Practical key-recovery attack
against APOP, an MDS5 based
challenge-response
authentication

Gaétan Leurent

Laboratoire d’Informatique de I’Ecole Normale Supérieure,
Département d’Informatique,

45 rue d’Ulm, 75230 Paris Cedex 05, France
E-mail: gaetan.leurent@ens.fr

Abstract: Hash functions are used in many cryptographic constructions under various assump-
tions, and the practical impact of collision attacks is often unclear. In this paper, we show how
collisions can be used to recover part of the password used in the APOP authentication protocol.

Since we actually need a little more than mere collisions, we look into the details of MDS5
collisions. In Wang’s attack, message modifications allow to deterministically satisfy certain suf-
ficient conditions to find collisions efficiently. Unfortunately, message modifications significantly
change the messages and one has little control over the colliding blocks. In this paper, we show
how to choose small parts of the colliding messages, which will allow to build the APOP attack.

This shows that collision attacks can be used to attack real protocols, which means that finding
collisions is a real threat.

Keywords: Hash function, MD4, MDS5, message modification, meaningful collisions, APOP
security

Reference to this paper should be made as follows: Leurent, G. (2007) ‘Message Freedom in
MD4 and MDS5 Collisions: Application to APOP’, Int. J. of Applied Cryptography.

Biographical notes: Gaétan Leurent is a PhD student in the Ecole Normale Supérieure, Paris,

France. He completed his master degree in 2006, and studies attacks against hash functions.

1 Introduction

At EUROCRYPT ’05 and CRYPTO ’05, Wang et al. described
a new class of attacks on most of the hash functions of the MD4
family, MD4, MDS5, HAVAL, RIPEMD, SHA-O and SHA-1
in [26, 28, 29, 27], which allows to find collisions for these
hash functions very efficiently. However, the practical impact is
unclear as many real-life applications of hash functions do not
just rely on collision resistance.

One drawback with Wang’s attacks when used against practi-
cal schemes is that due to the message modification technique,
the colliding blocks cannot be chosen and look random. How-
ever, these attacks work with any IV, so one can choose a com-
mon prefix for the two colliding messages, and the Merkle-
Damgard construction allows to add a common suffix to the
colliding messages. Therefore, an attacker can choose a pre-
fix and a suffix, but he must somehow hide the colliding blocks
(1 block in MD4 and SHA-0, and 2 blocks in MD5 and SHA-1).
The poisoned message attack [6] exploits this property to create
two different PostScript files that display two different chosen

texts but whose digests are equal. In this construction, the two
different texts are in both PS files and the collision blocks are
used by an if-then-else instruction to choose which part
to display. This attack was extended to other file formats in [9].
Lenstra and de Weger also used the free prefix and free suffix
property to create different X.509 certificates for the same Dis-
tinguished Name but with different secure RSA moduli in [13].
Here, the colliding blocks are hidden in the second part of the
RSA moduli.

Recently, more concrete attacks have appeared: Stevens,
Lenstra and de Weger in [23] found colliding X.509 certificates
for two different Distinguished Name. In this work, the tech-
nique used is far more complex and allows to find messages
colliding under MD5 with two different chosen prefixes. They
used an approach suggested by Wang to find a near-collision
for different IVs and used different differential paths to absorb
the remaining differences. However, the messages B, B’ are not
controlled, and this randomness must still be hidden in the mod-
uli.

Copyright © 200x Inderscience Enterprises Ltd.

Other applications of Wang collisions have been proposed to
attack HMAC with several hash functions in [3, 10]. The tech-
niques use Wang’s differential path as a black box but with par-
ticular messages to recover some keys in the related-key model
or to construct advanced distinguishers.

1.1 Our Results

In the paper we try to extend Wang’s attack to break more hash
function uses. More precisely, we address the question of mes-
sage freedom inside the colliding blocks, and we show that this
can be used to attack APOP, a challenge-response authentica-
tion protocol.

The main contribution is a partial password-recovery attack
against the APOP authentication protocol. We are able to re-
cover 3 characters of the password, therefore greatly reducing
its entropy. Even though we do not achieve the full recovery
of the password, we reduce the complexity of the exhaustive
search and it is sufficient in practice to reduce this search to a
reasonable time for small passwords, i.e. less than 9 characters.

This attack needs some message freedom in MD5 collisions;
our second contribution is a technique to gain partial control
over the colliding blocks. We show that we can select some
part at the end of the messages which will collide. Our attack
can use any differential path, and only requires a set a sufficient
conditions. We are able to choose the last three message words
in a one-block MD4 collision, and three specific message words
in a two-block MD5 collision with almost no overhead. We
are also able to choose the 11 last words of a one-block MD4
collision with a work factor of about 23! MD4 computations.

An important point is that the technique used is nearly as
efficient as the best message modifications on MD4 or MD5,
even when we choose some parts of the messages. This con-
tradicts the usual assumption that Wang’s collisions are mostly
random. As a first application of this new message modification
technique, we show that a countermeasure recently proposed
by Szydlo and Yin at CT-RSA 06 in [24] is almost useless for
MD4 and can be partially broken for MDS5. This can also be
used to handle the padding inside the colliding blocks.

1.2 Related Work

The first MD4 collision was found by Dobbertin [8], and his
attack has a time complexity of about 22° MD4; it combines al-
gebraic techniques and optimization techniques such as genetic
algorithms. His attack also allows to choose a large part of the
colliding blocks at some extra cost: one can choose 11 words
out of 16 with a complexity of about 2°° MD4 computations
(little details are given and only an experimental time complex-
ity).

Our work is based on Wang’s collision attack [26, 28], which
have the following advantages over Dobbertin’s:

* it can be adapted to other hash functions (Dobbertin’s
method can give collisions on the MDS5 compression func-
tion, but has not been able to provide MDS5 collisions);

* it is somewhat more efficient.

More recently, Yu et al.[31] proposed a differential path for
MD4 collisions with a small number of sufficient conditions.
This allows to build a collision (M, M") which is close to a given
message M (about 44 different bits). This is quite different from
what we are trying to do since the changed bits will be spread
all over the message. We are trying to choose many consec-
utive bits, which is useful for different applications. However
we studied their work and propose some improvements in Ap-
pendix A.

De Canniere and Rechberger announced at the rump session
of CRYPTO ’06 that they can find reduced-SHA-1 collisions
and chose up to 25% of the message. However, they gave few
details on their technique, and the conference version does not
talk about this aspect of their work. Their idea seems to be to
compute a differential path with the chosen message as condi-
tions.

