Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTF 00000 *Beyond-birthday security* 000000

Conclusion O

Security Issues with Small Block Sizes

Gaëtan Leurent

Joined work with Karthikeyan Bhargavan, Ferdinand Sibleyras

Inria, France

Lightweight Crypto Day 2018

Introduction

OOOOOOOOOO

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTR 00000 *Beyond-birthday security*

Conclusion 0

Confidentiality and authenticity

Confidentiality

Keeping the message secret

- Adversary learns nothing about m
- Encryption
 - Block ciphers
 - Stream ciphers

Authenticity

- Make sure the message is authentic
 - Adversary cannot forge t
- Message Authentication Codes
 - From block ciphers
 - From hash functions
 - Dedicated, ...

Introduction
000000000

Birthday attac

Exploiting CBC collisions

Plaintext recovery on CTR 00000 *Beyond-birthday security* 000000

Conclusion 0

Block cipher

 Encrypt small block of message

 \blacktriangleright \rightarrow PRP

 $k \xrightarrow{\kappa} E \xrightarrow{\kappa} c$

- Iterate round function
- Eg DES, Blowfish, AES

Gaëtan Leurent (Inria, France)

Stream cipher

 Generate pseudo-random keystream from key

Symmetric key primitives

 \blacktriangleright \rightarrow PRG

- Initialize state from key
- Update state, Generate keystream
- Eg RC4, Salsa20, Grain

Security Issues with Small Block Sizes

Hash function

- Compress message to small digest
- \blacktriangleright \rightarrow Random oracle

$$0 \xrightarrow{n} h \xrightarrow{n} h \xrightarrow{n} h \xrightarrow{n} h \xrightarrow{n} h \xrightarrow{n} h$$

- Divide msg into blocks
- Iter. compression func.
- Eg MD5, SHA1/2/3

Birthday attacks 000000 *Exploiting CBC collisions*

Plaintext recovery on CTR 00000 *Beyond-birthday security* 000000

Conclusion O

Going lightweight

Lightweight crypto (today)

Symmetric-key cryptography targeting low-end devices

- Low gate-count
- Low power / energy
- Low latency

- Optimized for micro-controllers
- Optimized for side-channel protection

► ...

- How to reduce the implementation cost?
 - Optimize for a specific constraint/platform
 - Reduced security margins
 - Reduced block size (often 64 bits)
- We have many candidates for lightweight block ciphers:
 - HIGHT
 - CLEFIA (ISO std.)
 - PRESENT (ISO std.)
 - KASUMI (3GPP std.)

(ISO std.)

- 3DES (former std.)
- Noekeon
- KATAN & KTANTAN
- LBlock

Security Issues with Small Block Sizes

- PRINCE
- Simon & Speck (NSA)
- Robin & Fantomas
- Skinny, ...

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTR 00000 *Beyond-birthday security* 000000 Conclusion O

Security evaluation

Security goal

- As good as ideal primitive with the same parameters
 - Best attacks should be generic attacks
- Cryptanalysis to evaluate the concrete security
 - Broken: DES, GOST, KeeLoq, A5/1, RC4, MD5, SHA1, ...

Generic attacks against primitives

- Exhaustive search with small key size
 - Broken: MIFARE Crypto-1 (48 bits), DES (56 bits), A5/1 (64 bits), KeeLoq (64 bits)
- Collisions with small state size
 - Broken: A5/1, MD5

Birthday attacks 000000 Exploiting CBC collisions

Plaintext recovery on CTR 00000 *Beyond-birthday security* 000000

Conclusion 0

The Birthday Paradox

The birthday paradox

In a room with 23 people, there is a 50% chance that two of them share the same birthday.

Birthday attacks

- With random *n*-bit strings, first collision after roughly $2^{n/2}$ draws.
- ▶ More generally, 2^{2t−n} collisions with 2^t draws

Gaëtan Leurent (Inria, France)

Birthday attacks 000000 *Exploiting CBC collisions*

Plaintext recovery on CTR 00000 *Beyond-birthday security* 000000

Conclusion 0

Effect of the state size

Hash function

- ▶ Collision attacks with time complexity 2^{n/2}
- We typically use n = 256, $n \ge 128$ for lightweight

Stream cipher

- Time-Memory trade-off with 2^{n/2} time and data
- We typically use $n \ge 256$, $n \ge 160$ for lightweight

[Babbage '85, Golic '87]

Block cipher

- Good block ciphers secure up to 2ⁿ data
- We typically use n = 128, n = 64 for lightweight

Introduction	<i>Birthday attacks</i>	Exploiting CBC collisions	Plaintext recovery on CTR	Beyond-birthday security	Conclusion
0000000000	000000		00000	000000	0
		Toda	y's talk		

Modes of operation

- Block ciphers are not used by themselves
- They need a mode of operation: CBC, CTR, CBC-MAC, GCM, ...
 - > To achieve a security goal: confidentiality, integrity, authenticated encryption, ...
 - To process several messages with the same key (different IV)
 - To process messages with multiple blocks

Block size is an important security parameter

- Common modes have issues after 2^{n/2} blocks of data
 - Security of mode is lower than security of cipher
- Lightweight block ciphers typically use a block size n = 64 bits
 - With n = 64, the bound is only 32 GB
- How bad is it really?

Introduction	<i>Birthday attacks</i>	Exploiting CBC collisions	Plaintext recovery on CTR	Beyond-birthday security	Conclusion
0000000000	000000		00000	000000	0
		Today's	s talk		

Modes of operation

- Block ciphers are not used by themselves
- They need a mode of operation: CBC, CTR, CBC-MAC, GCM, ...
 - > To achieve a security goal: confidentiality, integrity, authenticated encryption, ...
 - To process several messages with the same key (different IV)
 - To process messages with multiple blocks

Block size is an important security parameter

- Common modes have issues after 2^{n/2} blocks of data
 - Security of mode is lower than security of cipher
- Lightweight block ciphers typically use a block size n = 64 bits
 - With n = 64, the bound is only 32 GB
- How bad is it really?

