Truncated Boomerang Distinguisher

Truncated Boomerang Key-recovery

Application

Conclusion 0

Truncated Boomerang Attacks and Application to AES-based Ciphers

Augustin Bariant, Gaëtan Leurent

INRIA, Paris

Eurocrypt 2023

Augustin Bariant, Gaëtan Leurent (Inria) Truncated Boomerang Attacks and Application to AES-based Ciphers

Introd	uctio)
•000)	

Truncated Boomerang Distinguisher

Truncated Boomerang Key-recovery

Application 0000 Conclusion 0

The AES

AES is the most widely used block cipher today

- Designed in 1999
- Selected by NIST

[Daemen & Rijmen] [FIPS 197]

- Round function and reduced versions reused in many context
 - Hash function: Grøstl (SHA-3 finalist), LED, ECHO
 - Stream cipher: LEX
 - MACs: Alpha-MAC
 - Tweakable block ciphers: Deoxys (CAESAR portfolio), KIASU, TNT
 - AEAD: Aegis (CAESAR portfolio), Tiaoxin
- Need cryptanalysis to evaluate security
 - New and old attack techniques
 - Many recent results!

Augustin Bariant, Gaëtan Leurent (Inria) Truncated

Truncated Boomerang Distinguisher

Fruncated Boomerang Key-recovery

oplications

Conclusion 0

The Boomerang Attack

Combine two short differentials instead of using a long one.

$$E = E_1 \circ E_0$$

$$\Delta_{in} \xrightarrow{P} \Delta_{out}$$

$$\nabla_{in} \xrightarrow{q} \nabla_{out}$$

 Uses an encryption oracle and decryption oracle

- Adaptive attack
- Build quartets

Truncated Boomerang Distinguisher

Truncated Boomerang Key-recovery

Applications

Conclusion 0

Boomerang Quartet

1
$$P \leftarrow \$$$
, $P' = P + \Delta_{in}$ 2 $C = E(P)$, $C' = E(P')$ 3 $\overline{C} = C + \nabla_{out}$, $\overline{C'} = C' + \nabla_{out}$ 4 $\overline{P} = E^{-1}(\overline{C})$, $\overline{P'} = E^{-1}(\overline{C'})$ 5Check if $\overline{P} + \overline{P'} = \Delta_{in}$

Probability of returning: $p_b = p^2 q^2$ \triangleright $\Pr[X + X' = \Delta_{out}] = p$ \triangleright $\Pr[X + \overline{X} = \nabla_{in}] = q$ \triangleright $\Pr[X' + \overline{X'} = \nabla_{in}] = q$ \triangleright If this holds, then $\overline{X} + \overline{X'} = \Delta_{out}$ \triangleright $\Pr[\overline{P} + \overline{P'} = \Delta_{in}] = p$ Distinguisher if $p_b \gg 2^{-n}$

Augustin Bariant, Gaëtan Leurent (Inria)

Truncated Boomerang Distinguisher

Truncated Boomerang Key-recovery

Applications

Conclusion 0

Boomerang Quartet

1
$$P \leftarrow \$$$
, $P' = P + \Delta_{in}$ 2 $C = E(P)$, $C' = E(P')$ 3 $\overline{C} = C + \nabla_{out}$, $\overline{C'} = C' + \nabla_{out}$ 4 $\overline{P} = E^{-1}(\overline{C})$, $\overline{P'} = E^{-1}(\overline{C'})$ 5Check if $\overline{P} + \overline{P'} = \Delta_{in}$

Probability of returning: $p_b = p^2 q^2$ \triangleright $\Pr[X + X' = \Delta_{out}] = p$ \triangleright $\Pr[X + \overline{X} = \nabla_{in}] = q$ \triangleright $\Pr[X' + \overline{X'} = \nabla_{in}] = q$ \triangleright If this holds, then $\overline{X} + \overline{X'} = \Delta_{out}$ \triangleright $\Pr[\overline{P} + \overline{P'} = \Delta_{in}] = p$ Distinguisher if $p_b \gg 2^{-n}$

