Intr	odu	cti	on

Multi-bit constraints 0000 Application 00000 Conclusion

Analysis of Differential Attacks in ARX Constructions

Gaëtan Leurent

UCL Crypto Group & University of Luxembourg

Asiacrypt 2012

G. Leurent (UCL & uni.lu)

Differential characteristics

Multi-bit constraints 2000 Application

Conclusion

ARX Constructions

Two main categories of designs in symmetric cryptography:

ARX designs

- Additions, Rotations, Xors
- Inspired by MD/SHA
- Lots of light rounds

SBox designs

- S-Boxes and Linear Layers
- Inspired by the AES
- Few heavy rounds

The SHA-3 competition

- 51 submissions in 2008; Winner: Keccak in October 2012
- 2 of the 5 finalists are ARX designs

G. Leurent (UCL & uni.lu)

Conclusion

Differential attacks against ARX

- Most of the cryptanalysis of ARX designs is bit-twiddling
 - As opposed to SBox based designs
- Building/Verifying differential trails for ARX designs is hard
 - Many trails built by hand
 - Problems with MD5 and SHA-1 attacks

[Manuel, DCC 2011]

- Problems with differential trails
 - ► SHACAL [Wang, Keller & Dunkelman, SAC 2007]
- Problems reported with boomerang attacks (incompatible trails):
 - ► HAVAL [Sasaki, SAC 2011]
 - SHA-256 [BLMN, Asiacrypt 2011]
- Some tools are described in literature, but most are not available

G. Leurent (UCL & uni.lu)

Differential characteristics

Multi-bit constraints

Application

Conclusion

Outline

Introduction

Differential characteristics

Multi-bit constraints

Application

G. Leurent (UCL & uni.lu)

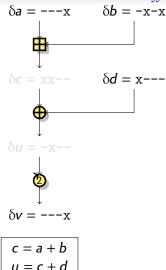
Differential characteristics

Aulti-bit constraints

Application 00000

Conclusion

Differential Characteristic



► Choose a difference operation: ⊕

- A differential only specifies the input and output difference
- A differential characteristic specifies the difference of each internal variable
- Compute probability for each operation

ui.lu) Analysis of Differential Attacks in ARX Constructions

G. Leurent (UCL & uni.lu)

 $v = u \ll 2$

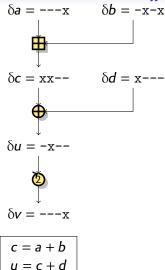
Differential characteristics

Aulti-bit constraints

Application 00000

Conclusion

Differential Characteristic



► Choose a difference operation: ⊕

- A differential only specifies the input and output difference
- A differential characteristic specifies the difference of each internal variable
- Compute probability for each operation

Analysis of Differential Attacks in ARX Constructions

G. Leurent (UCL & uni.lu)

 $v = u \ll 2$

Differential Characteristic

$$\delta a = ---x \qquad \delta b = -x-x$$

$$\delta c = xx-- \qquad \delta d = x---$$

$$\delta u = -x--$$

$$\delta v = ---x$$

$$c = a + b$$

- Choose a difference operation: ①
- A differential only specifies the input and output difference
- A differential characteristic specifies the difference of each internal variable
- Compute probability for each operation

G. Leurent (UCL & uni.lu)

u = c + d $v = u \ll 2$

Differential	charac
000	

Signed difference

- A trail defines a set of good pairs:
 - ► $x^{[i]} \oplus x'^{[i]} = 0$ \Leftrightarrow $(x^{[i]}, x'^{[i]}) \in \{(0, 0), (1, 1)\}$ ► $x^{[i]} \oplus x'^{[i]} = 1$ \Leftrightarrow $(x^{[i]}, x'^{[i]}) \in \{(0, 1), (1, 0)\}$
- Wang introduced a signed difference:
 - $\delta(x^{[i]}, x'^{[i]}) = 0$ $(x^{[i]}, x'^{[i]}) \in \{(0, 0), (1, 1)\}$ \Leftrightarrow
 - $\delta \left(x^{[i]}, x'^{[i]} \right) = +1 \qquad \Leftrightarrow \qquad \left(x^{[i]}, x'^{[i]} \right) \in \left\{ (0, 1) \right\}$ $\delta \left(x^{[i]}, x'^{[i]} \right) = -1 \qquad \Leftrightarrow \qquad \left(x^{[i]}, x'^{[i]} \right) \in \left\{ (1, 0) \right\}$

 - Captures both xor difference and modular difference
- Generalized constraints

[De Cannière & Rechberger 06]

G. Leurent (UCL & uni.lu)

n Differential characteristics Multi-bit constraints Application C 000 0000 0000 00000

Generalized constraints [De Cannière & Rechberger 06]