Birthday attacks 000000

Exploiting CBC collisions

Plaintext recovery on CTR 00000 *Beyond-birthday security* 000000 Conclusion 0

Security of modes of operations

 To reduce the number of assumptions, study the block cipher and the mode independently

Cryptanalysis of the block cipher

- Try to show non-random behavior
- After some time, build confidence in the block-cipher

2 Security proof for the mode

- Assume that the block cipher is good, prove that the mode is good
- Lower bound on the security of the mode

3 Generic attacks for the mode

- Attack that work for any choice of the block cipher
- Upper bound on the security of the mode

Birthday attacks 000000

Exploiting CBC collisions

Plaintext recovery on CTR 00000 *Beyond-birthday security* 000000 Conclusion O

Security of modes of operations

• To reduce the number of assumptions,

study the block cipher and the mode independently

Cryptanalysis of the block cipher

- Try to show non-random behavior
- After some time, build confidence in the block-cipher

2 Security proof for the mode

- Assume that the block cipher is good, prove that the mode is good
- Lower bound on the security of the mode

3 Generic attacks for the mode

- Attack that work for any choice of the block cipher
- Upper bound on the security of the mode

Birthday attacks 000000

Exploiting CBC collisions

Plaintext recovery on CTF 00000 *Beyond-birthday security* 000000 Conclusion 0

Security proofs

- ▶ If *E* is a good PRF, CTR key-stream is indistinguishable from random
- If the key-stream is random, this is a one-time-pad

 $\mathsf{Adv}_{\mathsf{CTR-E}}^{\mathsf{CPA}}(\sigma) \leq \mathsf{Adv}_{\mathsf{E}}^{\mathsf{PRF}}(\sigma)$

with σ the total number of blocks

A block-cipher is actually a permutation... PRP/PRF switching lemma

 $\mathsf{Adv}_{\mathit{E}}^{\mathsf{PRF}}(\sigma) \leq \mathsf{Adv}_{\mathit{E}}^{\mathsf{PRP}}(\sigma) + \frac{\sigma^2}{2^n}$

► The CPA security of CTR is essentially the PRP security of *E* (the block cipher)

- As long as the number of encrypted blocks σ ≪ 2^{n/2}
- Similar results for other modes (CBC, GCM, ...)

Birthday attack

Exploiting CBC collisions 0000000

Plaintext recovery on CTF 00000 *Beyond-birthday security* 000000

Conclusion 0

Different points of view

What cryptographers say

[Rogaway 2011]

[Birthday] attacks can be a serious concern when employing a blockcipher of n = 64 bits, requiring relatively frequent rekeying to keep $\sigma \ll 2^{32}$

What standards say

[ISO SC27 SD12]

The maximum amount of plaintext that can be encrypted before rekeying must take place is 2^{n/2} blocks, due to the birthday paradox. As long as the implementation of a specific block cipher do not exceed these limits, using the block cipher will be safe.

What implementation do (circa 2016)

TLS libraries, web browsers no rekeying *OpenVPN* no rekeying (PSK mode) / rekey every hour (TLS mode)

Gaëtan Leurent (Inria, France)

Birthday attack

Exploiting CBC collisions 0000000

Plaintext recovery on CTF 00000 *Beyond-birthday security* 000000

Conclusion 0

Different points of view

What cryptographers say

[Rogaway 2011]

[Birthday] attacks can be a serious concern when employing a blockcipher of n = 64 bits, requiring relatively frequent rekeying to keep $\sigma \ll 2^{32}$

What standards say

[ISO SC27 SD12]

The maximum amount of plaintext that can be encrypted before rekeying must take place is 2^{n/2} blocks, due to the birthday paradox. As long as the implementation of a specific block cipher do not exceed these limits, using the block cipher will be safe.

What implementation do (circa 2016)

TLS libraries, web browsers no rekeying *OpenVPN* no rekeying (PSK mode) / rekey every hour (TLS mode)

Gaëtan Leurent (Inria, France)

Birthday attack

Exploiting CBC collisions 0000000

Plaintext recovery on CTR 00000 *Beyond-birthday security* 000000

Conclusion 0

Different points of view

What cryptographers say

[Rogaway 2011]

[Birthday] attacks can be a serious concern when employing a blockcipher of n = 64 bits, requiring relatively frequent rekeying to keep $\sigma \ll 2^{32}$

What standards say

[ISO SC27 SD12]

The maximum amount of plaintext that can be encrypted before rekeying must take place is 2^{n/2} blocks, due to the birthday paradox. As long as the implementation of a specific block cipher do not exceed these limits, using the block cipher will be safe.

What implementation do (circa 2016)

TLS libraries, web browsers no rekeying *OpenVPN* no rekeying (PSK mode) / rekey every hour (TLS mode)

Gaëtan Leurent (Inria, France)

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTR 00000 Beyond-birthday security 000000 Conclusion O

Introduction

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTR

Beyond-birthday security

Conclusion

Gaëtan Leurent (Inria, France)

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTR 00000 *Beyond-birthday security*

Conclusion 0

Example: Iterated Deterministic MACs

- Many MACs are deterministic iterated constructions
 - BC based: CBC-MAC, PMAC
 - Hash-based: HMAC

Gaëtan Leurent (Inria, France)

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTR 00000 *Beyond-birthday security*

Conclusion 0

Example: Iterated Deterministic MACs

- Many MACs are deterministic iterated constructions
 - BC based: CBC-MAC, PMAC
 - Hash-based: HMAC

[Preneel & van Oorschot '95]

Generic attack

- **1** Find internal collisions MAC(x) = MAC(y)
 - Query 2^{n/2} random short messages
 - 1 internal collision expected, detected in the output
- 2 Query t = MAC(x||m)
- 3 (y||m,t) is a forgery

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTR 00000 *Beyond-birthday security*

Conclusion 0

Example: Iterated Deterministic MACs

- Many MACs are deterministic iterated constructions
 - BC based: CBC-MAC, PMAC
 - Hash-based: HMAC

[Preneel & van Oorschot '95]

Generic attack

- **1** Find internal collisions MAC(x) = MAC(y)
 - Query 2^{n/2} random short messages
 - 1 internal collision expected, detected in the output
- 2 Query t = MAC(x||m)
- 3 (y||m,t) is a forgery

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTR 00000 *Beyond-birthday security*

Conclusion 0

Example: Iterated Deterministic MACs

- Many MACs are deterministic iterated constructions
 - BC based: CBC-MAC, PMAC
 - Hash-based: HMAC

[Preneel & van Oorschot '95]

Generic attack

- **1** Find internal collisions MAC(x) = MAC(y)
 - Query 2^{n/2} random short messages
 - 1 internal collision expected, detected in the output
- 2 Query t = MAC(x||m)
- 3 (y||m,t) is a forgery

Birthday attacks 000000

Encryption modes: CBC and CTR

Security proof up to the birthday bound

CTR mode IV||2 IV∥1

Security proof up to the birthday bound

luction Birthday attacks

Exploiting CBC collis

Plaintext recovery on CTR 00000 *Beyond-birthday security* 000000

Conclusion 0

CBC collisions

Well known collision attack against CBC

- If $c_i = c_j$, then $c_{i-1} \oplus m_i = c_{j-1} \oplus m_j$
- Ciphertext collision reveals the xor of two plaintext blocks

Gaëtan Leurent (Inria, France)

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTP 00000 *Beyond-birthday security* 000000

Conclusion 0

Birthday distinguishing on CTR

Well known distinguisher against CTR

- All block cipher input are distinct
- ▶ For all $i \neq j$, $m_i \oplus c_i \neq m_j \oplus c_j$
 - Hard to extract plaintext information from inequalities
- Distinguisher: no collisions in $m_i \oplus c_i$
 - ▶ Collisions after 2^{*n*/2} blocks with random ciphertext

Gaëtan Leurent (Inria, France)

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTF 00000 *Beyond-birthday security* 000000

Conclusion O

CBC vs. CTR

- Security proof up to the birthday bound
- Collisions reveals xor of two plaintext blocks

- Security proof up to the birthday bound
- Distinguishing attack: Keystream doesn't collide

ction Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTR 00000 *Beyond-birthday security* 000000 Conclusion O

- ► How bad is it?
 - CBC only leaks xors of a few blocks of plaintexts...
 - CTR doesn't even leak that!
 - Can this leakage be exploited?
 - Do applications encrypt enough data under the same key?