Augustin Bariant, Gaëtan Leurent (Inria)

Introduction	Truncated Boomerang Distinguisher	Truncated Boomerang Key-recovery	Applications	Conclusion 0
		Our results		
1 Revisi ► U ► Si ► G	ting boomerang with trunca lse of structures: plaintext ciph tatistical distinguishers and key seneric formula for complexity	t <mark>ed differentials</mark> ertext -recovery	[Wagner, F	⁻ SE'99]
2 Impro ► K ► K ► 6	ving boomerang attack on 6 ey-recovery with complexity 2 ey-recovery with secret S-Boxe -round statistical distinguisher	-round AES ⁶¹ (improved from 2 ⁷¹) es ("key-independent")	[Biryukov, A	\ES'04]
3 Best a	<mark>ttacks</mark> on several AES-based IASU NT-AES ^{Jeoxys}	tweakable block ciphe	rs [Jean, Nikolić & Peyrin, [Bao, Guo, Guo & Song [Jean, Nikolić & Peyrin	, AC'14] ;, EC'20] , AC'14]

Truncated Boomerang Distinguisher

Fruncated Boomerang Key-recovery

Application

Conclusion 0

Outline

Introduction

Truncated Boomerang Distinguisher

Truncated Boomerang Key-recovery

Applications

Conclusion

Augustin Bariant, Gaëtan Leurent (Inria)

Truncated Boomerang Distinguisher

Truncated Boomerang Key-recovery

Applications 0000

Conclusion 0

[Kundsen, FSE'94]

Truncated differential cryptanalysis

- Generalisation of differential cryptanalysis
- Truncate information about differences, (e.g. active/inactive bytes)
- Set of input/output differences: \mathcal{D}_{in} , \mathcal{D}_{out}
- $\blacktriangleright \vec{p} = \operatorname{Avg}_{\Delta_{\operatorname{in}} \in \mathcal{D}_{\operatorname{in}}} \Pr\left[E(P) + E(P + \Delta_{\operatorname{in}}) \in \mathcal{D}_{\operatorname{out}} \right]$
- ► $\tilde{p} = \operatorname{Avg}_{\Delta_{\operatorname{out}} \in \mathcal{D}_{\operatorname{out}}} \operatorname{Pr} \left[E^{-1}(P) + E^{-1}(P + \Delta_{\operatorname{out}}) \in \mathcal{D}_{\operatorname{in}} \right]$ ► $\frac{\tilde{p}}{|\mathcal{D}_{\operatorname{out}}|} = \frac{\tilde{p}}{|\mathcal{D}_{\operatorname{in}}|} = \operatorname{Avg}_{\Delta_{\operatorname{in}} \in \mathcal{D}_{\operatorname{in}}, \Delta_{\operatorname{out}} \in \mathcal{D}_{\operatorname{out}}} \operatorname{Pr} \left[E(P) + E(P + \Delta_{\operatorname{in}}) = \Delta_{\operatorname{out}} \right]$

Example: 3-round AES truncated trail

Augustin Bariant, Gaëtan Leurent (Inria)

Truncated Boomerang Distinguisher

Truncated Boomerang Key-recovery

Applications

Conclusion 0

Truncated Boomerang Quartet

1 $P' = P + \Delta_{in}, \quad \Delta_{in} \in \mathcal{D}_{in}^{0}$ 2 $\overline{C} = C + \nabla_{out}, \nabla_{out} \in \mathcal{D}_{out}^{1}$ 3 $\overline{C'} = C' + \nabla'_{out'}, \nabla'_{out} \in \mathcal{D}_{out}^{1}$ 4 Check if $\overline{P} + \overline{P'} \in \mathcal{D}_{in}^{0}$ • Note: $\nabla_{out} \neq \nabla'_{out}$