1.3 Organization of the Paper

This paper is divided in three sections: in the first part we de-
scribe APOP, how the attack works, and give background on
MD4, MDS5 and Wang’s attack; then we describe our new colli-
sion finding algorithm and how to choose a part of the message;
and eventually we describe some applications of these results,
including the practical attack against APOP.

2 Background and Notation

2.1 POP3 and APOP

The Post Office Protocol Version 3 (POP3) is a standard proto-
col for remote mailbox access, defined by RFC 1081 in 1988
(current version is RFC 1939 [14]). It is one of most preva-
lent protocol to for e-mail retrieval, together with the Internet
Message Access Protocol Version 4 (IMAP4), first described in
1994 by RFC 1730 (current version is RFC 3051). Virtually all
modern e-mail client support both protocols, as well as most e-
mail server. IMAP is usually recommended because it require
less resources thanks to its online state, but according to differ-
ent statistics gathered through the web, between 10% and 50%
of users are using POP3: this is still a very widely used protocol.

Initially, POP3 only supported plaintext password through
the USER and PASS commands; APOP was added in 1993 to
provide a simple challenge-response authentication, and avoid
passive eavesdropping attacks. The AUTH command was added
later and allows to use any IMAP authentication mechanism
(Kerberos, GSS-API, S/Key, CRAM-MDS5, ...), and POP3 now
support optional SSL encryption which protects the whole ses-
sion.

Servers implementing the APOP command send a challenge
(formatted as a message identifier, or msg-id) in their greet-
ing message, and the client authenticates itself by sending the
username, and the MD5 of the challenge concatenated with
the password: MD5(msg-id||passwd). The server performs the
same computation on his side, and checks if the digests match.
Thanks to this trick, an eavesdropper will not learn the pass-
word, provided MDS5 is a partial one-way function.

Figure 1: Testing the first password character.

M =[<??2 N 222> x] C =<?7?2...2727>
H(M) =H(M)
M =[<éie] cie> x| ¢ =<¢in - &ee>
Auth(c) = MD5(|<???] 222>[po| [p1pops... pad|)
Auth(¢') = MD5(|<¢éé N cee>|po| | papeps... pad|)
Figure 2: Testing the second password character.
M =[<?2? N 222> po] v | C =<?7?2...72727>
H(M) =H(M)
M =[<cec]] ¢ee>[poly | ¢ =<¢ée .- eée>
Auth(c) = MD5(|<??? N 222> [polps| | p2ps... pad|)
Auth(c) = MD5([<éeé] eee>[polpa] [p2ps... pad|)

A typical APOP session looks like:

+OK POP3 ready <11776027@pop.mail.com>
APOP john 0828720b095a679%9a5e5e6d87b082£223
+0OK maildrop has 1 message (369 octets)

In this example, the password is ‘penguin’; hence the digest
is MD5(‘<171.11776027@pop.mail.com>penguin’).
The RFC request that challenge is a message identifier, and that
is different for each connection; for instance, it can be generated
as a timestamp.

2.1.1 APOP Security

Since there is no integrity protection and no authentication of
the server, this protocol is subject to a man-in-the-middle at-
tack, but the man-in-the-middle should not be able to learn the
password or to re-authenticate later. Quoting RFC 1939 [14]:

It is conjectured that use of the APOP command pro-
vides origin identification and replay protection for a
POP3 session.

This challenge-response can be seen as a MAC algorithm,
known as the suffix method: MAC,(M) = MD5(M||k). This
construction is weak for at least two reasons: first, it allows off-
line collision search so there is a generic forgery attack with
2n/2 computations and one chosen-text MAC; second, the key-
recovery attack against the envelope method of Preneel and van
Oorschot [17] can be used on the suffix method with 2%7 offline
computations and 2'3 chosen text MACs.

This is a hint that APOP is weak, but these attacks require
more computations than the birthday paradox, and the first one
is mostly useless in a challenge-response protocol. However, we
can combine these weaknesses with the collision attack against
MDS5 to build a practical attack against APOP.

2.1.2 The APOP Attack

In this attack, we will act as the server, and we will send some
specially crafted challenges to the client. We will use pairs of
challenges, such that the corresponding digest will collide only
if some part of the password was correctly guessed.

Let us assume we can generate a MDS5 collision with
some specific format: M = and
M =“<¢éé...eié>%x", where M and M’ have both size 128
bytes (2 MDS5 blocks). The ‘?” and ‘¢’ represent any character
chosen by the collision finding algorithm. We will send
..&ée>" as a challenge, and

the client returns
and MD5(“<ééé ... eee>popipae--Pn-1"), where
“pop1p2..-pn—1" 1s the user password (the p;’s are the
characters of the password).

As we can see in Figure 1, if pp = ‘x’, the two hashes will
collide after the second block, and since the end of the password
and the padding are the same, we will see this collision in the
full hashes (and it is very unlikely that the two hashes collide
for pg # ‘x’). Therefore we are able to test the first password
character without knowing the others. We will construct pairs
of challenge to test the 256 possible values, and stop once we
have found the first password character.

Then we generate a new collision pair to recover the sec-

M =“<iie. .. ii>poy”, so as to test if p; = vy’ (see Fig-
ure 2). Thus, we can learn the password characters one by one
in linear time.

This motivates the need for message freedom in MD5 col-
lisions: we need to generate collisions with a specific format,
and some chosen characters. We will see in section 4.3 that this
attack can be used in practice to recover the first 3 characters of
the password. We believe most passwords in real use are short
enough to be found by exhaustive search once we know these

first characters, and this attack will allow us to re-authenticate
later. We stress that this attack is practical: it needs less than
one hour of computation, and a few hundreds authentications.

Since people often read their mail from different places (in-
cluding insecure wireless networks and Internet cafés), we be-
lieve that this man-in-the-middle setting is rather realistic for an
attack against APOP. Moreover most mail clients automatically
check the mailbox on a regular basis, so it seems reasonable to
ask for a few hundred authentications.

2.2 MD4 and MD5

MD4 and MD5 follow the Merkle-Damgard construction. Their
compression functions are designed to be very efficient, using
32-bit words and operations implemented in hardware in most
processors:

e rotation <<

« addition mod 232 H;
¢ bitwise boolean functions ®;.

The message block M is first split into 16 words (M;)}, then
expanded to provide one word m; for each step of the compres-
sion function. In MD4 and MD5 this message expansion is sim-
ple, it just reuses many times the words M;. More precisely, the
full message is read in a different order at each round: we have
m; = My ;) (7 is given below).

The compression function uses an internal state of four
words, and updates them one by one in 48 steps for MD4, and
64 steps for MDS5. Here, we will assign a name to every differ-
ent value of these registers, so the description is different from
the standard one: the value changed on step i is called Q; (this
follows the notations of Daum [5]). The parameters for MD4
and MDS5 are given in Table 1.