Cryptography engineering

[Ferguson, Schneier, Kohno]

CTR leaks very little data. [...] It would be reasonable to limit the cipher mode to 2⁶⁰ blocks, which allows you to encrypt 2⁶⁴ bytes but restricts the leakage to a small fraction of a bit. When using CBC mode you should be a bit more restrictive. [...] We suggest limiting CBC encryption to 2³² blocks or so.

(talking about a 128-bit block cipher)

Sirthday attacks

Exploiting CBC collisions

Plaintext recovery on CTF 00000 Beyond-birthday security 000000 Conclusion O

Introduction

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTR

Beyond-birthday security

Conclusion

Gaëtan Leurent (Inria, France)

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTF 00000 *Beyond-birthday security* 000000

Conclusion 0

Towards a Practical attack

- Assume a fixed message is repeatedly encrypted (under a fixed key)
 - Including a high value secret (cookie, password, ...)
 - And some known/predictable sections (headers, ...)
- Each collision reveals the xor of two plaintext blocks
- With some luck, xor of a known value and the secret

 $\underbrace{\text{cookie}}_{unknown} \oplus \underbrace{\text{header}}_{known} = \underbrace{c_{i-1} \oplus c_{j-1}}_{known}$

Success after roughly 2^t collisions

- $2^{n/2-t/2}$ message copies, $2^{n/2+t/2}$ blocks
- Tradeoff between number of copies and total amount of data
- ▶ If rekeying after roughly 2^{n/2} blocks, attack still possible
 - $2^{n/2}$ message copies, $2^{n/2+t}$ blocks

Gaëtan Leurent (Inria, France)

Security Issues with Small Block Sizes

a few blocks 2^t blocks

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTI 00000 *Beyond-birthday security* 000000

Conclusion O

Towards a Practical attack

								- 2 ^t -						
Plaintext		GET	⊔/i	nde	x.h	tml	⊔HT	TP/	1.1	Coo	kie	:⊔C	=??	???
T	178	4E5	71A	A39	68A	399	7D8	8F0	FEA	902	932	204	85A	969
	E57	1AA		8A3	997	D88	FOF	EA9	029	322	048	5A9	6E0	EA4
	1D6	645	EA2		FAE	D74	A72	E5C	913	447	3B4	BAA	321	784
	7A5	322	700	DE3	BA8	7DD	998	040	A8D	9A2	05A	EE5	330	9EC
	9BE	78D		AF5	327	311	F5B	252	77A	C45	49E	2ED	20C	
$2^{n-t/2}$	289	597	BED	540	A60	7AF	F96	511	AF2	41F	278	D25	400	4EB
Ciphertexts	031	ED8	EEB	6CC	B5A	440	067	154	AB5	CEE	015	70A	1ED	1B7
	38E	018	41A	DEB	970	2D3	97A	FOE	45C	94B	251	218	5FB	82A
	417	FF4	81D	00D	49D	D9A	841	737	416	BA8	452	ACO	335	793
	21B	B07	A20	4F4	C1D	B07	2DF	410	340	6AB	0D2		CE9	4C9
		BDA	A93	B85	351	831	763	FAO	E95	E5F	1EE		7D5	8C0
	5F5	935	574	21D	EE0	1BF	338	6DB	DDC	F67		7F6	8EC	A8D

Gaëtan Leurent (Inria, France)

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTI 00000 *Beyond-birthday security* 000000

Conclusion O

Towards a Practical attack

		I						- 2 ^t -						
Plaintext		GET	⊔/i	nde	x.h	tml	⊔HT	TP/	1.1	Coo	kie	:⊔C	=??	???
Τ	178	4E5	71A	A39	68A	399	7D8	8F0	FEA	902	932	204	85A	969
	E57	1AA		8A3	997	D88	FOF	EA9	029	322	048	5A9	6E0	EA4
	1D6	645	EA2		FAE	D74	A72	E5C	913	447	3B4	BAA	321	784
	7A5	322	700	DE3	BA8	7DD	998	040	A8D	9A2	05A	EE5	330	9EC
	9BE	78D		AF5	327	311	F5B	252	77A	C45	49E	2ED	20C	
$2^{n-t/2}$	289	597	BED	540	A60	7AF	F96	511	AF2	41F	278	D25	400	4EB
Ciphertexts	031	ED8	EEB	6CC	B5A	440	067	154	AB5	CEE	015	70A	1ED	1B7
	38E	018	41A	DEB	970	2D3	97A	FOE	45C	94B	251	218	5FB	82A
	417	FF4	81D	00D	49D	D9A	841	737	416	BA8	452	ACO	335	793
	21B	B07	A20	4F4	C1D	B07	2DF	410	340	6AB	0D2		CE9	4C9
		BDA	A93	B85	351	831	763	FAO	E95	E5F	1EE		7D5	8C0
	5F5	935	574	21D	EE0	1BF	338	6DB	DDC	F67		7F6	8EC	A8D

Gaëtan Leurent (Inria, France)

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTI 00000 *Beyond-birthday security* 000000

Conclusion O

Towards a Practical attack

								- 2 ^t -						
Plaintext		GET	⊔/i	nde	x.h	tml	⊔HT	TP/	1.1	Coo	kie	:⊔C	=??	???
Т	178	4E5	71A	A39	68A	399	7D8	8F0	FEA	902	932	204	85A	969
	E57	1AA	396	8A3	997	D88	FOF	EA9	029	322	048	5A9	6E0	EA4
	1D6	645	EA2		FAE	D74	A72	E5C	913	447	3B4	BAA	321	784
	7A5	322	700	DE3	BA8	7DD	998	040	A8D	9A2	05A	EE5	330	9EC
	9BE	78D		AF5	327	311	F5B	252	77A	C45	49E	2ED	20C	
$2^{n-t/2}$	289	597	BED	540	A60	7AF	F96	511	AF2	41F	278	D25	400	4EB
Ciphertexts	031	ED8	EEB	6CC	B5A	440	067	154	AB5	CEE	015	70A	1ED	1B7
	38E	018	41A	DEB	970	2D3	97A	FOE	45C	94B	251	218	5FB	82A
	417	FF4	81D	00D	49D	D9A	841	737	416	BA8	452	ACO	335	793
	21B	B07	A20	4F4	C1D	B07	2DF	410	340	6AB	0D2		CE9	4C9
		BDA	A93	B85	351	831	763	FAO	E95	E5F	1EE		7D5	8C0
	5F5	935	574	21D	EE0	1BF	338	6DB	DDC	F67		7F6	8EC	A8D