Probability of returning: $p_b = \vec{p} \cdot \vec{p} \cdot \vec{q}^2 \cdot r$ $\blacktriangleright \Pr[X + X' \in \mathcal{D}_{out}^0] = \vec{p}$ $\blacktriangleright \Pr[X + \overline{X} \in \mathcal{D}_{in}^1] = \vec{q}$ $\blacktriangleright \Pr[X' + \overline{X'} \in \mathcal{D}_{in}^1] = \vec{q}$ $\vdash \Pr[\overline{X} + \overline{X'} \in \mathcal{D}_{out}^0] = r \ge |\mathcal{D}_{in}^1|^{-1}$ $\vdash \Pr[\overline{P} + \overline{P'} = \Delta_{in}] = \vec{p}$

Truncated Boomerang Distinguisher

Truncated Boomerang Key-recovery

Applications

Conclusion 0

Truncated Boomerang Quartet

1 $P' = P + \Delta_{in}, \quad \Delta_{in} \in \mathcal{D}_{in}^{0}$ 2 $\overline{C} = C + \nabla_{out}, \nabla_{out} \in \mathcal{D}_{out}^{1}$ 3 $\overline{C'} = C' + \nabla'_{out}, \nabla'_{out} \in \mathcal{D}_{out}^{1}$ 4 Check if $\overline{P} + \overline{P'} \in \mathcal{D}_{in}^{0}$ • Note: $\nabla_{out} \neq \nabla'_{out}$

Probability of returning: $p_b = \vec{p} \cdot \vec{p} \cdot \vec{q}^2 \cdot r$ \triangleright $\Pr[X + X' \in \mathcal{D}_{out}^0] = \vec{p}$ \triangleright $\Pr[X + \overline{X} \in \mathcal{D}_{in}^1] = \vec{q}$ \triangleright $\Pr[X' + \overline{X'} \in \mathcal{D}_{in}^1] = \vec{q}$ \triangleright $\Pr[\overline{X} + \overline{X'} \in \mathcal{D}_{out}^0] = r \ge |\mathcal{D}_{in}^1|^{-1}$ \triangleright $\Pr[\overline{P} + \overline{P'} = \Delta_{in}] = \vec{p}$

Augustin Bariant, Gaëtan Leurent (Inria) Th

Truncated Boomerang Distinguisher

Truncated Boomerang Key-recovery

Applications

Conclusion 0

Truncated Boomerang Quartet

1 $P' = P + \Delta_{in}, \quad \Delta_{in} \in \mathcal{D}_{in}^{0}$ 2 $\overline{C} = C + \nabla_{out}, \nabla_{out} \in \mathcal{D}_{out}^{1}$ 3 $\overline{C'} = C' + \nabla'_{out}, \nabla'_{out} \in \mathcal{D}_{out}^{1}$ 4 Check if $\overline{P} + \overline{P'} \in \mathcal{D}_{in}^{0}$ • Note: $\nabla_{out} \neq \nabla'_{out}$

Probability of returning: $p_b = \vec{p} \cdot \vec{p} \cdot \vec{q}^2 \cdot r$ Pr $[X + X' \in \mathcal{D}_{out}^0] = \vec{p}$ Pr $[X + \overline{X} \in \mathcal{D}_{in}^1] = \vec{q}$ Pr $[X' + \overline{X'} \in \mathcal{D}_{in}^1] = \vec{q}$ Pr $[\overline{X} + \overline{X'} \in \mathcal{D}_{out}^0] = r \ge |\mathcal{D}_{in}^1|^{-1}$ Pr $[\overline{P} + \overline{P'} = \Delta_{in}] = \vec{p}$

Truncated Boomerang Distinguisher

Truncated Boomerang Key-recovery

Applications

Conclusion 0

Truncated Boomerang Quartet

1 $P' = P + \Delta_{in}, \quad \Delta_{in} \in \mathcal{D}_{in}^{0}$ 2 $\overline{C} = C + \nabla_{out}, \nabla_{out} \in \mathcal{D}_{out}^{1}$ 3 $\overline{C'} = C' + \nabla'_{out}, \nabla'_{out} \in \mathcal{D}_{out}^{1}$ 4 Check if $\overline{P} + \overline{P'} \in \mathcal{D}_{in}^{0}$ • Note: $\nabla_{out} \neq \nabla'_{out}$

