c1 8c 29 49 91 04 99 8f 88 33 77 a1 eb 81 be

Table 6: A MD4 collision close to 1512.

Message M

ff ff ff ff bf ff ff ff ff f7 ff ff ff ff df ff
ff ff ff fd ff ff df ff ff ff fd ff ff ef ff ff
ff ff ff ef ff ff ff fe ff ff ef 7f ff 7f ff ff
7f ff fd 7f ff bf ff ff ff ff ff ff ff bf ff fd

Message M ′

ff ff ff ff bf ff ff ff ff f7 ff ff ff ff df ff
ff ff ff ff ff ff df ff ff ff fd ff ff ef ff ff
ff ff ff ef ff ff ff fe ff ff ef 7f ff 7f ff ff
7f ff fd 7f ff bf ff ff ff ff ff ff ff bf ff fd

MD4 without padding
ff a3 b5 2d 51 63 59 36 11 e5 9a d0 a6 cf 8b 33

MD4 with padding
59 93 19 84 d0 6f 55 9f f3 d0 87 4b c6 24 f4 8d

	Message Freedom in MD4 and MD5 Collisions: Application to APOP
	Gaëtan Leurent