The security of the compression function was based on the
fact that the operations are not “compatible” and mix the prop-
erties of the input.

We will use x/ to represent the k -+ 1-th bit of x, that is xH =
(x >> k) mod 2 (note that we count bits and steps starting from
0).

2.3 Wang’s Attack against MD4 and MDS5

Wang et al. attacks against the hash functions of the MD4 fam-
ily are differential attacks, and have the same structure with two
main parts:

1. A precomputation phase:

* choose a message difference A
¢ find a differential path
e compute a set of sufficient conditions

2. Search for a message M that satisfies the conditions;
then H(M) = H(M + A).

The differential path specifies how the computations of H(M)
and H(M +A) are related: it tells how the differences introduced
in the message will evolve in the internal state Q;. If we choose

A with a low hamming weight, and some extra properties, we
can find some differences in the Q;’s that are very likely. Then
we look at each step of the compression function, and we can
express a set of sufficient conditions that will make the Q;’s fol-
low the path. These conditions are on the bits of Q;, so we can
not directly find a message satisfying them; however some of
them can be fulfilled deterministically through message modifi-
cations, and the rest will be statistical by trial and error.

3 A New Approach to Collision Finding

In this paper we assume that we are given a set of sufficient
conditions on the internal state variables Q; that produces col-
lisions. We will try to find a message M such that when one
computes a hash of this message, the conditions on the Q;’s
hold. We will first describe the general idea that applies to both
MD4 and MDS5, and we will then study in more details those
two hash functions.

In contrast to previous works [15, 12, 2], we will not focus
on a particular path and give message modification techniques
for every single condition, but we will give a generic algorithm
that can take any path as input, like Klima in [11] and Stevens
in [22]. Our method is based on two important facts:

1. We can search a suitable internal state rather than search-
ing a suitable message, because the step update function
is invertible: if Q;;1, Qj+2 and Q;;3 are known, then we
can compute any one of Q;, Q; 14 or m; from the two others
(see Algorithm 1 for explicit formulas).

2. We do not need to search for the internal state from the
beginning to the end. If we start from the middle we can
satisfy the conditions in the first round and some condi-
tions in the second round at the time; additionally we can
choose the end of the message before running the search
with little extra cost.

Algorithm 1 Step functions
1: function MD4STEPFORWARD(i)

Qi — (Qi—4BPi(Qi-1,0i—2,0i—3) Bm;Bk;) < s

: function MD4STEPBACKWARD(i)

Qi—4 — (0> s)BPi(0i-1,0i—2,0i-3)Bm;Bk;

: function MD4STEPMESSAGE(i)

m; «— (Q;>> ;)80 4BPi(0i-1,0i2,0i3)Bk;

: function MD5STEPFORWARD(i)

Qi— Qi 1H#

(QiaB®(Qi1,0i 2,0 3)Bm;Bh;) <K 5;

9: function MD5STEPBACKWARD(i)

10: Qa4 (0iBQi1)>s8
D;(Qi-1,0i2,0i3)Bm; Bk

11: function MD5STEPMESSAGE()

12: m; — (Q;8Q; 1) > 58
0i-48P{(0i-1,0i—2,0i-3) Bk;

A R o

Table 1: MD4 and MDS5 parameters.

y MD4
Step update: Q; = (Qi 4B Pi(Q;-1,0i2,0i3) BmiBk) < s
Input: Q-4[[Q-1[|Q-2]|Q-3
Output: Q4B Q44/[Q—1 B 047||Q—2 B Qs6||Q—3 B Qus
w(0..15): 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
7'C(16..31): 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15
7(32.47): 0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15
y MD5
Step update: Q; = Q; 1B (Q; 4BDi(Qi1,0i2,0;3) Bm;Bk) K s;
Input: QO 4[|Q1[[Q2[|Q-3
Output: Q4B Q60|01 8 Q63|02 B Q62||Q 3 H Q61
n(0..15): 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n(16.31): 1 6 11 0 5 10 15 4 9 14 3 8 13 2 7 12
7'[(32..47): 5 8 11 14 1 4 7 10 13 0 3 6 9 12 15 2
7(48..64): 0 7 14 5 12 3 10 1 8 15 6 13 4 11 2 9

3.1 Previous Works

Wang’s method to find a message satisfying a set of conditions
is roughly described in Algorithm 3 in Appendix B: one basi-
cally picks many messages at random, modifies them to fulfill
some of the conditions, and checks if the other conditions are
fulfilled.

The best message modifications known allow to satisfy ev-
ery condition up to round 22 in MD4 (which gives a collision
probability of 272) and up to round 24 in MDS (which gives
a collision probability of 272%). Basically, message modifica-
tions for the conditions in the first round are very easy, but in
the second round it becomes much more difficult because we
cannot freely change message words without breaking the Q; in
the first round (and therefore also in the second round). At the
beginning of the second round it is still possible to find message
modifications, but it becomes increasingly difficult as we go for-
ward. Wang’s differential paths are chosen with this constraint
in mind, and most of their conditions are in the first round and
at the beginning of the second.

The algorithm can be rewritten more efficiently: instead of
choosing a random message and modify it, we can choose the
Q; in the first round and compute the corresponding message.
Since all the conditions in MD4 and MD5 are on the Q;’s, this
will avoid the need for message modifications in the first round.

To further enhance this algorithm, Klima introduced the idea
of tunnels in [12], which is closely related to Biham and Chen’s
neutral bits used in the cryptanalysis of SHA-O [1]. A tunnel
is a message modification that does not affect the conditions
up to some step p, — 1 (point of verification). Therefore, if we
have one message that fulfill the conditions up to p, — 1 and 7
tunnels, we can generate 2 messages that fulfills conditions up
to step p, — 1. This does not change the number of messages
we have to try, but it greatly reduces the cost of a single try, and
therefore speeds up collision search a lot. This is described in
Algorithm 4 in Appendix B.

In MD4 and MDS5, the point of verification will be in the sec-
ond round, and we put it after the last condition in the second

round (step 22 in MD4, 24 in MD5). We have message modifi-
cations for almost every condition before the point of verifica-
tion, and it seems impossible to find message modifications for
round 3 and later.

3.2 Our Method

Our method is somewhat different: we will not fix the Q; from
the beginning to the end, but we will start from the middle, and
this will allow us to deal with the first round and the beginning
of the second round at the same time.

