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Abstract. Blue Midnight Wish (BMW) is one of the fastest SHA-3 can-
didates in the second round of the competition. In this paper we study
the compression function of BMW and we obtain practical partial col-
lisions in the case of BMW-256: we show a pair of inputs so that 300
pre-specified bits of the outputs collide (out of 512 bits). Our attack re-
quires about 232 evaluations of the compression function. The attack can
also be considered as a near-collision attack: we give an input pair with
only 122 active bits in the output, while generic algorithm would require
255 operations for the same result. A similar attack can be developed
for BMW-512, which will gives message pairs with around 600 colliding
bits for a cost of 264. This analysis does not affect the security of the
iterated hash function, but it shows that the compression function is far
from ideal.
We also describe some tools for the analysis of systems of additions and
rotations, which are used in our attack, and which can be useful for the
analysis of other systems.

1 Introduction

Blue Midnight Wish (BMW) is a candidate in the SHA-3 hash function com-
petition [7] which made it to the second round of the competition, but was not
selected as a finalist. It is one of the fastest second round candidates in software,
and belongs to the ARX family, using only additions, rotations, and xors.

BMW is built by iterating a compression function, similarly to the ubiquitous
Merkle-Damgård paradigm [5, 9]. More precisely, BMW uses a chaining value
twice as large as the output of the hash function (this is known as wide-pipe, or
Chop-MD), and uses a final transformation similar to the HMAC construction.
There are several security proofs for this mode of operation and similar modes [2–
4], which essentially show that if the compression function behaves like a random
function, then the hash function will behave like a random function (up to some
level determined by the width of the chaining variable).

In this paper we explain how to find partial-collisions in the BMW-256 com-
pression function. The same technique could be used to find partial-collisions in
? Supported by a grant from the Villum Kann Rasmussen Foundation.
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the BMW-512 compression function, but the complexity would be too high to
carry out the attack in a reasonable amount of time, and so we have not im-
plemented this attack. The attacks are not affected by the value of the security
parameter of BMW.

1.1 Compression function attacks

A natural step in the analysis of iterated hash functions is to study the compres-
sion function. Most attacks on the compression function do not lead to attacks
on the iterated hash function, but they can invalidate the assumptions of the
security proofs. This does not weaken the hash function in itself, but it can un-
dermine the confidence in the design, because the security of the hash function
is no longer a consequence of a simple assumption (namely the security of the
compression function).

Recently, new results have shown that some attacks on the compression func-
tion can be integrated inside the security proof of the mode of operation [2]. This
shows that the security of the hash function does not need a truly perfect com-
pression function: some classes of weaknesses of the compression function cannot
be used to attack the iterated hash function. As a general rule, it seems that
most attacks that require control over the chaining value can be covered by this
kind of proofs. However, those attacks usually reveal some unwanted properties
of the function, and might be extended to attacks on the full hash function using
more advanced techniques.

To put such attacks into perspective, one might look at the attacks on MD5.
The first attack on the compression function was found in 1993 by den Boer and
Bosselaers [6], using a very simple differential path. This attack did not threaten
the iterated hash function, but the path used in the attack is a core element of
the successful attack of Wang et al. in 2005 [12].

1.2 Description of BMW

BMW comes in four variants BMW-n, with n ∈ {224, 256, 384, 512}, returning
output size n. There are two variants of the BMW compression functions; The
BMW-256 compression function is used in both BMW-224 and BMW-256, and
the BMW-512 compression function is used in both BMW-384 and BMW-512.

The compression function of BMW-256 takes two inputs, H and M , of 16
32-bit words each. The general structure of the compression function is shown in
Figure 1. It consists of three functions named f0, f1, f2. The function f0 applies
an invertible linear transformation P to H ⊕M and adds H wordwise modulo
232. We denote by ‘�’ modular addition, by ‘�’ modular subtraction, and by ‘⊕’
the exclusive or. The output of f0 is a 16-word vector Q. P consists of a matrix
multiplication over Z232 , followed by linear functions si mod 5 (see Appendix A)
applied to each word Wi individually and by a wordwise rotation by 1 position
(Wi+1 ←Wi).