Gaëtan Leurent (Inria, France)

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTI 00000 *Beyond-birthday security* 000000

Conclusion O

Towards a Practical attack

								- 2 ^t -						
Plaintext		GET	⊔/i	nde	x.h	tml	⊔HT	TP/	1.1	Coo	kie	:C	=??	???
Т	178	4E5	71A	A39	68A	399	7D8	8F0	FEA	902	932	204	85A	969
	E57	1AA	396	8A3	997	D88	F0F	EA9	029	322	048	5A9	6E0	EA4
	1D6	645	EA2	050	FAE	D74	A72	E5C	913	447	3B4	BAA	321	784
	7A5	322	700	DE3	BA8	7DD	998	040	A8D	9A2	05A	EE5	330	9EC
	9BE	78D		AF5	327	311	F5B	252	77A	C45	49E	2ED	20C	
$2^{n-t/2}$	289	597	BED	540	A60	7AF	F96	511	AF2	41F	278	D25	400	4EB
Ciphertexts	031	ED8	EEB	6CC	B5A	440	067	154	AB5	CEE	015	70A	1ED	1B7
	38E	018	41A	DEB	970	2D3	97A	FOE	45C	94B	251	218	5FB	82A
	417	FF4	81D	00D	49D	D9A	841	737	416	BA8	452	ACO	335	793
	21B	B07	A20	4F4	C1D	B07	2DF	410	340	6AB	0D2		CE9	4C9
		BDA	A93	B85	351	831	763	FAO	E95	E5F	1EE		7D5	8C0
	5F5	935	574	21D	EE0	1BF	338	6DB	DDC	F67		7F6	8EC	A8D

Gaëtan Leurent (Inria, France)

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTI 00000 *Beyond-birthday security* 000000

Conclusion O

Towards a Practical attack

		\vdash						- 2 ^t -						
Plaintext		GET	⊔/i	nde	x.h	tml	⊔HT	TP/	1.1	Coo	kie	:⊔C	=??	???
Т	178	4E5	71A	A39	68A	399	7D8	8F0	FEA	902	932	204	85A	969
	E57	1AA	396	8A3	997	D88	F0F	EA9	029	322	048	5A9	6E0	EA4
	1D6	645	EA2	050	FAE	D74	A72	E5C	913	447	3B4	BAA	321	784
	7A5	322	700	DE3	BA8	7DD	998	040	A8D	9A2	05A	EE5	330	9EC
	9BE	78D		AF5	327	311	F5B	252	77A	C45	49E	2ED	20C	
$2^{n-t/2}$	289	597	BED	540	A60	7AF	F96	511	AF2	41F	278	D25	400	4EB
Ciphertexts	031	ED8	EEB	6CC	B5A	440	067	154	AB5	CEE	015	70A	1ED	1B7
	38E	018	41A	DEB	970	2D3	97A	FOE	45C	94B	251	218	5FB	82A
	417	FF4	81D	00D	49D	D9A	841	737	416	BA8	452	ACO	335	793
	21B	B07	A20	4F4	C1D	B07	2DF	410	340	6AB	0D2		CE9	4C9
		BDA	A93	B85	351	831	763	FAO	E95	E5F	1EE		7D5	8C0
	5F5	935	574	21D	EE0	1BF	338	6DB	DDC	F67		7F6	8EC	A8D

Gaëtan Leurent (Inria, France)

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTI 00000 *Beyond-birthday security* 000000

Conclusion O

Towards a Practical attack

								- 2 ^t -						
Plaintext		GET	⊔/i	nde	x.h	tml	⊔HT	TP/	1.1	Coo	kie	:⊔C	=??	???
Т	178	4E5	71A	A39	68A	399	7D8	8F0	FEA	902	932	204	85A	969
	E57	1AA	396	8A3	997	D88	F0F	EA9	029	322	048	5A9	6E0	EA4
	1D6	645	EA2	050	FAE	D74	A72	E5C	913	447	3B4	BAA	321	784
	7A5	322	700	DE3	BA8	7DD	998	040	A8D	9A2	05A	EE5	330	9EC
	9BE	78D	350	AF5	327	311	F5B	252	77A	C45	49E	2ED	20C	030
$2^{n-t/2}$	289	597	BED	540	A60	7AF	F96	511	AF2	41F	278	D25	400	4EB
Ciphertexts	031	ED8	EEB	6CC	B5A	440	067	154	AB5	CEE	015	70A	1ED	1B7
	38E	018	41A	DEB	970	2D3	97A	FOE	45C	94B	251	218	5FB	82A
	417	FF4	81D	00D	49D	D9A	841	737	416	BA8	452	ACO	335	793
	21B	B07	A20	4F4	C1D	B07	2DF	410	340	6AB	0D2		CE9	4C9
		BDA	A93	B85	351	831	763	FAO	E95	E5F	1EE		7D5	8C0
	5F5	935	574	21D	EE0	1BF	338	6DB	DDC	F67		7F6	8EC	A8D

Gaëtan Leurent (Inria, France)

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTI 00000 *Beyond-birthday security* 000000

Conclusion O

Towards a Practical attack

								- 2 ^t -						
Plaintext		GET	⊔/i	nde	x.h	tml	⊔HT	TP/	1.1	Coo	kie	:⊔C	=??	???
Т	178	4E5	71A	A39	68A	399	7D8	8F0	FEA	902	932	204	85A	969
	E57	1AA	396	8A3	997	D88	F0F	EA9	029	322	048	5A9	6E0	EA4
	1D6	645	EA2	050	FAE	D74	A72	E5C	913	447	3B4	BAA	321	784
	7A5	322	700	DE3	BA8	7DD	998	040	A8D	9A2	05A	EE5	330	9EC
	9BE	78D	350	AF5	327	311	F5B	252	77A	C45	49E	2ED	20C	030
$2^{n-t/2}$	289	597	BED	540	A60	7AF	F96	511	AF2	41F	278	D25	400	4EB
Ciphertexts	031	ED8	EEB	6CC	B5A	440	067	154	AB5	CEE	015	70A	1ED	1B7
	38E	018	41A	DEB	970	2D3	97A	FOE	45C	94B	251	218	5FB	82A
	417	FF4	81D	00D	49D	D9A	841	737	416	BA8	452	ACO	335	793
	21B	B07	A20	4F4	C1D	B07	2DF	410	340	6AB	0D2		CE9	4C9
		BDA	A93	B85	351	831	763	FAO	E95	E5F	1EE		7D5	8C0
	5F5	935	574	21D	EE0	1BF	338	6DB	DDC	F67		7F6	8EC	A8D

Gaëtan Leurent (Inria, France)

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTI 00000 *Beyond-birthday security* 000000