First we choose a point of choice p. of and a point of verifica-
tion p,. The point of verification is the step where we will start
using tunnels, and the point of choice is the first step whose con-
ditions will not be satisfied deterministically. The value of p,
depends on the message expansion used in the second round:
we must have w(16) < n(17) < ... < w(p. — 1) < 12, so we
will choose p, = 19 in MD4 (n(18) = 8), and p, = 19 in MD5
(m(18) =11).

The key idea of our collision search is to first choose the end
of the first round, i.e. Q2 to Q5. Then we can follow the
computations in the first round and in the second round at the
same time, and choose m;’s that satisfy the conditions in both
rounds. There is no difficulty when the first round meets the
values we fixed in the beginning: since we only fixed the Q;’s,
we just have to compute the corresponding m;’s. More precisely,
we will choose the Q; from step 0 to 7(p. — 1), and when we
hit a message m; that is also used in the second round with i =
7(j), we can modify it to generate a good Q; since we have
already fixed Q;_4, Qj—3, Qj—2 and Q;_1. Thus, we can fulfill
conditions up to round p. — 1 almost for free. Figure 3 shows
the order in which the internal words are chosen.

In the end, we will make random choices for the remaining
steps (Qr(p.—1)+1 to Q11), until we have a message that follows
the path up to step p, — 1, and finally we use the tunnels. For a
more detailed description of the algorithm, see Algorithm 2 in
Appendix B, and take ¢ = 0 (this algorithm is more generic and
will be described in the next section).

Q-4
Q3
Qo
Q3
1) 1 1 Qo
my 3 2 Q1
mp 3 2 Q2
ms 3 2 Q3
my 4 4 Qa4
ms 6 5 Qs
Mg 6 5 Qs
my 6 5 Q7
mg 7 7 Qs
Mo 9 8 Qg
Mo 9 8 Q10
My1 9 8 Qu
mpo 9 0 Q12
M3 9 0 Q13
Mg 9 0 Q14
M5 9 0 Q15
1) 1 1 Q16
my 4 4 Q17
mg 7 7 Q18

Figure 3: Collision search: the numbers show the order in which
we choose the different words.

Since we do not choose the Q;’s in the natural order, we have
to modify a little bit the set of sufficient conditions: if we have
a condition Q[lkz] = Q[lkl], we will instead use Q[lkl] = Q[lkz] because
we choose Q1; before Qq;.

Compared to standard message modifications, our algorithm
has an extra cost when we try to satisfy conditions in steps p.

to p, — 1. However, this is not so important for two reasons:

» Testing one message only requires to compute a few steps,
and we will typically have less than 10 conditions to sat-
isfy, so this step will only cost about a hundred hash com-
putations.

* This cost will be shared between all the messages which
we find with the tunnels. In the case of MD5, we have to
use a lot of tunnels to satisfy the 29 conditions in round
3 and 4 anyway, and in MD4 we will use a lot of tunnels
if we look for many collisions (if one needs a single MD4
collision, the collision search cost should not be a prob-
lem).

3.3 Choosing a Part of the Message

This method can be extended to allow some message words to
be fixed in the collision search. This will make the search for a
first message following the path up to the point of verification
harder, and it will forbid the use of some tunnels. Actually, we
are buying some message freedom with computation time, but
we can still find collisions very efficiently. We will show which
message words can be chosen, and how to adapt the algorithm

to find a first message following the path up to the step p, — 1
with some message words chosen.

3.3.1 Choosing the Beginning

If the first steps in the first round are such that in the second
round my...m; are only used after the step p. or in a step j with
no condition on @;, then we can choose my...m; before run-
ning the algorithm. The choice of my...m; will only fix Qp...Q;
(if there are some conditions on Qy...Q;, we must make sure
they are satisfied by the message chosen), and the algorithm
will work without needing any modification.

On MD?3, this allows to choose m. Using Wang’s path, there
are no conditions on Qy for the first block, so my is really free,
but in the second block there are many conditions. On MD4,
we have m(16) = 0, so this can only be used if we use p. = 16,
which will significantly increase the cost of the collision search.

3.3.2 Choosing the End

The main advantage of our algorithm is that it allows to choose
the end of the message. This is an unsuspected property of
Wang’s attack, and it will be the core of our attack against
APOP. Our idea is to split the search in two: first deal with fixed
message words, then choose the other internal state variables.
This is made possible because our algorithm starts at the end of
the first round; the conditions in those steps do not directly fix
bits of the message, they also depend on the beginning of the
message.

More precisely, if we are looking for collisions where the last
t words are chosen, we begin by fixing Q12—;, Q13—, Q14— and
Q15-¢, and we compute Q16_; to Q15 using the chosen message
words. We can modify Q,_; if the conditions on the first state
Q16— are not satisfied, but for the remaining # — 1 steps this is
impossible because it would break the previous steps. So, these
conditions will be fulfilled only statistically, and we might have
to try many choices of Q1o—;, Q13—¢, Q1a—s, Q15— (note that
each choice does not cost a full MD4 computation, but only a
few steps).

Once we have a partial state that matches the chosen message,
we run the same algorithm as in the previous section, but we will
be able to deal with less steps of the second round due to the
extra fixed states Q12— to Q1. This is illustrated by Figure 4,
and the full algorithm is given as Algorithm 2 in Appendix B.

3.4 MD4 Message Freedom
3.4.1 Using Wang’s EUROCRYPT path [26].

If we use Wang’s EUROCRYPT path, we will choose p, =23
so as to use tunnels only for the third round. Therefore, the
tunnels will have to preserve the values of myg, m4, mg, myz, my,
ms and mg when they modify the Q;’s in the first round.

There are two easy tunnels we can use, in O, and Qg. If we
change the value of Q,, we will have to recompute m; to mg as
we do not want to change any other Q;, but if we look at step
4, we see that O, is only used trough IF(Q3,0>,01). So some

bits of Q> can be changed without changing Qy: if ng] =0 then

Q-4
Q3
Qo
Q3
1) 1 1 Qo
my 3 2 Q1
mp 3 2 Q2
ms 3 2 Q3
my 4 4 Qa4
ms 6 5 Qs
Mg 6 5 Qs
my 6 5 Q7
mg 7 7 Qs
Mo 9 8 Qg
Mo 9 0 Q10
My1 9 0 Qu
mpo 9 0 Q12
M3 9 0 Q13
My X 0 Qu
M5 X 0 Q15
1) 1 1 Q16
my 4 4 Q17
mg 7 7 Q18

Figure 4: Collision search with the two last words fixed.

we can modify Q[zk]. The same thing happens is step 5: Q; is

only used in IF(Qu4, 03,0>), and we can switch Q[zk] if ng] =1.
So on the average, we have 8 bits of O, that can be used as a
tunnel. The same thing occurs in Qg: if Q[7k] =0 and Qé[gk] =1,
then we can change Q[Gk] without altering mg and myg. If we add
some extra conditions on the path we can enlarge these tunnels,
but we believe it’s not necessary for MD4.