The function f1 is a feedback shift register. To begin with, the vector Q
contains 16 elements; in each one of 16 rounds of f1, one more element is added
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Fig. 1. Compression function of BMW

to Q. This element is computed from the previous 16 elements of Q, and from
a value called AddElement(i) (where i is the round number + 16), which is the
following function of three words of M and one word of H:

AddElement(i) =

(M
≪1+(i mod 16)
i �M

≪1+(i+3 mod 16)
i+3 �M

≪1+(i+10 mod 16)
i+10 �Ki)⊕Hi+7

(all indices are to be taken modulo 16, and Ki is a round constant). We note
that if there is a collision in the output of f0 and also in the first, say, j instances
of AddElement(i), then there is a collision in the first 16 + j elements of Q. We
denote by Qa the output of f0, and by Qb the 16 elements computed in f1.

The function f2 performs some final mixing of the elements in Q with M ,
and produces the 16-word output of the compression function.

Further details on the compression function of BMW can be found in [7].

1.3 Previous results

During the first round of the SHA-3 competition, the best attacks on BMW have
been pseudo-attacks due to Thomsen [11]. However, BMW was quite heavily
tweaked at the end of the first round, and those attacks do not apply to the
current version of BMW. In this paper we only consider the second-round version
of BMW.

For the current version of BMW, the best results are differential properties of
the compression function, due to Aumasson and Guo and Thomsen [1, 8]. These
papers essentially show that for some particular differences in the input of the
compression function, a few output bits will be biased.
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1.4 Our results

In this paper we describe a partial-collision attack on the compression function
of BMW. Our attack is based on differential techniques, and we try to control the
propagation of differences inside the compression function. The general idea is to
control the differences inM , in Qa, and in the first instances of AddElement. This
means that we also control the difference in the first elements of Qb, and since
the final function f2 only has limited diffusion, we will control the differences in
several output words. We managed to cancel all the differences in Q0, . . . Q26,
and to get small differences in Q27, Q28, Q29. This gives a pair of inputs such
that 300 pre-specified output bits collide, for a cost similar to 232 evaluations of
the compression function, using negligible memory. We note that for a random
function, it is expected to take 2150 evaluations before finding such a pair of
inputs. Moreover, we expect a difference in only half of the uncontrolled bits,
and this gives a near-collision attack better than generic algorithms.

Before describing our new attack, we present some useful tools for the analysis
of ARX systems in Section 2. In Section 3, we show how to obtain collisions in
f0 without any message difference, which leads to collisions in Qa, the first half
of the Q register. We then show how to find such collisions with some words of
H inactive, which leads to a collision in Q0 to Q22. In Section 4, we extend this
result by introducing some differences in the message, and we use the message
differences to cancel the chaining value differences in the AddElement function
up to Q26. Finally in Section 5 we use near collisions in AddElement instead of
full collisions, and we can control the differences up to Q29.

2 Solving a System of Additions and Xor

An important step in our attack requires to solve a system of equations involving
only xors and modular additions. In particular, we will often have to solve x⊕∆ =
x � δ, where x is a variable, and ∆ and δ are given parameters representing
respectively the xor-difference and the modular-difference in x. It is well-known
that those systems are T-functions, and can be solved from the least significant
bit to the most significant bit. However, the naive approach to solve such a system
uses backtracking, and can lead to an exponential complexity in the worst case.3
A more efficient strategy is to use an approach based on automata: any system
of such equations can be represented by an automaton, and solving a particular
instance take time proportional to the word length. This kind of approach has
been used to study differential properties of S-functions in [10]. Here we use this
technique to decide whether a system is solvable, and to compute a solution
efficiently.

We consider a system of additions and xors, which involves v variables and
p parameters. Our goal is twofold: first determine for which values of the pa-
rameters the system is compatible, and second, when the system is compatible,
determine the set of solutions.
3 e.g., to solve the system x⊕0x80000000 = x, the backtracking algorithm will try all
possible values for the 31 lower bits of x before concluding that there is no solution.
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The first step in applying this technique is to build an automaton correspond-
ing to the system of equations. The states of this automaton correspond to the
possible values of the carry bits: a system with s modular additions gives an
automaton with 2s states. The alphabet is {0, 1}v+p, and each transition reads
one bit from each parameter and each variable, starting from the least significant
bit. Figure 2 shows an example of such automaton.