Conclusion O

Towards a Practical attack

								- 2 ^t -						
Plaintext		GET	⊔/i	nde	x.h	tml	⊔HT	TP/	1.1	Coo	kie	:⊔C	=??	???
Т	178	4E5	71A	A39	68A	399	7D8	8F0	FEA	902	932	204	85A	969
	E57	1AA	396	8A3	997	D88	F0F	EA9	029	322	048	5A9	6E0	EA4
	1D6	645	EA2	050	FAE	D74	A72	E5C	913	447	3B4	BAA	321	784
	7A5	322	700	DE3	BA8	7DD	998	040	A8D	9A2	05A	EE5	330	9EC
	9BE	78D	350	AF5	327	311	F5B	252	77A	C45	49E	2ED	20C	030
$2^{n-t/2}$	289	597	BED	540	A60	7AF	F96	511	AF2	41F	278	D25	400	4EB
Ciphertexts	031	ED8	EEB	6CC	B5A	440	067	154	AB5	CEE	015	70A	1ED	1B7
	38E	018	41A	DEB	970	2D3	97A	FOE	45C	94B	251	218	5FB	82A
	417	FF4	81D	00D	49D	D9A	841	737	416	BA8	452	ACO	335	793
	21B	B07	A20	4F4	C1D	B07	2DF	410	340	6AB	0D2		CE9	4C9
		BDA	A93	B85	351	831	763	FAO	E95	E5F	1EE		7D5	8C0
	5F5	935	574	21D	EE0	1BF	338	6DB	DDC	F67		7F6	8EC	A8D

Gaëtan Leurent (Inria, France)

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTI 00000 *Beyond-birthday security* 000000

Conclusion O

Towards a Practical attack

								- 2 ^t -						
Plaintext		GET	⊔/i	nde	x.h	tml	⊔HT	TP/	1.1	Coo	kie	:⊔C	=??	???
Т	178	4E5	71A	A39	68A	399	7D8	8F0	FEA	902	932	204	85A	969
	E57	1AA	396	8A3	997	D88	F0F	EA9	029	322	048	5A9	6E0	EA4
	1D6	645	EA2	050	FAE	D74	A72	E5C	913	447	3B4	BAA	321	784
	7A5	322	700	DE3	BA8	7DD	998	040	A8D	9A2	05A	EE5	330	9EC
	9BE	78D	350	AF5	327	311	F5B	252	77A	C45	49E	2ED	20C	030
$2^{n-t/2}$	289	597	BED	540	A60	7AF	F96	511	AF2	41F	278	D25	400	4EB
Ciphertexts	031	ED8	EEB	6CC	B5A	440	067	154	AB5	CEE	015	70A	1ED	1B7
	38E	018	41A	DEB	970	2D3	97A	FOE	45C	94B	251	218	5FB	82A
	417	FF4	81D	OOD	49D	D9A	841	737	416	BA8	452	ACO	335	793
	21B	B07	A20	4F4	C1D	B07	2DF	410	340	6AB	0D2		CE9	4C9
		BDA	A93	B85	351	831	763	FAO	E95	E5F	1EE		7D5	8C0
	5F5	935	574	21D	EE0	1BF	338	6DB	DDC	F67		7F6	8EC	A8D

Gaëtan Leurent (Inria, France)

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTI 00000 *Beyond-birthday security* 000000

Conclusion O

Towards a Practical attack

								- 2 ^t -						
		a	1.		\square							_		
Plaintext		GET	⊔/i	nde	x.h	tml	⊔H.I.	TP/	1.1	Coo	kie	:⊔C	=??	???
T	178	4E5	71A	A39	68A	399	7D8	8F0	FEA	902	932	204	85A	969
	E57	1AA	396	8A3	997	D88	FOF	EA9	029	322	048	5A9	6E0	EA4
	1D6	645	EA2	050	FAE	D74	A72	E5C	913	447	3B4	BAA	321	784
	7A5	322	700	DE3	BA8	7DD	998	040	A8D	9A2	05A	EE5	330	9EC
	9BE	78D	350	AF5	327	311	F5B	252	77A	C45	49E	2ED	20C	030
$2^{n-t/2}$	289	597	BED	540	A60	7AF	F96	511	AF2	41F	278	D25	400	4EB
Ciphertexts	031	ED8	EEB	6CC	B5A	440	067	154	AB5	CEE	015	70A	1ED	1B7
	38E	018	41A	DEB	970	2D3	97A	FOE	45C	94B	251	218	5FB	82A
	417	FF4	81D	00D	49D	D9A	841	737	416	BA8	452	ACO	335	793
	21B	B07	A20	4F4	C1D	B07	2DF	410	340	6AB	0D2		CE9	4C9
		BDA	A93	B85	351	831	763	FAO	E95	E5F	1EE		7D5	8C0
	5F5	935	574	21D	EE0	1BF	338	6DB	DDC	F67		7F6	8EC	A8D

Gaëtan Leurent (Inria, France)

irthday attacks

Exploiting CBC collisions

Plaintext recovery on CTI 00000 *Beyond-birthday security* 000000

Conclusion O

Towards a Practical attack

		<u> </u>						- 2 t -						
Plaintext		GET	⊔/i	nde	x.h	tml	$_{\sqcup}HT$	TP/	1.1	Coo	kie	:⊔C	=??	???
T	178	4E5	71A	A39	68A	399	7D8	8F0	FEA	902	932	204	85A	969
	E57	1AA	396	8A3	997	D88	F0F	EA9	029	322	048	5A9	6E0	EA4
	1D6	645	EA2	050	FAE	D74	A72	E5C	913	447	3B4	BAA	321	784
	7A5	322	700	DE3	BA8	7DD	998	040	A8D	9A2	05A	EE5	330	9EC
	9BE	78D	350	AF5	327	311	F5B	252	77A	C45	49E	2ED	20C	030
$2^{n-t/2}$	289	597	BED	540	A60	7AF	F96	511	AF2	41F	278	D25	400	4EB
Ciphertexts	031	ED8	EEB	6CC	B5A	440	067	154	AB5	CEE	015	70A	1ED	1B7
	38E	018	41A	DEB	970	2D3	97A	FOE	45C	94B	251	218	5FB	82A
	417	FF4	81D	00D	49D	D9A	841	737	416	BA8	452	ACO	335	793
	21B	B07	A20	4F4	C1D	B07	2DF	410	340	6AB	0D2	96B	CE9	4C9
		BDA	A93	B85	351	831	763	FAO	E95	E5F	1EE		7D5	8C0
	5F5	935	574	21D	EE0	1BF	338	6DB	DDC	F67		7F6	8EC	A8D

Gaëtan Leurent (Inria, France)

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CT1 00000 *Beyond-birthday security* 000000