We can use our collision finding algorithm with up to 5 fixed
words; Table 2 gives the number of conditions we will have to
satisfy probabilistically. Of course, the cost of the search in-
creases with £, but with ¢ = 3 it should be about one 2° MD4
computations, which is still very low. Note that this cost is only
for the first collision; if one is looking for a bunch of collisions,
this cost will be shared between all the collisions found through
the tunnels, and we expect 2!4 of them. Another important re-
mark is that this path has a non-zero difference in m1,; therefore
when choosing more than 3 words, the chosen part in M and M’
will have a one bit difference.

3.4.2 Using Yu et al.’s CANS path [31].

To push this technique to the limit, we will try to use t = 11: this
leaves only myg to my free, which is the minimum freedom to
keep a tunnel. In this setting, the conditions in steps 6 to 15 can
only be satisfied statistically, which will be very expensive with
Wang’s path [26] (its goal was to concentrate the conditions in
the first round). Therefore we will use the path from [31], which
has only 17 conditions in steps 6 to 15.

Since we fix almost the full message, the second phase of the
search where we satisfy conditions in the first and second round

at the same time will be very limited, and we have p. = 17.
Then we use the tunnel in Qp, which is equivalent to iterating
over the possible Qj4’s, computing mq from Q1¢, and then re-
computing Qo and mj, my, m3, ms. There are 34 remaining
conditions, so we will have to use the tunnel about 234 times.
Roughly, we break the message search in two: first find mq..my
such that the message follows steps 0 to 16, then modify it to
follow up to the end by changing Qp. This path is well suited
for this approach, with few conditions well spread over the first
two rounds.

This gives us a lot of freedom in MD4 collisions, but the colli-
sion search becomes more expensive. Another interesting prop-
erty of this path is that it only introduces a difference in my4, so
the 11 chosen words will be the same in M and M’.

3.5 MDS Message Freedom

Using Wang’s MD5 path [28], we will choose p, = 24 so as
to use tunnels only for the third round. Therefore, when we
modify the Q;’s in the first round to use the tunnels, we have
to keep the values of my, mg, my1, mg, ms, mig, mys and my.
We will not describe the available tunnels here, since they are
extensively described in Klima’s paper [12].

We use the set of conditions from Stevens [22], which adds
the conditions on the rotations that were missing in Wang’s pa-
per [28]. We had to remove the condition because it is incom-
patible with some choices of m;s, so we check instead the less
restrictive condition on @5 (CI>[1351] = 0). We also found out that
some conditions mark as optimization conditions were actually
needed for the set of conditions to be sufficient.

As already stated, we can choose my in the first block, and
we will see how many words we can choose in the end of the
message. With t =0, we set p. = 19, so we have 7 conditions
in steps p. to p, — 1, and after p,, there are 29 conditions for
the first block, and 22 for the second block. With r = 1, we use
pe = 18, which increase the number of conditions between steps
pc and p, — 1 to 9, but since we will use a lot of tunnels, this has
very little impact on the computing time. We can also try to set
t = 2, but this adds a lot of conditions when we search the states
in the end of the first round. According to our experiments, the
conditions on the Q;’s also imply some conditions on 14, SO
my4 could not be chosen freely anyway.

As a summary, in a two-block MD5 collision (M||N,M'||N’),
we can choose My, M5 and Nis, and the complexity of the col-
lision search is roughly the same as a collision search without
extra constraints.

We only implemented a little number of tunnels, but we find
the first block in a few minutes with mq and m;5 chosen, and the
second block in a few seconds with m;5 chosen. This is close to
Klima’s results in [12].

4 Applications

Freedom in colliding blocks can be used to break some proto-
cols and to create collisions of special shape. The applications
we show here requires that the chosen part is identical in M and
M', i.e. the differential path must not use a difference there.

Table 2: Complexity estimates for MD4 collision search with ¢ fixed words, and comparison with Dobbertin’s technique [8]. We
assume that a single trial costs 273 MD4 on the average due to early abort techniques.

message words chosen: ¢ | 0

1 2 3 4 5|10 110 11

path used [26] [31] [8]
point of choice: p. | 19 19 19 18 18 18|19 17
point of verification: p, | 23 23 23 23 23 2323 17
conditions in steps 17—¢to15| 0 0 6 12 18 24| 0 17
conditions in steps p.top,—1 | 8 8§ 8 11 11 11|11 O
conditionsinsteps p,toN | 2 2 2 2 2 2 |17 34
complexity (MD4 computationslog,) | 5 5 5 9 15 21|14 31|20 30

4.1 Fixing the Padding

We can use this technique to find messages with the padding in-
cluded in the colliding block. For instance, this can be useful to
build pseudo-collision of the hash function: if there is a padding
block after the pseudo-colliding messages, the pseudo-collision
will be completely broken.

We can also find collisions on messages shorter than one
block, if we fix the rest of the block to the correct padding.
An example of a 160 bit MD4 collision is given in Table ?? in
Appendix ??.

4.2 Zeroed Collisions

Szydlo and Yin proposed some message preprocessing tech-
niques to avoid collisions attacks against MD5 and SHA-1
in [24]. Their idea is to impose some restrictions on the mes-
sage, so that collision attacks become harder. One of their
schemes is called message whitening: the message is broken
into blocks smaller than 16 words, and the last # words are filled
with zeroes. Using our technique we can break this strengthen-
ing for MD4 and MD5: in Appendix ?? we show a 11-whitened
MD4 collision in Table ?? and a 1-whitened MD5 collision in
Table ??.

4.3 The APOP Attack in Practice

To implement this attack, we need to efficiently generate MD5
collisions with some chosen parts; we mainly have to fix the last
word, which is precisely what we can do cheaply on MDS5.

Additionally, the POP3 RFC [14] requires the challenge to be
a msg-id, which means that:

¢ It has to begin with ‘<’ and end with >’

* It must contain exactly one ‘@’, and the remaining charac-
ters are very restricted, in particular, they should be ASCII
characters. Since we can not find two colliding ASCII
messages with Wang’s path, this means that the attack will
use non-RFC-compliant challenges.

In practice most mail clients do not check these requirements,
leaving us a lot of freedom. According to our experiments with
various mail software there are only four characters which they
reject in the challenge:

* 0x00 Null: used as end-of-string in the C language

* O0x3e Greater—-Than Sign (‘>’): used to mark the
end of the msg-id

¢ Ox0a Line-Feed: used for end-of-line (POP is a text-
based protocol)

* 0x0d Carriage—Return: also used for end-of-line

Additionally, some mail clients needs at least one ‘@ in the
msg-id, and Qualcomm Eudora truncates the challenge to 256
bytes, but we use less than 128 bytes long challenges anyway.