0start 1

1,1,1

0,0,0
0,0,1
1,1,0

1,0,0

1,0,1
0,1,0
0,1,1

Fig. 2. Carry transitions for x⊕∆ = x� δ. The edges are indexed by ∆, δ, x

Then we remove the variables from the edges, and this gives a non-determinis-
tic automaton which can decide whether a system is solvable or not. We can then
build an equivalent deterministic automaton using the powerset construction, as
shown in Figure 3.

{0}start {0, 1} {1}

∅

1,1

0,0

1,0
0,1

0,0

1,0
1,1

0,1

1,0

0,1

0,0
1,1

∗

Fig. 3. Decision automaton for x⊕∆ = x� δ. The edges are indexed by ∆, δ

This automaton reveals a lot of information about the system of equation.
For instance, one can see that if the state {0, 1} is reached, then setting ∆i = 1
assures that the system will have a solution.

In the case of the simple system x ⊕ ∆ = x � δ, we can find an extremely
efficient way to check the satisfiability of the system for given parameters, and
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to find the actual solutions. By looking at Figure 3, we see that the state {0}
can only be reached as the initial state or after reading 0, 0, and that the state
{1} can only be reached after reading 0, 1. Moreover, reading 0, 0 can only lead
to state {0} or ∅ and reading 0, 1 can only lead to state {1} or ∅. This allows a
very simple description of the parameters that lead to an inconsistent system,
i.e., that reach state ∅:

– ∆0 6= δ0, or
– one of the following patterns is seen: (0, 0), (1, 0); (0, 0), (0, 1); (0, 1), (0, 0);

(0, 1), (1, 1).

The second condition can be expressed as:

∃i : ∆i = 0 and δi ⊕∆i+1 ⊕ δi+1 = 1

Since those conditions are local they can be tested in parallel using bitwise oper-
ations. The following C expression evaluates to one if the system is incompatible,
and to zero if it is compatible:

((D^d)&1) || ((((D^d)>>1)^d) & (~D)) << 1

Note that the rotation to the left is just used to ignore the MSB of the second
expression.

Given a compatible pair (∆, δ), we can use the automaton in Figure 2 to
compute a solution x to the equation x⊕∆ = x� δ. First we can remark that if
we are in state 0, the next inputs have to satisfy δi = ∆i, while if we are in state
1, the next inputs have to satisfy δi 6= ∆i. We can now express the possibles
values for x depending on δ and ∆, by looking at the possible transitions in the
automata:

if (∆i, δi) = (0, 0) then xi is arbitrary: xi ∈ {0, 1}
if (∆i, δi) = (0, 1) then xi is arbitrary: xi ∈ {0, 1}
if (∆i, δi) = (1, 0) then xi is given by the next state: xi = δi+1 ⊕∆i+1

if (∆i, δi) = (1, 1) then xi is given by the next state: xi = δi+1 ⊕∆i+1

This can be expressed by the following C expression, where r is a random
value:

(D^d)>>1 ^ (r&(~D|0x8000000))

3 Using Collisions in f0

The first step of our attack is to build collisions in f0 without any message
difference. In the following we denote x = H ⊕M and y = P (H ⊕M). We have
f0(H,M) = y �H (see Figure 4).

We propose the following algorithm to find such collisions:

1. Pick a random x, x′.
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Fig. 4. BMW f0 function

2. Compute y = P (x), y′ = P (x′).
3. We have H ⊕H ′ = x⊕ x′ and H �H ′ = y′ � y. We can solve this and find
H using the tools of Section 2.

4. Compute M from x and H: M = x⊕H.

On average, for a random x, x′, we expect one solution. However, there is
a high probability that there will be no solution for a given x, x′, because the
xor-difference and the mod-difference for H will not be compatible. (Experi-
ments suggests there is a probability around 2−13.9 for random differences to be
compatible).

To find collisions in practice, we use the degrees of freedom in x to set an
xor-difference that has a better probability than a random difference. The best
choice is x′ = ¬x, which works with probability 2−1 for each word. However, due
to the structure of P , this leads to incompatible systems (the differences in y are
constrained by the difference in x). Therefore we use differences of high weight,
but we leave some low order bits inactive. This allows to find a compatible system
after a few choices of x, x′.