Conclusion O

Towards a Practical attack

								- 2 ^t -						
Plaintext		GET	⊔/i	nde	x.h	tml	⊔HT	TP/	1.1	Coo	kie	:C	=??	???
T	178	4E5	71A	A39	68A	399	7D8	8F0	FEA	902	932	204	85A	969
	E57	1AA	396	8A3	997	D88	F0F	EA9	029	<mark>322</mark>	048	5A9	6E0	EA4
	1D6	645	EA2	050	FAE	D74	A72	E5C	913	447	3B4	BAA	321	784
	7A5	322	700	DE3	BA8	7DD	998	040	A8D	9A2	05A	EE5	330	9EC
	9BE	78D	350	AF5	327	311	F5B	252	77A	C45	49E	2ED	20C	030
$2^{n-t/2}$	289	597	BED	540	A60	7AF	F96	511	AF2	41F	278	D25	400	4EB
Ciphertexts	031	ED8	EEB	6CC	B5A	440	067	154	AB5	CEE	015	70A	1ED	1B7
	38E	018	41A	DEB	970	2D3	97A	FOE	45C	94B	251	218	5FB	82A
	417	FF4	81D	00D	49D	D9A	841	737	416	BA8	452	ACO	335	793
	21B	B07	A20	4F4	C1D	B07	2DF	410	340	6AB	0D2	96B	CE9	4C9
	536	BDA	A93	B85	351	831	763	FAO	E95	E5F	1EE	986	7D5	8C0
	5F5	935	574	21D	EE0	1BF	338	6DB	DDC	F67		7F6	8EC	A8D

Gaëtan Leurent (Inria, France)

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTI 00000 *Beyond-birthday security* 000000

Conclusion O

Towards a Practical attack

		<u> </u>						- 2t -						
Plaintext		GET	⊔/i	nde	x.h	tml	$_{\sqcup}HT$	TP/	1.1	Coo	kie	:C	=??	???
T	178	4E5	71A	A39	68A	399	7D8	8F0	FEA	902	932	204	85A	969
	E57	1AA	396	8A3	997	D88	FOF	EA9	029	322	048	5A9	6E0	EA4
	1D6	645	EA2	050	FAE	D74	A72	E5C	913	447	3B4	BAA	321	784
	7A5	322	700	DE3	BA8	7DD	998	040	A8D	9A2	05A	EE5	330	9EC
	9BE	78D	350	AF5	327	311	F5B	252	77A	C 45	49E	2ED	20C	030
$2^{n-t/2}$	289	597	BED	540	A60	7AF	F96	511	AF2	41F	278	D25	400	4EB
Ciphertexts	031	ED8	EEB	6CC	B5A	440	067	154	AB5	CEE	015	70A	1ED	1B7
	38E	018	41A	DEB	970	2D3	97A	F0E	45C	94B	251	218	5FB	82A
	417	FF4	81D	00D	49D	D9A	841	737	416	BA8	452	ACQ	335	793
	21B	B07	A20	4F4	C1D	B07	2DF	410	340	6AB	0D2	96B	CE9	4C9
	536	BDA	A93	B85	351	831	763	FAO	E95	E5F	1EE	986	7D5	8C0
	5F5	935	574	21D	EE0	1BF	338	6DB	DDC	F67	090	7F6	8EC	A8D

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTF 00000 *Beyond-birthday security* 000000

Conclusion 0

Towards a Practical attack

- Assume a fixed message is repeatedly encrypted (under a fixed key)
 - Including a high value secret (cookie, password, ...)
 - And some known/predictable sections (headers, ...)
- Each collision reveals the xor of two plaintext blocks
- With some luck, xor of a known value and the secret

 $\underbrace{\text{cookie}}_{unknown} \oplus \underbrace{\text{header}}_{known} = \underbrace{c_{i-1} \oplus c_{j-1}}_{known}$

Success after roughly 2^t collisions

- $2^{n/2-t/2}$ message copies, $2^{n/2+t/2}$ blocks
- Tradeoff between number of copies and total amount of data

If rekeying after roughly 2^{n/2} blocks, attack still possible
 2^{n/2} message copies, 2^{n/2+t} blocks

Gaëtan Leurent (Inria, France)

Security Issues with Small Block Sizes

a few blocks 2^t blocks

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTR 00000 *Beyond-birthday security* 000000

Conclusion 0

Towards a Practical attack

- Assume a fixed message is repeatedly encrypted (under a fixed key)
 - Including a high value secret (cookie, password, ...)
 - And some known/predictable sections (headers, ...)
- Each collision reveals the xor of two plaintext blocks
- With some luck, xor of a known value and the secret

 $\underbrace{\text{cookie}}_{unknown} \oplus \underbrace{\text{header}}_{known} = \underbrace{c_{i-1} \oplus c_{j-1}}_{known}$

Success after roughly 2^t collisions

- $2^{n/2-t/2}$ message copies, $2^{n/2+t/2}$ blocks
- Tradeoff between number of copies and total amount of data
- If rekeying after roughly $2^{n/2}$ blocks, attack still possible
 - $2^{n/2}$ message copies, $2^{n/2+t}$ blocks

Gaëtan Leurent (Inria, France)

a few blocks 2^t blocks

Birthday attack

Exploiting CBC collisions

Plaintext recovery on CTI 00000 *Beyond-birthday security*

Conclusion 0

HTTPS encryption: HTTP over TLS

HTTP

- Hypertext Transfer Protocol
 - Request/response (text)
 - Headers and body

	GET /index.html HTTP/1.1	
	User-Agent: Firefox	
←		
`	HTTP/1.1 200 OK	
	Content-Type: text/html	
	<h+ml></h+ml>	
	<body></body>	

TLS

- Transport Layer Security
 - Evolution of Netscape's SSL
 - Current version: TLS 1.2
- Stream encryption protocol
 - Algorithm negotiation
 - Handshake: asym. crypto
 - Transport: sym. crypto
- Each HTTP message encrypted in a TLS packet

hirthday attacks

Exploiting CBC collisions

Plaintext recovery on CTF 00000 *Beyond-birthday security*

Conclusion 0

64-bit block ciphers in HTTPS

- 3DES is one of the ciphers supported in TLS
 - Mandatory to implement up to TLS 1.1

3DES usage

- About 1% of HTTPS connections use 3DES
 - Outdated client/servers
 - Windows XP / Windows 2003 Server don't support AES out of the box
 - Many poorly configured servers support AES, but prefer 3DES

Session length

- HTTP 1.1 allows connection reuse (Keep-alive)
- Web browsers reuse a connection as long as possible
- ▶ Web servers: Apache, Nginx limit to 200 queries per session
 - In practice, many high-profile website support very long sessions

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTR 00000 *Beyond-birthday security* 000000

Conclusion 0

HTTP authentication tokens

HTTP is stateless: authentication tokens sent with every request

HTTP 1.1 Keep-alive sends many requests in the same connection

HTTP Basic Auth (RFC 7617)

User/Password sent in a header (base64 encoded)

Authorization: Basic dGVzdDoxMjPCow=

HTTP Cookies (RFC 6265)

- 1 User sends password in a from
- 2 Server reply with a Cookie
- 3 Cookie is included in every subsequent request