	(<i>x</i> , <i>x</i> '):	(0,0)	(0,1)	(1,0)	(1,1)
?	anything	\checkmark	\checkmark	\checkmark	\checkmark
-	x = x'	\checkmark	-	-	\checkmark
x	$x \neq x'$	-	\checkmark	\checkmark	-
0	x = x' = 0	\checkmark	-	-	-
u	(x, x') = (0, 1)	-	\checkmark	-	-
n	(x, x') = (1, 0)	-	-	\checkmark	-
1	x = x' = 0	-	-	-	\checkmark
#	incompatible	-	-	-	-
3	<i>x</i> = 0	\checkmark	\checkmark	-	-
5	x'=0	\checkmark	-	\checkmark	-
7		\checkmark	\checkmark	\checkmark	-
А	<i>x</i> ′ = 1	-	\checkmark	-	\checkmark
В		\checkmark	\checkmark	-	\checkmark
С	<i>x</i> = 1	-	-	\checkmark	\checkmark
D		\checkmark	-	\checkmark	\checkmark
Е		-	\checkmark	\checkmark	\checkmark

Differential characteristics

 $\underset{0000}{\textit{Multi-bit constraints}}$

Application 00000 Conclusion 00

Outline

Introduction

Differential characteristics

Multi-bit constraints

Application

G. Leurent (UCL & uni.lu)

Differential characteristics

 $\substack{ Multi-bit \ constraints \\ \bullet \circ \circ \circ \circ }$

Application 00000

Conclusion

Multi-bit Constraints

We study carry propagation



- Two possibilities:
 - $\delta a = --u$ and $\delta u = -unn$
 - $\delta a = --n$ and $\delta u = -nuu$
- Active bits signs are linked

G. Leurent (UCL & uni.lu)

We introduce new constraints
 > ≡ {nn, uu}: x'^[i] ≠ x^[i] = x^[i-1]
 < ≡ {nu, un}: x'^[i] ≠ x^[i] ≠ x^[i-1]

Differential characteristics

Application

Conclusion

Multi-bit Constraints

- Carry propagation leads to constraints of the form $x^{[i]} = x^{[i-1]}$
- We use multi-bit constraints to capture this information
 - ► We consider subsets of {(x^[i], x'^[i], x^[i-1])} (1.5-bit), instead of {(x^[i], x'^[i])} (1-bit)
- Captures more accurately the behavior of modular addition
 - Only source of non-linearity in pure ARX designs (Boolean functions in MD/SHA)

G. Leurent (UCL & uni.lu)

Conclusion

Generalization

- ▶ 1.5-bit constraints: subsets of $\{(x^{[i]}, x'^{[i]}, x^{[i-1]}\}$
 - Relations between carry extensions
- 2-bit constraints: subsets of $\{(x^{[i]}, x'^{[i]}, x^{[i-1]}, x'^{[i-1]})\}$
 - Describe exactly the set $\{x, x' | x' = x \boxplus \Delta\}$ for any Δ
- 2.5-bit constraints: subsets of $\{(x^{[i]}, x'^{[i]}, x^{[i-1]}, x'^{[i-1]}, x'^{[i-2]}\}$
 - Relations between potential carry extensions

See examples

Limitations

- We have to use reduced sets of constraints (full set of 2.5-bit constraints: 2³²)
- Propagation for 2.5-bit constraints is slow

G. Leurent (UCL & uni.lu)

Introduction	Differential characteristics	<i>Multi-bit constraints</i>	Application	Conclusion
00	000		00000	00

Comparison

- Experiments with a few rounds of a reduced Skein (4-bit words and 6-bit words)
- We look at the number of accepted input/output differences

	2 rounds (total:	2 ³²)	3 rounds (sparse)		
Method	Accepted	Fp.	Accepted	Fp.	
Exhaustive search 2.5-bit constraints 1.5-bit constraints 1-bit constraints Check adds indep.	$\begin{array}{c} 2^{25.1} & (35960536) \\ 2^{25.3} & (40820032) \\ 2^{25.3} & (40820032) \\ 2^{25.4} & (43564288) \\ 2^{25.8} & (56484732) \end{array}$	0 0.14 0.14 0.21 0.57	$\begin{array}{c} 2^{18.7} (\ 427667) \\ 2^{19.5} (\ 746742) \\ 2^{20.4} (1372774) \\ 2^{20.7} (1762857) \end{array}$	0.7 2.2 3.1	

G. Leurent (UCL & uni.lu)

Intr	odu	ctic	m

Multi-bit constraints

Application

Conclusion

Outline

Introduction

Differential characteristics

Multi-bit constraints

Application

G. Leurent (UCL & uni.lu)

Differential characteristics

Multi-bit constraints 0000 *Application* ●0000 Conclusion

Verifying trails

Problem

Most analysis assume that operations are independent and multiply the probabilities. *But sometimes, operations are not independent...* Known problem in Boomerang attacks.