3.1 Collisions in f0 with some words of H inactive

The next step is to find collisions where some of the words of H are inactive.
This will lead to some instances of AddElement being inactive, and some words
of Qb being inactive.

To achieve this, we need an x, x′ with some inactive words, but we also
require that the same words are inactive in y, y′. Since the inter-word mixing of
P is achieved by a linear transformation over Z232 , we can easily find a suitable
mod-difference in x. Then we can build the pair x, x′ by extending the carries,
so that the xor-difference in x is of high Hamming weight.

We use the following algorithm:

1. Pick a random mod-difference in the kernel of the linear transformation P .
2. Build x, x′ by extending the carries as much as possible.
3. Compute y, y′.
4. Solve for H.

We can have up to 7 inactive words in H. We use H7 . . . H13 because they
are used in the first 7 AddElement rounds. This gives a collision in Q0 . . . Q22.
Once we have a solution, we can modify the values of H7 . . . H13 to generate new
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solutions by adjusting M7 . . .M13 (we have to keep the value of x). This can be
used to get a small difference in Q23 as well.

Each choice of x, x′ gives a new value for the xor-difference and the mod-
difference inH, and we use the tools of Section 2 to check very efficiently whether
those values are compatible. The cost of finding a compatible system is negligible
before the cost of 232 that we require in order to put a small difference in Q23.
This gives some restrictions on the output of the compression function because
the f2 function has 16 outputs and only 9 active inputs, but we do not have any
colliding outputs yet.

4 Using Partial-collisions in f0

In order to improve this result, and to have stronger properties on the output,
we have to make more values of Qb collide. To achieve this, we now put some
differences in M , so that differences in M and H can cancel each other in the
AddElement function.

More precisely, our best path allows to find collisions in Q0 . . . Q26 using:

– differences in M13, M14, M15;
– differences in H1 . . . H6, H10, H11 and H12.

The first step of the attack is to choose a pair x, x′ such that x0,7,8,9 are
inactive, and y0,7,8,9,13,14,15 are inactive. Moreover, we fix three more differences:
δ�x13 = 218, δ�y1 = 0x04010c43, and δ�x1 = 1. This is used in order to have
δ⊕x13 = 218, δ⊕y1 = 1 (note that s0(0x04010c43) = 1), and δ⊕x1 = 1. This
gives 14 constraints so we have a solution space of dimension 2.

After fixing the modular difference in x and y, we choose the values of x, x′ by
extending the carries as much as possible, in order to have a dense xor-difference
in M14, M15 and H2 . . . H6, H10, H11 and H12. On the other hand, we keep the
difference in M13 and H1 sparse so as to have δ⊕x13 = 218 and δ⊕y1 = 1.

When we find a pair x, x′ with compatible differences for H, this fixes the
values of:

– all active H’s: H1 . . . H6, H10, H11, H12.
– all M ’s whose corresponding H is active: M1 . . .M6,M10,M11,M12.

The remaining degrees of freedom are:

– H0, H7, H8, H9 and M0, M7, M8, M9, but the values of Hi ⊕Mi = xi are
fixed (4 degrees of freedom).

– H13, H14, H15; M13, M14, M15; and M ′13, M ′14, M ′15, but the values of Hi ⊕
Mi = xi and Mi ⊕M ′i = xi ⊕ x′i are fixed (3 degrees of freedom).

In order to achieve a collision in Q0 . . . Q26, we need to cancel differences in
AddElement 19, 20, 21 and 26.

AddElement(19) (M≪4
3 �M≪7

6 �M≪14
13 �K19)⊕H10

We use the freedom of M13 to extend carries in (M≪4
3 �M≪7

6 �M≪14
13 ).
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AddElement(20) (M≪5
4 �M≪8

7 �M≪15
14 �K20)⊕H11

We use the freedom of M14 and M7 to extend carries in (M≪5
4 �M≪8

7 �
M≪15

14 ).
AddElement(21) (M≪6

5 �M≪9
8 �M≪16

15 �K21)⊕H12

We use the freedom of M15 and M8 to extend carries in (M≪6
5 �M≪9

8 �
M≪16

15 ).
AddElement(26) (M≪11

10 �M≪14
13 �M≪5

4 �K26)⊕H1

We don’t have degrees of freedom available to make this collide, but the
differences have been selected so that it happens with high probability: the
differences in M≪14

13 and H1 are only in the least significant bit.