We will use Wang’s path [28], which gives two-block colli-
sions. The first block is more expensive to find, so we will use
the same for every msg-id, and we will fix the first character as
a ‘<’, and the last character as a ‘@’. Then we have to generate
a second block for every password character test; each time the
last word is chosen, and we must avoid 4 characters in the mes-
sage. Using the ideas from Section 3.5 we can do this in less
than 5 seconds per collision on a standard desktop computer.

Unfortunately, this path uses a difference M4 = 2°? and
this makes a difference in character 60. In order to learn the
i-th password character p;_1, we need to generate a collision
where we fix the last i + 1 characters (i password characters,
plus a *>’ to form a correct msg-id). Therefore, we will only be
able to retrieve 3 characters of the password with Wang’s path.
This points out a need for new paths following Wang’s ideas,
but adapted to other specific attacks; here a path less efficient
for collision finding but with better placed differences could be
used to learn more characters of the password.

4.3.1 Attack Complexity

To estimate the complexity of this attack, we will assume the
user’s password is 8-characters long, and each character has 6
bits of entropy. This seems to be the kind of password most
people use (when they don’t use a dictionary word...). Under
these assumptions, we will have to generate 3 x 2° collisions,
and wait for about 3 x 2° identifications. Each collision takes
about 5 seconds to generate; if we assume that the client iden-
tifies once per minute this will be the limiting factor, and our
attack will take about 3 hours. In a second phase we can do
an offline exhaustive search over the missing password charac-
ters. We expect to find them after 23° MD5 computations and
this will take about half an hour according to typical OpenSSL
benchmarks.

Table 3: POP3 login statistics, provided by Sandy ISP, Nizhny
Novgorod, Russia[18]

Login method Users
Plain-text password | 1686
APOP 64
NTLM 29
CRAM-MD5 3
POP3/SSL 2

4.3.2 Sasaki et al.’s Improvement

The attack against APOP had been independently found by
Sasaki et al. almost simultaneously; their work is available on
the eprint [20].

More importantly, Sasaki announced at the rump session of
FSE ’07 [19] that he had improved the attack; he can recover 31
password characters using a new differential path. He found a
way to generate a pair of messages such that the chaining val-
ues have a difference on the most significant bit, and then use
the path from den Boer and Bosselaers [7]. The details for the
generation of the two messages are still unknown.

Following the same idea, we could use the birthday para-
dox to generate those two message: it requires the precompu-
tation of about 2% MD3, but it will allow an attack with RFC-
compliant messages.

4.3.3 Practical Security Impact

Since APOP is not designed to be secure in there is a man-in-
the-middle, it is difficult to evaluate the impact of our attack:
a man-in-the-middle can easily access the mails of his victim.
With our attack, he will learn the password, and the conse-
quences depend on the specific situation:

« if the attacker can only act as a man-in-the-middle for a
limited time (eg. for a lunchtime attack, or using an open
WiFi network) the password can be used to authenticate
later on the mail server;

« if the same password is used for another resource (eg. a
computer account), the attacker will gain access to this re-
source.

The practical impact depends highly on the number of APOP
users, but it is quite hard to find statistics on email usage. The
figures given here come from the computing services of some
universities [25, 16] and from one ISP [18] (see Table 3); this
not a big sample but it gives an estimate of email usage.

APOP users. There are three main method of accessing re-
mote mail: POP3, IMAP and through a webmail. Depending
on local policies one or more of these method are available, and
one may be recommended (most of the time IMAP is recom-
mended because it offers more advanced features). According
to our data, more than 10% of the users are using POP3.

As, we explained in section 2.1, POP3 can be used with many
authentication modes, providing different security levels:

* plain-text password;

* secure authentication (APOP or AUTH);
* full encryption of the session with SSL.

It should be noted that some servers do not support secure au-
thentication methods, because they usually require to store the
plain-text password (in this situation, users should use SSL en-
cryption).

Some servers forbid plain-text password, but when it is al-
lowed we are surprised to find that it is the most used method!
APOP seems to be a quite popular secure authentication method:
it is supported by most clients [30] and in the case of Table 3, it
is used by 3.5% of users. Overall, we believe that APOP is used
by a non-negligible minority of email users (maybe in the order
of magnitude of 1%).

Additionally, some mail user agents (eg. Mozilla Thunder-
bird) select the authentication method interactively, according
to what the server supports, only avoiding plain-text login. In
this situation, an attacker can claim to support only APOP, and
he will be able to recover the password even if the usual authen-
tication method was stronger.

We also did a quick experiment by sniffing WiFi traffic dur-
ing a cryptographic conference. In 10 minutes, we saw 4 email
users: two were sending plain-text password, one was authenti-
cating with APOP, and one was using IMAP/SSL. This confirms
the previous result: APOP is actually used in practice.

Mail software. Since the current attack needs non-RFC-
compliant challenges, it could fail with some mail client. There-
fore, we looked at the most popular mail client to see how they
behave. The result are available in Table 4: only Kmail rejects
non-compliant challenges. We warned the author of these soft-
ware, and most of them will add a check in the next release.

Currently, almost all APOP users are vulnerable to the attack.

5 Conclusion

The main contribution of our paper is an attack against the
APOP authentication protocol. To the best of our knowledge,
this is the first practical attack against a real-word protocol
based on hash function collisions. It shows that collisions can
be a real threat, and the security of constructions based on MD4,
MD?5 or SHA-1 should be evaluated with regard to collision at-
tacks.

We have also shown that Wang’s attack allows some message
freedom for MD4 and MDS5 collisions, and how to exploit some
of this freedom with little computational cost by tweaking the
collision search algorithm. We believe that this freedom was
widely underestimated and we built some examples to exploit
1t.

5.1 Recommendations

We believe APOP is to be considered broken, and we suggest
users to switch to an other authentication protocol if possible.
Since the current attack needs non-RFC-compliant challenges,

Table 4: Mail client survey.

Popular clients Users Status
Netscape / Mozilla / Thunderbird =~ 40% Attack works
Microsoft Exchange/ Outlook / Outlook Express | ~25% | No APOP support
Qualcomm Eudora ~ 10% Attack works
Apple Mail ~ 5% | No APOP support
Other clients Status

Mutt Attack works
Novell Evolution Attack works
Fetchmail Attack works
KMail Attack fails

an easy countermeasure in the mail user agent is to strictly
check if the challenge follows the RFC, but this could be de-
feated by an improved attack.