[Murphy, TIT 2011]

- We compute necessary conditions.
- This allows to detect cases of incompatibility
- We have detected problems in several published works
 - Incompatible trails seem to appear quite naturally

G. Leurent (UCL & uni.lu)

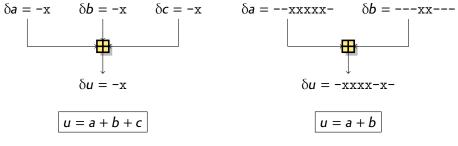
Differential characteristics

Multi-bit constraints 0000 Application

Conclusion

Incompatibility with additions

Some "natural" differentials do not work with additions:



Linearized trail

- Seems valid with signed difference
- Found in Skein near-collision [eprint 2011/148]

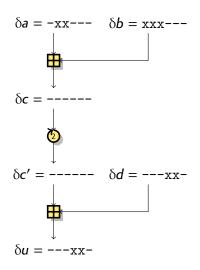
Differential characteristics

Aulti-bit constraints

Application

Conclusion

Carry incompatibility



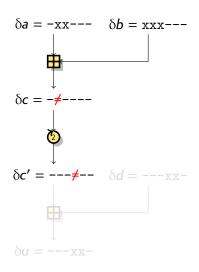
- Each operation has a non-zero probability
- Trail seems valid with signed difference
- Consider the 1st addition Constraint: $c^{[4]} \neq c^{[5]}$
- Consider the 2nd addition
 Constraint: c'^[2] = c'^[3]
- Incompatible!
 Detected with the multi-bit constraints

Differential characteristics

Multi-bit constraints 2000 *Application*

Conclusion

Carry incompatibility



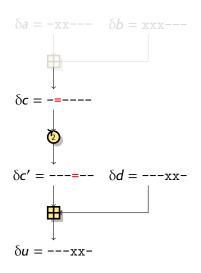
- Each operation has a non-zero probability
- Trail seems valid with signed difference
- Consider the 1st addition
 Constraint: c^[4] ≠ c^[5]
- Consider the 2nd addition
 Constraint: c'^[2] = c'^[3]
- Incompatible!
 Detected with the multi-bit constraints

Differential characteristics

Multi-bit constraints 0000 *Application*

Conclusion

Carry incompatibility



- Each operation has a non-zero probability
- Trail seems valid with signed difference
- Consider the 1st addition
 Constraint: c^[4] ≠ c^[5]
- Consider the 2nd addition
 Constraint: c'^[2] = c'^[3]
- Incompatible!
 Detected with the multi-bit constraints

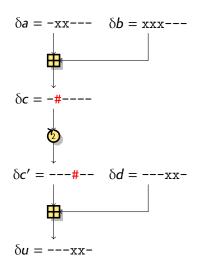
Differential characteristics

Aulti-bit constraints

Application

Conclusion

Carry incompatibility



- Each operation has a non-zero probability
- Trail seems valid with signed difference
- Consider the 1st addition
 Constraint: c^[4] ≠ c^[5]
- Consider the 2nd addition
 Constraint: c'^[2] = c'^[3]
- Incompatible!
 - Detected with the multi-bit constraints

Multi-bit constraints 0000 *Application* 000●0

Conclusion

Graphical tool

- To study more complex cases, we have a graphical tool
- We can manually constrain some bits and propagate.

G. Leurent (UCL & uni.lu)

Multi-bit constraints

Application

Conclusion 00

Verifying characteristics

Several published attacks are invalid.

- Boomerang attacks on Blake
 - Basic linearized trails, with MSB difference
 - Proposed attack on 7/8 round for KP and 6/6.5 for CF do not work
 - 7-round KP attack can be made with the 6-round trail
 - 8-round KP attack and 6/6.5-round CF attack can be fixed using another active bit (non-MSB)
- Boomerang attacks on Skein-512
 - Basic linearized trails, with MSB difference
 - Proposed attacks do not work on Skein-512
 - Similar trails work on Skein-256 [Leurent & Roy, CT-RSA 2012]
 - Can be fixed using another active bit [Yu, Chen & Wang, SAC 2012]
- Near-collision attack on Skein
 - Complex rebound-like handcrafted characteristic
 - Path is not satisfiable

G. Leurent (UCL & uni.lu)

Analysis of Differential Attacks in ARX Constructions

[Biryukov & al., FSE 2011]

[Chen & Jia, ISPEC 2010]

[eprint 2011/148]