Probability of returning: $p_b = \vec{p} \cdot \vec{p} \cdot \vec{q}^2 \cdot r$ $\Pr[X + X' \in \mathcal{D}_{out}^0] = \vec{p}$ $\Pr[X + \overline{X} \in \mathcal{D}_{in}^1] = \vec{q}$ $\Pr[X' + \overline{X'} \in \mathcal{D}_{in}^1] = \vec{q}$ $\Pr[\overline{X} + \overline{X'} \in \mathcal{D}_{out}^0] = r \ge |\mathcal{D}_{in}^1|^{-1}$ $\Pr[\overline{P} + \overline{P'} = \Delta_{in}] = \vec{p}$

Truncated Boomerang Distinguisher

Truncated Boomerang Key-recovery

Applications

Conclusion 0

Truncated Boomerang Quartet

1 $P' = P + \Delta_{in}, \quad \Delta_{in} \in \mathcal{D}_{in}^{0}$ 2 $\overline{C} = C + \nabla_{out}, \nabla_{out} \in \mathcal{D}_{out}^{1}$ 3 $\overline{C'} = C' + \nabla'_{out}, \nabla'_{out} \in \mathcal{D}_{out}^{1}$ 4 Check if $\overline{P} + \overline{P'} \in \mathcal{D}_{in}^{0}$ • Note: $\nabla_{out} \neq \nabla'_{out}$

Probability of returning: $p_b = \vec{p} \cdot \vec{p} \cdot \vec{q}^2 \cdot r$ $\Pr[X + X' \in \mathcal{D}_{out}^0] = \vec{p}$ $\Pr[X + \overline{X} \in \mathcal{D}_{in}^1] = \vec{q}$ $\Pr[X' + \overline{X'} \in \mathcal{D}_{in}^1] = \vec{q}$ $\Pr[\overline{X} + \overline{X'} \in \mathcal{D}_{out}^0] = r \ge |\mathcal{D}_{in}^1|^{-1}$ $\Pr[\overline{P} + \overline{P'} = \Delta_{in}] = \vec{p}$

Truncated Boomerang Distinguisher

Truncated Boomerang Key-recovery

Applications

Conclusion 0

Truncated Boomerang Quartet

1 $P' = P + \Delta_{in}, \quad \Delta_{in} \in \mathcal{D}_{in}^{0}$ 2 $\overline{C} = C + \nabla_{out}, \nabla_{out} \in \mathcal{D}_{out}^{1}$ 3 $\overline{C'} = C' + \nabla'_{out}, \nabla'_{out} \in \mathcal{D}_{out}^{1}$ 4 Check if $\overline{P} + \overline{P'} \in \mathcal{D}_{in}^{0}$ • Note: $\nabla_{out} \neq \nabla'_{out}$

Probability of returning: $p_b = \vec{p} \cdot \vec{p} \cdot \vec{q}^2 \cdot r$ $\Pr[X + X' \in \mathcal{D}_{out}^0] = \vec{p}$ $\Pr[X + \overline{X} \in \mathcal{D}_{in}^1] = \vec{q}$ $\Pr[X' + \overline{X'} \in \mathcal{D}_{in}^1] = \vec{q}$ $\Pr[\overline{X} + \overline{X'} \in \mathcal{D}_{out}^0] = r \ge |\mathcal{D}_{in}^1|^{-1}$ $\Pr[\overline{P} + \overline{P'} = \Delta_{in}] = \vec{p}$

Truncated Boomerang Distinguisher

Truncated Boomerang Key-recovery

Applications 0000 Conclusion 0

Truncated Boomerang Quartet

1 $P' = P + \Delta_{in}, \quad \Delta_{in} \in \mathcal{D}_{in}^{0}$ 2 $\overline{C} = C + \nabla_{out}, \nabla_{out} \in \mathcal{D}_{out}^{1}$ 3 $\overline{C'} = C' + \nabla'_{out}, \nabla'_{out} \in \mathcal{D}_{out}^{1}$ 4 Check if $\overline{P} + \overline{P'} \in \mathcal{D}_{in}^{0}$ • Note: $\nabla_{out} \neq \nabla'_{out}$