Acknowledgement

We thank the reviewers of FSE and the readers of the Bugtraq
mailing-list for their interesting comments. Thanks are due to
Phong Nguyen and Pierre-Alain Fouque for their precious help
and proofreading. We also thank Louis Granboulan for his help
in collecting and analysing WiFi data. Finally, we would like to
thank Yu Sasaki for the explanations of his improvements over
the APOP attack.

Part of this work is supported by the Commission of the Euro-
pean Communities through the IST program under contract IST-
2002-507932 ECRYPT, and by the French government through
the Saphir RNRT project.

REFERENCES

[1] Eli Biham and Rafi Chen. Near-Collisions of SHA-0.
In Matthew K. Franklin, editor, CRYPTO, volume 3152
of Lecture Notes in Computer Science, pages 290-305.
Springer, 2004.

[2] John Black, Martin Cochran, and Trevor Highland. A
Study of the MDS5 Attacks: Insights and Improvements.
In Matthew Robshaw, editor, FSE, volume 4047 of Lec-

ture Notes in Computer Science, pages 262-277. Springer,
2006.

[3] Scott Contini and Yiqun Lisa Yin. Forgery and Partial
Key-Recovery Attacks on HMAC and NMAC Using Hash
Collisions. In Xuejia Lai and Kefei Chen, editors, ASIA-
CYPT, volume 4284 of Lecture Notes in Computer Sci-
ence. Springer, 2006.

[4] Ronald Cramer, editor. Advances in Cryptology - EURO-
CRYPT 2005, 24th Annual International Conference on
the Theory and Applications of Cryptographic Techniques,
Aarhus, Denmark, May 22-26, 2005, Proceedings, vol-
ume 3494 of Lecture Notes in Computer Science. Springer,
2005.

[5] M. Daum. Cryptanalysis of Hash Functions of the MD4-
Family. PhD thesis, Ruhr-University of Bochum, 2005.

[6] Magnus Daum and Stefan Lucks. Hash Collisions
(The Poisoned Message Attack) “The Story of Alice and
her Boss”. Presented at the rump session of Eurocrypt "05.

http://th.informatik.uni-mannheim.de/people/lucks/H

[7] Bert den Boer and Antoon Bosselaers. Collisions for the
Compression Function of MDS5. In Proc. EUROCRYPT
'93, pages 293-304, 1993.

[8] Hans Dobbertin. Cryptanalysis of MD4. J. Cryptology,
11(4):253-271, 1998.

[9] Max Gebhardt, Georg Illies, and Werner Schindler. A
Note on the Practical Value of Single Hash Collisions for
Special File Formats. In Jana Dittmann, editor, Sicherheit,
volume 77 of LNI, pages 333-344. GI, 2006.

[10] Jongsung Kim, Alex Biryukov, Bart Preneel, and Seokhie
Hong. On the Security of HMAC and NMAC Based on
HAVAL, MD4, MD5, SHA-0 and SHA-1. In Roberto De
Prisco and Moti Yung, editors, SCN, volume 4116 of Lec-
ture Notes in Computer Science, pages 242-256. Springer,
2006.

[11] Vlastimil Klima. Finding MDS5 Collisions on a
Notebook PC Using Multi-message Modifications.
Cryptology ePrint Archive, Report 2005/102, 2005.
http://eprint.iacr.org/.

[12] Vlastimil Klima. Tunnels in Hash Functions: MD5 Colli-
sions Within a Minute. Cryptology ePrint Archive, Report
2006/105, 2006. http://eprint.iacr.org/.

[13] Arjen K. Lenstra and Benne de Weger. On the Possibil-
ity of Constructing Meaningful Hash Collisions for Public
Keys. In Colin Boyd and Juan Manuel Gonzélez Nieto, ed-
itors, ACISP, volume 3574 of Lecture Notes in Computer
Science, pages 267-279. Springer, 2005.

[14] J. Myers and M. Rose. Post Office Protocol - Version 3.
RFC 1939 (Standard), May 1996. Updated by RFCs 1957,
2449.

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

[27]

(28]

(29]

Yusuke Naito, Yu Sasaki, Noboru Kunihiro, and Kazuo
Ohta. Improved Collision Attack on MD4 with Probabil-
ity Almost 1. In Dongho Won and Seungjoo Kim, editors,
ICISC, volume 3935 of Lecture Notes in Computer Sci-
ence, pages 129-145. Springer, 2005.

Oxford
vices.

Ser-
2005-2006.

University
Oucs

Computing

annual report

[30] Wikipedia. Comparison of e-mail clients.

http://en.wikipedia.org/wiki/Comparison_of_e-mail_c

[31] Hongbo Yu, Gaoli Wang, Guoyan Zhang, and Xiaoyun
Wang. The Second-Preimage Attack on MD4. In Yvo
Desmedt, Huaxiong Wang, Yi Mu, and Yongqing Li, ed-
itors, CANS, volume 3810 of Lecture Notes in Computer
Science, pages 1-12. Springer, 2005.

http://www.oucs.ox.ac.uk/internal/annrep/annrep0506/.

Bart Preneel and Paul C. van Oorschot. On the Security
of Two MAC Algorithms. In EUROCRYPT, pages 19-32,
1996.

Sandy ISP, Nizhny Novgorod, Russia. Pop access statis-
tics. http://sandy.ru/.

Yu Sasaki, Lei Wang, Kazuo Ohta, and Noboru Ku-
nihiro. Extended APOP Password Recovery At-
tack. Presented at the rump session of FSE ’07.
http://£se2007.uni.lu/rump.html.

Yu Sasaki, Go Yamamoto, and Kazumaro Aoki. Prac-
tical password recovery on an mdS5 challenge and re-
sponse. Cryptology ePrint Archive, Report 2007/101,
2007. http://eprint.iacr.org/.

Victor Shoup, editor. Advances in Cryptology - CRYPTO
2005: 25th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 14-18, 2005,
Proceedings, volume 3621 of Lecture Notes in Computer
Science. Springer, 2005.

Marc Stevens. Fast Collision Attack on MDS5.
Cryptology ePrint Archive, Report 2006/104, 2006.
http://eprint.iacr.org/.

Marc Stevens, Arjen Lenstra, and Benne de Weger. Target
Collisions for MDS5 and Colliding X.509 Certificates for
Different Identities. Cryptology ePrint Archive, Report
2006/360, 2006. http://eprint.iacr.org/.

Michael Szydlo and Yiqun Lisa Yin. Collision-Resistant
Usage of MD5 and SHA-1 Via Message Preprocessing. In
David Pointcheval, editor, CT-RSA, volume 3860 of Lec-
ture Notes in Computer Science, pages 99—114. Springer,
2006.