Finally, when we have one solution which collides in Q0 . . . Q26, we use the
freedom in M0 and M9 to generate many solutions, until we have a collision in
XH =

⊕31
i=16Qi. This gives a collision in the first three output words for a cost

of 232 (see Appendix B for details of the f2 function). Here is an example of an
input pair showing this property is given in Table 1

Table 1. Partial-collision example with 96 controlled bits

Chaining Value
6ae0a10c 4f14abca 57e66e71 6075a601 6ae0a10c 4f14abcb a819918f 9f8a59fe
bba141a1 46fb0506 e001fffd e89b2ebf 445ebe5f 8934faf9 9ffe0002 e89b2ebf
cb1e82d3 ae2d53d6 cb55b67f e6b080a1 cb1e82d3 ae2d53d6 34aa4980 194f7f5e
8b8c0a70 98d0080b adaacc99 88f0cf2d 7473f58f 98d0080b adaacc99 88f0cf2d

Message
4f5381d3 f96e7f0a 72879df2 e8150fa2 4f5381d3 f96e7f0a 72879df2 e8150fa2
476caf9f fbacf685 d1c47cb8 73a7bf61 476caf9f fbacf685 d1c47cb8 73a7bf61
445261cf a4c0f69f a2316fdd 12dbc43a 445261cf a4c0f69f a2316fdd 12dbc43a
e5197bf4 af952392 c2966021 46cab397 e5197bf4 af992392 3d699fde 39354c6b

Output
fe57177e d1e1157d ccf82758 6aecc4d0 fe57177e d1e1157d ccf82758 80b0c87d
cf3d27ab 590788dc eafe31d9 0e95fe74 0f1b49b9 e0b92229 cf1c1fb4 1fd1f3ab
5b069cc1 b1039e9e a5049da0 c38e8490 174ab741 7768d4bc 947374c1 74ddf4f9
cb6f569c 96fff629 ee5d89a4 71e405a4 8b4d7466 d075a056 0f8d8b0c d987e0cb

5 Using near collisions in AddElement

In order to extend the attack with more colliding bits in the output of the
compression function, we use near-collisions in the next instances of AddElement.
Since we do not have enough remaining degrees of freedom with a given pair x, x′,
we use freedom in the choice of the x, x′ pair in order to go further.

In a practical implementation of the attack, one computes some words of
H as a solution to the equation x ⊕ ∆ = x � δ as described in the previous
sections. As an example, in order to find H5 and H ′5 such that H ′5 ⊕H5 = δ⊕x5
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and H ′5 � H5 = δ�y5, one may compute H5 as (δ⊕x5 ⊕ δ�y5)
�1 (assuming

that the pair (δ⊕x5, δ�y5) is compatible). The value y5 is computed as s4(x1 �
x2 � x9 � x11 � x14). Thus, the freedom in the inactive word x9 can be used to
somewhat control H5 without affecting other conditions. Since M5 is computed
as H5⊕x5, this leads to some freedom in AddElement(27) = (M≪12

11 �M≪15
14 �

M≪6
5 � K27) ⊕ H2, and one may use this freedom to search for a collision

in AddElement(27). However, the differences on H2 and M≪15
14 turn out to be

incompatible, so one can only hope for a near-collision in AddElement(27). Still,
this will lead to a near-collision in Q27, which will lead to a near-collision in
output word 3 of the compression function.

In a similar manner, one can use the freedom in x0 (through H12 and thereby
M12) to find a full collision in AddElement(28), which (due to the small difference
in Q27) will lead to a near-collision in Q28. Since Q28 is the only active word
affecting output words 4, 8, and 12 of the compression function, all these three
words will contain a near-collision.

Finally, we can use the freedom of M0 to extend carries in AddElement(29).
However, we cannot reach a full collision because the differences in M≪14

13 and
H4 are incompatible.