Probability of returning: $p_b = \vec{p} \cdot \vec{p} \cdot \vec{q}^2 \cdot r$ $\Pr[X + X' \in \mathcal{D}_{out}^0] = \vec{p}$ $\Pr[X + \overline{X} \in \mathcal{D}_{in}^1] = \vec{q}$ $\Pr[X' + \overline{X'} \in \mathcal{D}_{in}^1] = \vec{q}$ $\Pr[\overline{X} + \overline{X'} \in \mathcal{D}_{out}^0] = r \ge |\mathcal{D}_{in}^1|^{-1}$ $\Pr[\overline{P} + \overline{P'} = \Delta_{in}] = \vec{p}$

Augustin Bariant, Gaëtan Leurent (Inria)

Truncated Boomerang Distinguisher

Truncated Boomerang Key-recovery

Applications

Conclusion 0

Truncated Boomerang Quartet

1 $P' = P + \Delta_{in}, \quad \Delta_{in} \in \mathcal{D}_{in}^{0}$ 2 $\overline{C} = C + \nabla_{out}, \nabla_{out} \in \mathcal{D}_{out}^{1}$ 3 $\overline{C'} = C' + \nabla'_{out'}, \nabla'_{out} \in \mathcal{D}_{out}^{1}$ 4 Check if $\overline{P} + \overline{P'} \in \mathcal{D}_{in}^{0}$ • Note: $\nabla_{out} \neq \nabla'_{out}$

Probability of returning: $p_b = \vec{p} \cdot \vec{p} \cdot \vec{q}^2 \cdot r$ $\Pr[X + X' \in \mathcal{D}_{out}^0] = \vec{p}$ $\Pr[X + \overline{X} \in \mathcal{D}_{in}^1] = \vec{q}$ $\Pr[X' + \overline{X'} \in \mathcal{D}_{in}^1] = \vec{q}$ $\Pr[\overline{X} + \overline{X'} \in \mathcal{D}_{out}^0] = r \ge |\mathcal{D}_{in}^1|^{-1}$ $\Pr[\overline{P} + \overline{P'} = \Delta_{in}] = \vec{p}$

Augustin Bariant, Gaëtan Leurent (Inria)

Truncated Boomerang Distinguisher

Fruncated Boomerang Key-recovery

Application

Conclusion 0

Using structures

• Assuming \mathcal{D}_{in}^0 is a vector space

- **1** Start with a structure of plaintext
- 2 Build a structure for each ciphertext
- ▶ Total structure size |D_{in}^0| · |D_{out}^1|
 ▶ |D_{in}^0| encryption queries
 ▶ |D_{in}^0| · |D_{out}^1| decryption queries
 ▶ |D_{in}^0|^2 · |D_{out}^1|^2 candidate quartets

Truncated Boomerang Distinguisher

- **1** Choose a random P_0
- Define $P_i = P_0 + i$ for $i \in \mathcal{D}_{in}^0$

2 Query
$$C_i = E(P_i)$$

• Define $\overline{C}_i^j = C_i + j$ for $j \in \mathcal{D}_{out}^1$

3 Query
$$\overline{P_i}^j = E^{-1}(\overline{C_i}^j)$$

- **4** Count pairs with $\overline{P_i}^j + \overline{P_{i'}}^{j'} \in \mathcal{D}_{in}^0$
- 5 If needed, repeat with new P_0

Augustin Bariant, Gaëtan Leurent (Inria)

Truncated Boomerang Distinguisher

Truncated Boomerang Key-recovery

Applications

Conclusion 0

Example: 6-round AES boomerang

3-round AES truncated trail for E_0 and E_1

- One structure has $|\mathcal{D}_{in}^0| \cdot |\mathcal{D}_{out}^1| = 2^{64} \overline{P}_i^j$
 - 2¹²⁷ pairs: candidate quartets
 - $2^{127} \cdot p_b = 1/2$ good quartets
 - $2^{127} \cdot 2^{-96} = 2^{31}$ returning quartets: wrong quartets
- Most returning quartets are fake positive
- Detect signal with $\gg 2^{32}$ structures: $T = D = O(2^{96})$