Cookie: C=123456

Birthday attacks 000000

Exploiting CBC collisions

Plaintext recovery on CTR 00000 *Beyond-birthday security*

Conclusion O

Javascript attack

- A webpage is not just data, it includes code
- Malicious website can send requests to third party
- Requests include authentication cookies

```
Javascript attack
var url = "https://www.facebook.com/index.html";
var xhr = new XMLHttpRequest;
while(true) {
    xhr.open("HEAD", url, false);
    xhr.withCredentials = true;
    xhr.send();
    xhr.abort();
}
```

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTR 00000 eyond-birthday security 00000

[Duong & Rizzo 2011]

Conclusion 0

BEAST Attack Setting

- Attacker has access to the network (eg. public WiFi)
- User logged-in to secure website (w/ cookie or BasicAuth)
- 1 Attacker uses JS to generate traffic
 - Tricks victim to malicious site
 - JS makes cross-origin requests
- 2 Attacker captures encrypted data
- Very powerful model Chosen plaintext

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTF 00000 *Beyond-birthday security*

Conclusion 0

Proof-of-concept Attack Demo

- Demo with Firefox (Linux), and IIS 6.0 (Windows Server 2003)
 - Default configuration of IIS 6.0 does not support AES
- Each HTTP request encrypted in TLS record, with fixed key
- 1 Generate traffic with malicious JavaScript
- 2 Capture on the network with tcpdump
- 3 Remove header, extract ciphertext at fixed position
- 4 Sort ciphertext (stdxx1), look for collisions
- Expected time: 38 hours for 785 GB (tradeoff q. size / # q.).
- In practice: 30.5 hours for 610 GB.

Another target

OpenVPN uses **Blowfish-CBC** by default

Birthday attack

Exploiting CBC collisions

Plaintext recovery on CTF 00000 *Beyond-birthday security* 000000

Conclusion 0

Disclosure and mitigation

Sweet32 attack

- Birthday attacks against 64-bit block ciphers are practical
- On the Practical (In-)Security of 64-bit Block Ciphers Karthikeyan Bhargavan, G. L. [ACM CCS '16]

- Mozilla has implemented data limits in Firefox 51 (1M records)
- NIST has limited 3DES usage to 2²⁰ blocks per key
- OpenSSL has updated the list of HIGH security ciphers (sorted)
 - ▶ Before 2014: AES256, CAMELLIA256, 3DES, AES128, CAMELLIA128
 - ► After 2014: AES256, CAMELLIA256, AES128, CAMELLIA128, 3DES
 - ► After 2016: AES256, CAMELLIA256, AES128, CAMELLIA128

32

Birthday attacks 000000 *Exploiting CBC collisions*

Plaintext recovery on CTR

Beyond-birthday security 000000 Conclusion O

Introduction

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTR

Beyond-birthday security

Conclusion

Gaëtan Leurent (Inria, France)

irthday attacks

Exploiting CBC collisions

Plaintext recovery on CTR ••••• *Beyond-birthday security* 000000

Conclusion 0

CBC vs. CTR

- Security proof up to the birthday bound
- Collisions reveals xor of two plaintext blocks

- Security proof up to the birthday bound
- Distinguishing attack: Keystream doesn't collide

Birthday attacks 000000

Exploiting CBC collisions

Plaintext recovery on CTR 0000 *Beyond-birthday security* 000000

Conclusion O

Plaintext recovery on CTR

Plaintext recovery

Collect two kind of blocks

$$a_i = E(i)$$

- $b_j = E(j) \oplus S$
- $\blacktriangleright \forall i, j, S \neq a_i \oplus b_j$

The missing difference problem

- Given \mathcal{A} and \mathcal{B} , and a hint \mathcal{S}
- Find $S \in S$ such that:

$$\forall (a, b) \in \mathcal{A} \times \mathcal{B}, \ S \neq a \oplus b$$

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTR

Beyond-birthday security

Conclusion 0

Missing difference problem algorithms

Algorithms for the missing difference problem

Sieving Complexity $\tilde{\mathcal{O}}(2^n)$ [McGrew]Searching Complexity $\tilde{\mathcal{O}}(2^{n/2}\sqrt{|\mathcal{S}|})$ [McGrew]Known-prefix sieving Complexity $\tilde{\mathcal{O}}(2^{n/2} + 2^{\dim\langle \mathcal{S}\rangle})$ [New]Fast convolution sieving Complexity $\tilde{\mathcal{O}}(2^{2n/3})$ [New]

The Missing Difference Problem, and its Applications to Counter Mode Encryption Ferdinand Sibleyras, G. L.
[Eurocrypt '18]

- Plaintext recovery with birthday complexity
- CTR not more secure than CBC

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTR

Beyond-birthday security 000000 Conclusion 0

Application to CTR (CPSS queries)

- Plaintext recovery using the known-prefix sieving algorithm
- Two kind of queries:
 Queries Q₁ with half-block header

Queries Q₂ with full-block header

1 Recover S_1 using the first block of each query: $\mathcal{A} = \{\mathcal{E}(H_1 || H_2)\}, \mathcal{B} = \{\mathcal{E}(H_1 || S_1)\}, \longrightarrow \text{Missing difference}; \quad 0 || (S_1 \oplus H_2).$

 $\mathcal{A} = \{\mathcal{E}(H_1 || H_2)\}, \mathcal{B} = \{\mathcal{E}(S_1 || S_2)\}, \qquad \rightarrow \text{Missing difference: } (S_1 \oplus H_1) || (S_2 \oplus H_2)$

3 When S_2 is known, recover S_3 : $\mathcal{A} = \{\mathcal{E}(H_1 || H_2)\}, \mathcal{B} = \{\mathcal{E}(S_2 || S_3)\}$

 \rightarrow Missing difference: $(S_2 \oplus H_1) || (S_3 \oplus H_2)$.

Sirthday attacks

Exploiting CBC collisions

Plaintext recovery on CTR

Beyond-birthday security 000000 Conclusion 0

Application to CTR (CPSS queries)

- Plaintext recovery using the known-prefix sieving algorithm
- Two kind of queries:
 Queries Q₁ with half-block header

Queries Q₂ with full-block header

3 When S_2 is known, recover S_3 : $\mathcal{A} = \{\mathcal{E}(H_1 || H_2)\}, \mathcal{B} = \{\mathcal{E}(S_2 || S_3)\}. \rightarrow \text{Missing difference: } (S_2 \oplus H_1) || (S_3 \oplus H_2).$

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTR

Beyond-birthday security

Conclusion 0

Application to CTR (CPSS queries)

- Plaintext recovery using the known-prefix sieving algorithm
- Two kind of queries:
 Queries Q₁ with half-block header

Queries Q₂ with full-block header

- **1** Recover S_1 using the first block of each query: $\mathcal{A} = \{\mathcal{E}(H_1 || H_2)\}, \mathcal{B} = \{\mathcal{E}(H_1 || S_1)\}, \rightarrow \text{Missing difference:} \quad 0 || (S_1 \oplus H_2).$
- 2 When S_1 is known, recover S_2 , with the first and second blocks of Q_2 queries: $\mathcal{A} = \{\mathcal{E}(H_1 || H_2)\}, \mathcal{B} = \{\mathcal{E}(S_1 || S_2)\}, \longrightarrow \text{Missing difference: } (S_1 \oplus H_1) || (S_2 \oplus H_2).$

3 When S_2 is known, recover S_3 :

$$\mathcal{A} = \{\mathcal{E}(H_1 || H_2)\}, \mathcal{B} = \{\mathcal{E}(S_2 || S_3)\}.$$

→ Missing difference: $(S_2 \oplus H_1) || (S_3 \oplus H_2)$.