To summarize, we use the following techniques to extend our attack:

AddElement(27) (M≪12
11 �M≪15

14 �M≪6
5 �K27)⊕H2

We use the freedom in x9 (through H15 and thereby M5) to find a near-
collision.

AddElement(28) (M≪13
12 �M≪16

15 �M≪7
6 �K28)⊕H3

We use the freedom in x0 (through H12 and thereby M12) to find a full
collision.

AddElement(29) (M≪14
13 �M≪1

0 �M≪8
7 �K29)⊕H4

We use the freedom of M0 to extend carries and find a near-collision.

We stress that these (near-)collisions can be found before searching for a
collision in XH, and therefore, since the complexity is still below 232, the full
cost of the attack is still around 232. Due to carries, however, it cannot be said
beforehand how many bits will collide, unless one introduces a few additional
bit conditions that will slightly increase the complexity. The search of a collision
in XH is done using the freedom in M9.

Table 2 gives an example of an input pair with an output colliding in 300
pre-specified bits (the search for a (near-)collision in Q0, . . . , Q28 required the
equivalent of about 229.5 compression function evaluations). This example can
be also be considered as a near-collision with 122 active bits.

6 Conclusion

In this paper we describe a technique to build partial-collisions in the compres-
sion function of BMW. We managed to build pairs of input which lead to a
collision in 300 pre-specified bits, with complexity 232. Although it does not
weaken the security of the iterated hash function, it is a strong distinguisher
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Table 2. Partial-collision example with 300 controlled bits

Chaining Value
59dfd94b 30b036e3 44ad8a65 47461712 59dfd94b 30b036e2 bb52759b b8b9e8ed
6f56e9b4 425e2d65 40000003 94e62f58 90a9164c bda1d29a bffffffc 94e62f58
12c4bf76 17b18302 4f74ffd3 3ec30f93 12c4bf76 17b18302 b08b002c c13cf06c
8b0f9f9b 7071a4a5 28becf17 6954724f 74f06064 7071a4a5 28becf17 6954724f

Message
bd050fb4 c6925351 991aa15f 60327d4b bd050fb4 c6925351 991aa15f 60327d4b
0212e457 9feb065e d6ab8dac 7b52f8ca 0212e457 9feb065e d6ab8dac 7b52f8ca
2f8a9774 1f189302 2043dc85 7b0eac19 2f8a9774 1f189302 2043dc85 7b0eac19
08fe0408 01c2f910 19abe45b 00000000 08fe0408 01c6f910 e6541ba4 ffffffe0

Output
70588aa3 62e38880 4b32cd23 7da56fd2 70588aa3 62e38880 4b32cd23 7da56fd1
54827a61 d78e6b5f 17cce172 0ae88e5a 54827a62 d78e6b5e f6942bb0 35a96499
232a8830 7f31780e f0865b01 28cb4150 232a8a30 7f31740e 2ad851f7 362f33fb
39ba3bd2 277e9d52 316a7411 c8dbc618 39ba3bd3 27829d53 d239cc6e 29aa1db7

of the compression function. We also note that if the compression function is
truncated like in the final transformation of BMW, we can still build pairs of
message which collide in more than 110 bits with complexity 232. This is the
first distinguisher on the truncated compression function of BMW.

A similar attack can be mounted on BMW-512 with complexity 264. It will
give pairs of input of the compression function with about 600 colliding bits,
including about 220 bits in the second part of the output.

We believe that the techniques developed for this attacks can be useful for
further analysis of BMW, and other ARX based SHA-3 candidates.
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A Details on the Permutation P used in f0