UC Davis Data Center. Computing statistics.

http://dc.ucdavis.edu/stats/.

Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and
Xiuyuan Yu. Cryptanalysis of the Hash Functions MD4
and RIPEMD. In Cramer [4], pages 1-18.

Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding
Collisions in the Full SHA-1. In Shoup [21], pages 17-36.

Xiaoyun Wang and Hongbo Yu. How to Break MD5 and
Other Hash Functions. In Cramer [4], pages 19-35.

Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient
Collision Search Attacks on SHA-0. In Shoup [21], pages
1-16.

A Collisions with a High Number of Chosen Bits

In this paper, we considered the problem of finding collisions
with some chosen words but some other works addressed the
problem of choosing bits (mainly [31]). We believe it is more
useful to choose consecutive bits and the applications we give in
Section 4 all need this property. Specifically, the APOP attack
requires to choose consecutive bits in the end of the block; it
will fail if one of these bits is uncontrolled. However let us say
a few words about collisions with many chosen bits.

Following the ideas of Yu et al.[31], we will use a collision
path with very few conditions. Such paths are only known in
the case of MD4, and we found out that the path from [31] can
be slightly enhanced: if we put the difference in the bit 25 in-
stead of the bit 22, we get only 58 conditions (instead of 62).
Now the basic idea is to take a message M, and apply message
modifications in the first round: this will give a message M* that
has about 10 bit difference from M (there are 20 conditions in
the first round) and it gives a collision (M*,M* + A) with prob-
ability 2738, Therefore we will generate about 238 messages M;
close to M and the corresponding M, and one of them will give
a collision.

Little detail is given in Yu et al. paper, but we can guess from
their collision example that they generated the M;’s by changing
m14 and mys. This makes the attack more efficient since the M
will all have the same first 14 words, but it will modify about
32 extra bits. Actually, one only needs to iterate over 38 bits,
which gives on the average 19 modified bits, but Yu et al. used
the whole 64 bits.

In fact, if the goal is to have a high number of chosen bits, it is
better to choose the M; in another way: instead of iterating over
some bits, we will switch a few bits in the whole message, and
iterate over the positions of the differences. We have (5 ;2) 2
238 30 it should be enough to select 5 positions, but we will
have to run the full message modifications in the first round
for every message, which is quite expensive (about 237 MD4
computations). Instead, one can choose 4 positions in the first
480 bits, and two in the last 32 bits: we have (430) (322) ~ 240,
and the message modification on the first 15 words will only
be run every 2° messages; the main cost will be that of testing
238 messages for the second and third rounds: using early abort
techniques, this cost will be about 233 MD4!.

On the average, we expect to have 6 bit differences coming
from this iteration, plus 10 coming from the message modifica-

I There are two conditions on step 15, three on step 16 and one on step 17:
s0 3-2% messages will stop after 1 step, 7-233 after 2 steps, 23% after 3 steps,
and the remaining 23 messages will need at most 16 steps. This gives less than
95-232 MD4 steps, that is less than 233 full MD4.

tion in the first round. An example of such message is givenin B Algorithms
Table 5, it has 18 bit differences from the target (a block con-
sisting only of 1’s), which is much better than achieved by Yu
et al. (43 bit differences).

Table 5: A MD4 collision close to 112

Message M

ff
ff
ff
7f

ff
ff
ff
ff

ff bf £f £f £f £f £7 £f £f £f
fd £f £f df £f £f £f £d £f £f
ef £ff ff ff fe ff ff ef 7f ££
7f £f bf ff £f £f £ff £f £f £f£

ff
ef
7f
bf

daf
ff
ff
ff

ff
ff
ff
fd

Message M’

ff
ff
ff
7t

ff
ff
ff
ff

ff bf £f £ff £f ££f £7 ££f £f £ff
ff £ff £f df £f £f £f £d £f £f
ef £ff ff ff fe ff ff ef 7£f £
7f £f bf £f £f £f £f £f £f £f

ff
ef
7f
bf

df
ff
ff
ff

ff
ff
ff
fd

MD4 without padding

ff

a3

2d 51 63 59 36 11 e5 9a d0 a6

cf

8b

33

MD4 with padding

59

93

84 dO 6f 55 9f £3 d0 87 4b cb6

24

4

8d

All the algorithms take the set of condition as an implicit input,
and will modify a shared state containing the m;’s and the Q;’s.

Algorithm 2 Our collision finding algorithm

1: procedure FINDMESSAGE(py, p¢,t)
2 repeat
3 choose Q12+, Q13-+, Q14—+, Q15—+
4: if # # 0 then
5: STEPFORWARD(16 —¢)
6 FIXSTATE(16 —1)
7 STEPBACKWARD(16 —¢)
8 if not CHECKCONDITIONS(12 —t) then
o: goto 3
10: for 17—t <i< 16do
11: STEPFORWARD(i)
12: if not CHECKCONDITIONS(i) then
13: goto 3
14: i<—0
15: for 16 < j < p. do
16: while i < 7(j) do
17: choose Q;
18: STEPMESSAGE(Q)
19: i—i+1
20: STEPFORWARD()
21: FIXSTATE())
22: STEPMESSAGEC()
23: STEPFORWARD(i)
24: if not CHECKCONDITIONS(i) then
25: goto 16
26: for n(p.—1)+1<i< 12—t do
27: choose Q;
28: STEPMESSAGE(i)
29: STEPMESSAGE(12-t ... 15-t)
30: for p. <i< p,do
31: STEPFORWARD(7)
32: if not CHECKCONDITIONS(i) then
33: goto 26
34: for all tunneled message do
35: for p, <i< N do
36: STEPFORWARD(i)
37: if not CHECKCONDITIONS(i) then
38: use the next message
39: until all conditions are fulfilled

Algorithm 3 Wang’s message finding algorithm

1: procedure FINDMESSAGEWANG
2 repeat

3 choose a random message

4 for0<i< Ndo

5: STEPFORWARD(i)

6 if not CHECKCONDITIONS(i) then
7 try to modify the message

8

until all conditions are fulfilled

Algorithm 4 Klima’s message finding algorithm

1: procedure FINDMESSAGEKLIMA

2: repeat

3: for0<i<16do

4: choose Q;

5: STEPMESSAGE(i)

6: for 16 <i< p,do

7: STEPFORWARD(i)

8: if not CHECKCONDITIONS(7) then
9: modify the message

10: for all tunneled message do

11: for p, <i<Ndo

12: STEPFORWARD(7)

13: if not CHECKCONDITIONS(i) then
14: use the next message

15: until all conditions are fulfilled