Gaëtan Leurent (Inria, France)

. . .

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTR

Beyond-birthday security 000000

Conclusion O

Security of modes of operation

- All common modes have security proofs up to the birthday bound
- Plaintext recovery with one of these techniques
 - Collision attack if collisions happen
 - Missing difference problem if collisions don't happen

Example: f8 mode

- Used in 3G telephony
- With a 64-bit block cipher (Kasumi)
- Designed to limit birthday attacks
- Missing difference attack
 - First block of keystream does not repeat
 - Instance of missing difference problem

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTR

Beyond-birthday security 000000

Conclusion 0

Security of modes of operation

- All common modes have security proofs up to the birthday bound
- Plaintext recovery with one of these techniques
 - Collision attack if collisions happen
 - Missing difference problem if collisions don't happen

Example: f8 mode

- Used in 3G telephony
- With a 64-bit block cipher (Kasumi)
- Designed to limit birthday attacks
- Missing difference attack
 - First block of keystream does not repeat
 - Instance of missing difference problem

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTR 00000 *Beyond-birthday security* 000000

Conclusion O

Introduction

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTR

Beyond-birthday security

Conclusion

Gaëtan Leurent (Inria, France)

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTR 00000 *Beyond-birthday security* 00000

Conclusion 0

Countermeasures

1 Use a block cipher with larger block size (eg AES, Rinjdael-256)

- Not lightweight
- 2 Limit the amount of data per key (rekeying)
 - Often ignored by implementers
 - Adversary can make you generate data
 - Need very low limit with 64-bit blocks
 - NIST now limits 3DES to 2²⁰ blocks per key (8MB)
 - NIST lightweight call requires at least 2⁵⁰ blocks per key
 - Rekeying allows multi-key attacks
 - Birthday attack to recover one key out of many

3 Use better modes of operation?

Security beyond the birthday bound

The security loss of CTR is because of the PRF/PRP switching lemma

c₂

 m_2

 $\mathsf{Adv}_{\mathsf{CTR-E}}^{\mathsf{CPA}}(\sigma) \leq \mathsf{Adv}_{\mathsf{F}}^{\mathsf{PRF}}(\sigma)$

 m_3

 m_4

 C_4

C3

▶ We can build a better PRF as $E(0||x) \oplus E(1||x)$ (Xor of Permutations) ▶ Security close to 2^n [Patarin'08], [Patarin'13], [DHT, Crypto'17]

Gaëtan Leurent (Inria, France)

 m_1

C1

rthday attacks 00000 Exploiting CBC collisions

Plaintext recovery on CTR 00000 *Beyond-birthday security* 00000

Conclusion O

Better PRFs

The security loss of CTR is because of the PRF/PRP switching lemma

 $\mathsf{Adv}_{\mathsf{CTR-E}}^{\mathsf{CPA}}(\sigma) \leq \mathsf{Adv}_{\mathsf{F}}^{\mathsf{PRF}}(\sigma)$

- We can build a better PRF as $E(0||x) \oplus E(1||x)$
 - Security close to 2ⁿ

(Xor of Permutations) [Patarin'08], [Patarin'13], [DHT, Crypto'17]

Gaëtan Leurent (Inria, France)

hday attacks 0000 *Exploiting CBC collisions*

Plaintext recovery on CTF 00000 *Beyond-birthday security* 000000

Conclusion 0

- CENC: Similar security as CTR-XoP with smaller overhead
 - Designed by Iwata, security proof up to 2^{2n/3}
 - Security proof up to 2ⁿ/w

[FSE '06] [Iwata, Mennink & Vizár '16]

Gaëtan Leurent (Inria, France)

BBB secure MACs

- All iterated deterministic MACs are broken by collision attack with 2ⁿ messages
- 1 Use a larger internal state
 - SUM-ECBC, PMAC+, 3kf9 have a 2n-bit internal state with an n-bit block cipher
 - Security proofs up to 2^{2n/3}
 - Open problem: no known attack, what is their actual security?
- 2 Use a non-deterministic MAC (randomized or IV-based)
 - RMAC, Wegman-Carter: security up to almost 2ⁿ
 - In practice: Wegman-Cater-Shoup birthday security

thday attacks

Exploiting CBC collisions

Plaintext recovery on CTR 00000 *Beyond-birthday security* 000000

Conclusion 0

Wegman-Carter MACs

Wegman-Carter: build a MAC from a universal hash function and a PRF

 $WC(N, M) = H_{k_1}(M) \oplus F_{k_2}(N).$

- Security close to 2ⁿ
- Wegman-Carter-Shoup: use a block cipher as a PRF

$$WCS(N, M) = H_{k_1}(M) \oplus E_{k_2}(N),$$

Birthday security

Example: Polynomial-based hasing (GMAC, Poly1305-AES)

$$m_1 \qquad m_2 \qquad len(M) \qquad N \| 1 \rightarrow \underbrace{E_k}_{0} \rightarrow \bigcirc H \rightarrow \neg \uparrow$$

- Better options: WMAC, EWCDM, WC with XoP, ...
 - Security close to 2ⁿ

Gaëtan Leurent (Inria, France)

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTR 00000 *Beyond-birthday security* 00000

Conclusion 0

Using Tweakable block-ciphers

- Another option: use a different primitive
- Tweakable block cipher

[Liskov, Rivest & Wagner '02]

- For each key, a family of independent permutations (indexed by public tweak)
- Dedicated designs: SCREAM, Deoxys, Joltik, Skinny

TAE/ Θ CB: authenticated encryption[LRW'02, Rogaway'04] m_0 m_1 m_2 $\sum_i m_i$ $N \parallel 0 \parallel 0 \rightarrow E$ $N \parallel 0 \parallel 1 \rightarrow E$ $N \parallel 0 \parallel 2 \rightarrow E$ $N \parallel 1 \parallel \ell \rightarrow E$

Secure up to 2ⁿ blocks with an n-bit state

Cn

roduction

Birthday attacks

Exploiting CBC collisions

Plaintext recovery on CTF 00000 *Beyond-birthday security* 000000 Conclusion

Conclusion

- Security of modes is lower than security of block ciphers
- Distinguishers matter!
 - All classical modes broken with collisions or missing differences
 - Plaintext recovery possible with birthday complexity

Security issues with small block sizes

- Practical attacks against 64-bit block cipher with classical modes
- Be careful with 64-bit lightweight block ciphers...
- More research needed on lightweight modes, in addition to lightweight bloc ciphers