Truncated Boomerang Distinguisher

Fruncated Boomerang Key-recovery

Application: 0000 Conclusion 0

Analysis

- Starting from S structures of size |D⁰_{in}| · |D¹_{out}|
 Q = S × |D⁰_{in}|² · |D¹_{out}|² candidate quartets
- Boomerang probability $p_b = \vec{p} \cdot \vec{p} \cdot \vec{q}^2 \cdot r$
- Random probability $p_{\$} = |\mathcal{D}_{in}^0|/2^n$
- Signal to noise $\sigma = p_b/p_{\$}$

- $Q \cdot p_b$ good quartets
- $Q \cdot p_{\$}$ wrong quartets

If $\sigma \gg 1$

- A few good quartets are sufficient
- $Q = O(1/p_b)$ quartets needed

If $\sigma \ll 1$

More wrong quartets than good
 Q = O(1/σp_b) quartets needed

Time and data complexity

$$T = D = \frac{2Q}{|\mathcal{D}_{in}^0| \cdot |\mathcal{D}_{out}^1|}$$

Augustin Bariant, Gaëtan Leurent (Inria)

Truncated Boomerang Distinguisher

Truncated Boomerang Key-recovery

Application

Conclusion 0

Outline

Introduction

Truncated Boomerang Distinguisher

Truncated Boomerang Key-recovery

Applications

Conclusion

Augustin Bariant, Gaëtan Leurent (Inria)

Truncated Boomerang Distinguisher

Truncated Boomerang Key-recovery

Applications

Conclusion 0

Key recovery

- Usual approach: add rounds before/after distinguisher
 - More rounds, higher complexity than distinguisher
- Our approach: extract key information from right pairs
 - Same number of rounds, lower complexity than distinguisher
- Roughly equivalent, but easier to analyse with generic formulas

If $\sigma \gg 1$

- Collect one good quartet
- (P, P') and $(\overline{P}, \overline{P'})$ follow E_0 trail
- (C, \overline{C}) and $(C', \overline{C'})$ follow E_1 trail
 - This is only true for a subset of keys
 - Recover ℓ candidates for a κ -bit key

If $\sigma \ll 1$

- Collect many quartets
- Assume quartets are good
- (P, P') and $(\overline{P}, \overline{P'})$ follow E_0 trail
- (C, \overline{C}) and $(C', \overline{C'})$ follow E_1 trail
 - This is only true for a subset of keys
 - Recover ℓ candidates for a κ -bit key
- Use counters for key candidates
- Right key suggested more frequently

Truncated Boomerang Distinguisher

Truncated Boomerang Key-recovery

pplications 000 Conclusion 0

Example: 6-round AES boomerang

- Plaintext is known
- Recover candidates for k₀ diagonal
 - Given $(\underline{P}, \underline{P'})$, 2⁸ candidates
 - Given $(\overline{P}, \overline{P'})$, 2⁸ candidates
 - 2⁻¹⁶ candidates in intersection

Last round

- Ciphertext is known
- Recover candidates for k₆ anti-diagonal
 - Given (C, \overline{C}) , 2⁸ candidates
 - Given $(C', \overline{C'})$, 2⁸ candidates
 - 2⁻¹⁶ candidates in intersection
- On average $\ell = 2^{-32}$ candidates for $\kappa = 64$ bits of key

With S structures: S × 2⁶⁴ elements P^j_i, S × 2¹²⁷ pairs, S × 2³¹ returning quartets
 S × 2³¹ fake positives → S × 2³¹ × 2⁻³² = S/2 wrong keys suggestions

S × 1/2 right quartet \rightarrow S × 1/2 × 1 = S/2 correct keys suggestions

• High probability of succes with 8 structures ($D = T = 2^{67}$)

Augustin Bariant, Gaëtan Leurent (Inria)