The matrix multiplication taking place in f0 can be described as follows. Let
x = H ⊕M . Let C denote the matrix. If z = C · x, where x is considered a
16-element vector over Z232 , then

z0 = x5 � x7 � x10 � x13 � x14

z1 = x6 � x8 � x11 � x14 � x15

z2 = x0 � x7 � x9 � x12 � x15

z3 = x0 � x1 � x8 � x10 � x13

z4 = x1 � x2 � x9 � x11 � x14

z5 = x3 � x2 � x10 � x12 � x15

z6 = x4 � x0 � x3 � x11 � x13

z7 = x1 � x4 � x5 � x12 � x14

z8 = x2 � x5 � x6 � x13 � x15

z9 = x0 � x3 � x6 � x7 � x14

z10 = x8 � x1 � x4 � x7 � x15

z11 = x8 � x0 � x2 � x5 � x9

z12 = x1 � x3 � x6 � x9 � x10

z13 = x2 � x4 � x7 � x10 � x11

z14 = x3 � x5 � x8 � x11 � x12

z15 = x12 � x4 � x6 � x9 � x13

The subfunctions si, 0 ≤ i ≤ 4, used in f0 are defined as follows.

s0(x) = x�1 ⊕ x�3 ⊕ x≪4 ⊕ x≪19

s1(x) = x�1 ⊕ x�2 ⊕ x≪8 ⊕ x≪23

s2(x) = x�2 ⊕ x�1 ⊕ x≪12 ⊕ x≪25

s3(x) = x�2 ⊕ x�2 ⊕ x≪15 ⊕ x≪29

s4(x) = x�1 ⊕ x

B Description of the f2 function

The f2 function performs the following computations:

XL =

23⊕
i=16

Qi XH =

31⊕
i=16

Qi
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HH0 = (XH�5 ⊕ Q�5
16 ⊕ M0) � (XL ⊕ Q24 ⊕ Q0)

HH1 = (XH�7 ⊕ Q�8
17 ⊕ M1) � (XL ⊕ Q25 ⊕ Q1)

HH2 = (XH�5 ⊕ Q�5
18 ⊕ M2) � (XL ⊕ Q26 ⊕ Q2)

HH3 = (XH�1 ⊕ Q�5
19 ⊕ M3) � (XL ⊕ Q27 ⊕ Q3)

HH4 = (XH�3 ⊕ Q20 ⊕ M4) � (XL ⊕ Q28 ⊕ Q4)
HH5 = (XH�6 ⊕ Q�6

21 ⊕ M5) � (XL ⊕ Q29 ⊕ Q5)
HH6 = (XH�4 ⊕ Q�6

22 ⊕ M6) � (XL ⊕ Q30 ⊕ Q6)
HH7 = (XH�11 ⊕ Q�2

22 ⊕ M7) � (XL ⊕ Q31 ⊕ Q7)
HH8 = HH≪9

4 � (XH ⊕ Q24 ⊕ M8) � (XL�8 ⊕ Q23 ⊕ Q8)
HH9 = HH≪10

5 � (XH ⊕ Q25 ⊕ M9) � (XL�6 ⊕ Q16 ⊕ Q9)
HH10 = HH≪11

6 � (XH ⊕ Q26 ⊕M10) � (XL�6 ⊕ Q17 ⊕ Q10)
HH11 = HH≪12

7 � (XH ⊕ Q27 ⊕M11) � (XL�4 ⊕ Q18 ⊕ Q11)
HH12 = HH≪13

0 � (XH ⊕ Q28 ⊕M12) � (XL�3 ⊕ Q19 ⊕ Q12)
HH13 = HH≪14

1 � (XH ⊕ Q29 ⊕M13) � (XL�4 ⊕ Q20 ⊕ Q13)
HH14 = HH≪15

2 � (XH ⊕ Q30 ⊕M14) � (XL�7 ⊕ Q21 ⊕ Q14)
HH15 = HH≪16

3 � (XH ⊕ Q31 ⊕M15) � (XL�2 ⊕ Q22 ⊕ Q15)

In the attack of Section 4, we have differences in M13, M14, M15, and
Q27, . . . Q31, with no difference in XL and XH. In the first part of f2, this results
in differences in HH3, . . . HH7. In the second part, outputs HH8, . . . HH15 are
active.

In the attack of Section 5, we have dense differences in M14, M15, Q30, Q31,
and small differences in M13, Q27, Q28 and Q29, with no difference in XL and
XH. In the first part of f2, this results in small differences in HH3, HH4, HH5,
and dense differences in HH6 and HH7. In the second part, there are dense
differences in HH10, HH11, HH14, HH15, and small differences in HH8, HH9,
HH12 and HH13.
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