Multi-bit constraints

Application

Conclusion

Our results

New constraints

- Multi-bit constraints
 - Better targeted to pure ARX designs
- Boomerang constraints

2 Tools for analysis of differential characteristics

- Publicly available
- > Code and documentation available at: http://www.di.ens.fr/~leurent/arxtools.html http://www.cryptolux.org/ARXtools

3 Problems found in several proposed attacks

Incompatible trails seem to appear quite naturally

G. Leurent (UCL & uni.lu)

Intro	odu	ctic	n

Multi-bit constraints

Application

Conclusion

Thanks

With the support of:

FNR Luxembourg

Fonds National de la Recherche Luxembourg

ERC project CRASH

European Research Council

Established by the European Commission

Supporting top researchers from anywhere in the world

G. Leurent (UCL & uni.lu)

Extra slides

Outline

Extra slides

G. Leurent (UCL & uni.lu)

Multi-bit Constraints as S-systems We use the theory of S-functions to study multi-bit constraints [Mouha & al., SAC 2010]

We can write a bitwise function f so that:

(x, x') is a right pair $\Leftrightarrow f(x, x', x \boxplus x) = 1$

- We can count the number of solutions efficiently
 - Testing for zero or non-zero very efficient
- We use the same tools to propagate constraints:
 Split each subset in two smaller subsets
 - 2 If one subset gives zero solutions, the characteristic can be restricted to the other subset.

$$? \rightarrow -/x \qquad - \rightarrow 0/1, =/! \qquad x \rightarrow u/n,$$

G. Leurent (UCL & uni.lu)

Analysis of Differential Attacks in ARX Constructions

•••

Extra slides

1.5-bit Constraints Table

(<i>x</i>	$\oplus x', x \oplus 2x, x)$:	(0, 0, 0)	(0,0,1)	(0,1,0)	(0,1,1)	(1,0,0)	(1,0,1)	(1,1,0)	(1,1,1)
?	anything	\checkmark							
-	x = x'	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-
x	$x \neq x'$	-	-	-	-	\checkmark	\checkmark	\checkmark	\checkmark
0	x = x' = 0	\checkmark	-	\checkmark	-	-	-	-	-
u	(x, x') = (0, 1)	-	-	-	-	\checkmark	-	\checkmark	-
n	(x, x') = (1, 0)	-	-	-	-	-	\checkmark	-	\checkmark
1	x = x' = 0	-	\checkmark	-	\checkmark	-	-	-	-
#	incompatible	-	-	-	-	-	-	-	-
3	<i>x</i> = 0	\checkmark	-	\checkmark	-	\checkmark	-	\checkmark	-
С	<i>x</i> = 1	-	\checkmark	-	\checkmark	-	\checkmark	-	\checkmark
5	<i>x</i> ′ = 0	\checkmark	-	\checkmark	-	-	\checkmark	-	\checkmark
A	<i>x′</i> = 1	-	\checkmark	-	\checkmark	\checkmark	-	\checkmark	-
=	$\equiv \{00, 11\}$	\checkmark	\checkmark	-	-	-	-	-	-
1	$\equiv \{01, 10\}$	-	-	\checkmark	\checkmark	-	-	-	-
>	$\equiv \{nn, uu\}$	-	-	-	-	\checkmark	\checkmark	-	-
<	$\equiv \{nu, un\}$	-	-	-	-	-	-	\checkmark	\checkmark

G. Leurent (UCL & uni.lu)

Comparison

Simple situations with a modular difference of ± 1 :

Diff, carry	1-bit cstr.	1.5-bit cstr.	2-bit cstr.	2.5-bit cstr.
+ 1, <i>k</i> -bit (2 ^{n-k})	$-$ unnn (2^{n-k})	-unnn (2 ^{n-k})	-unnn (2 ^{n-k})	$-unnn (2^{n-k})$
$\pm 1, k$ -bit (2 ^{n-k+1})	$-\mathbf{x}\mathbf{x}\mathbf{x}\mathbf{x}$ (2 ⁿ)	$-><<\mathbf{x}$ (2^{n-k+1})	-><<x< b=""> (2^{n−k+1})</x<>	->< <x (2^{n-k+1})</x
+1, any (2 ⁿ)	???x (2 ²ⁿ⁻¹)	???? x (2 ²ⁿ⁻¹)	UUUUx (2 ⁿ)	UUUU x (2 ⁿ)
±1, any (2 ^{<i>n</i>+1})	????x (2 ²ⁿ⁻¹)	????x (2 ²ⁿ⁻¹)	$\begin{array}{l} \textbf{XXXXXx} \\ (2^n \times n) \end{array}$	///Xx (2 ⁿ⁺¹)

Back to the talk

G. Leurent (UCL & uni.lu)