Truncated Boomerang Key-recovery

Applications 0000

Conclusion 0

Analysis

- Starting from *S* structures of size $|\mathcal{D}_{in}^{0}| \cdot |\mathcal{D}_{out}^{1}|$
- $Q = S \times |\mathcal{D}_{in}^0|^2 \cdot |\mathcal{D}_{out}^1|^2$ candidate quartets, $Q \cdot p_{\$}$ returning quartets
- $\blacktriangleright Q \cdot p_b \text{ good quartets}$
 - 1 suggestion for right key
 - ℓ suggestions for wrong key, $\ell \times 2^{-\kappa}$ hits for each
- $Q \cdot p_{\$}$ fake positives
 - ℓ suggestions for wrong key, $\ell \times 2^{-\kappa}$ hits for each
- Improved signal to noise $\tilde{\sigma} = p_b/p_{\$} \times 2^{\kappa}/\ell$

If $\tilde{\sigma} \gg 1$

A few good quartets are sufficient
 Q = O(1/p_b) quartets needed

If $\tilde{\sigma} \ll 1$

More wrong quartets than good
 Q = O(1/õp_b) quartets needed

Time and data complexity

$$T = D = \frac{2Q}{|\mathcal{D}_{in}^0| \cdot |\mathcal{D}_{out}^1|}$$

Augustin Bariant, Gaëtan Leurent (Inria)

Introduction 0000	Truncated Boomerang Distinguisher	<i>Truncat</i>	ed Boomerang	Key-recovery	Applications 0000	Conclusi 0
	6-rou	nd AE	ES rest	ults		
	Туре	Data		Time	Ref	
Distinguishers	Yoyo Exchange attack Exchange attack Truncated differential	2 ^{122.8} 2 ^{88.2} 2 ⁸⁴ 2 ^{89.4}	ACC CP ACC CP	2 ^{121.8} 2 ^{88.2} 2 ⁸³ 2 ^{96.5}	[AC:RonBarHel17] [AC:BarRon19] [EPRINT:Bardeh19] [ToSC:BaoGuoLis20]	
	Truncated boomerang	2 ⁸⁷	ACC	2 ⁸⁷	New	
Key-recovery	Square Partial-sum Boomerang Mixture Retracing boomerang Boomeyong	2 ³² 2 ³² 2 ⁷¹ 2 ²⁶ 2 ⁵⁵ 2 ^{79.7}	CP CP ACC CP ACC ACC	2 ⁷¹ 2 ⁴⁸ 2 ⁷¹ 2 ⁸⁰ 2 ⁸⁰ 2 ⁷⁸ 2 ⁶¹	[FSE:DaeKnuRij97] [FSE:FKLSSWW00] [biryukov2004boomerar [JC:BDKRS20] [EC:DKRS20] [ToSC:RahSahPau21]	ן rg]
	Iruncated boomerang	255	ACC	201	New	
Secret S-Box K	R Square Truncated boomerang	2 ⁶⁴ 2 ⁹⁴	CP ACC	2 ⁹⁰ 2 ⁹⁴	[FSE:TKKL15] New	

Augustin Bariant, Gaëtan Leurent (Inria)

Truncated Boomerang Distinguisher

Fruncated Boomerang Key-recovery

Applications

Conclusion 0

Introduction

Truncated Boomerang Distinguisher

Truncated Boomerang Key-recovery

Applications

Conclusion

Augustin Bariant, Gaëtan Leurent (Inria)

Truncated Boomerang Distinguisher

runcated Boomerang Key-recovery

Applications

Conclusion 0

8-round boomerang on KIASU

KIASU: AES-based tweakable block cipher
 Tweak added on first 64 bits of state

[Jean, Nikolić & Peyrin, AC'14]

Evaluate complexity with generic formula

$$p_{b} = \vec{p} \cdot \vec{p} \cdot \vec{q}^{2} \times |\mathcal{D}_{in}^{1}|^{-1} = 2^{-160} \qquad \tilde{\sigma} = 2^{32}$$
$$p_{w} = |\mathcal{D}_{in}^{0}|/2^{n} \times \ell \times 2^{-\kappa} = 2^{-192} \qquad Q = \mathcal{O}(2^{160}) \qquad D = \mathcal{O}(2^{80})$$

Previous best attack: boomerang with complexity 2¹⁰³

Augustin Bariant, Gaëtan Leurent (Inria)

Truncated Boomerang Distinguisher

runcated Boomerang Key-recovery

Applications

Conclusion 0

8-round boomerang on KIASU

KIASU: AES-based tweakable block cipher
 Tweak added on first 64 bits of state

[Jean, Nikolić & Peyrin, AC'14]

Evaluate complexity with generic formula

$$p_{b} = \vec{p} \cdot \vec{p} \cdot \vec{q}^{2} \times |\mathcal{D}_{in}^{1}|^{-1} = 2^{-160} \qquad \tilde{\sigma} = 2^{32}$$

$$p_{w} = |\mathcal{D}_{in}^{0}|/2^{n} \times \ell \times 2^{-\kappa} = 2^{-192} \qquad Q = \mathcal{O}(2^{160}) \qquad D = \mathcal{O}(2^{80})$$

Previous best attack: boomerang with complexity 2¹⁰³

Augustin Bariant, Gaëtan Leurent (Inria)

Introduction 0000	Truncated Boomerang Distinguisher	Truncated Boomerang Key-reco	very Applications	Conclusion O
		Deoxys		
AES-b	oased Tweakable block ciphe	r, CAESAR portfolio	[Jean, Nikolić & Peyrin	, AC'14]

- Best attacks: boomerangs built with MILP model
 - Key-recovery typically added afterwards

Our results

- MILP model with truncated boomerang framework (model truncated trails)
- Integrate key recovery: optimize data complexity (parameters given by trail)

		Previous				New			
Model	Rnd		Data	Time	Mem		Data	Time	Mem
RTK2	9	B	2 ⁹⁸	2 ¹¹²	2 ¹⁷	B	2 ^{55.2}	2 ^{55.2}	2 ^{55.2}
	10	B	2 ^{98.4}	2 ^{109.1}	2 ⁸⁸	B	2 ^{94.2}	2 ^{95.2}	2 ^{94.2}
	11	R	2 ^{122.1}	2 ^{249.9}	2 ^{128.2}	B	2 ¹²⁹	2 ^{223.9}	2 ¹²⁹
RTK3	11	B	2 ¹⁰⁰	2 ¹⁰⁰	2 ¹⁷	B	2 ^{32.7}	2 ^{32.7}	2 ^{32.7}
	12	B	2 ⁹⁸	2 ⁹⁸	2 ⁶⁴	B	2 ^{67.4}	2 ^{67.4}	2 ⁶⁵
	13	R	2 ^{125.2}	2 ^{186.7}	2 ¹³⁶	B	2 ^{126.7}	2 ^{170.2}	2 ^{126.7}
	14	R	2 ^{125.2}	2 ^{282.7}	2 ¹³⁶	B	2 ¹²⁹	2 ^{278.8}	2 ¹²⁹

Truncated Boomerang Distinguisher

Truncated Boomerang Key-recovery

Applications

Conclusion 0

TNT-AES

- AES-based tweakable block cipher
- Uses 6-round AES as building block R

•
$$\tilde{E}: T, P \mapsto R_2 \left(T + R_1 \left(T + R_0(P) \right) \right)$$

- Build boomerang quartets for middle layer using tweak differences
 - Only one usable return difference
 - No structures on ciphertext side

First attack based on a 6-round distinguisher

Rounds	Туре	Data		Time	Ref
-5-	Boomerang (dist.)	2 ¹²⁶	ACC	2 ¹²⁶	[EC:BGGS20]
5-*-*	Impossible differential (KR)	2 ^{113.6}	CP	2 ^{113.6}	[AC:GGLS20]
--*	Generic (dist.)	2 ^{99.5}	CP	2 ^{99.5}	[AC:GGLS20]
-5-	Truncated boomerang (dist.)	2 ⁷⁶	ACC	2 ⁷⁶	New
5-5-*	Truncated boomerang (KR)	2 ⁸⁷	ACC	2 ⁸⁷	New
-6-	Truncated boomerang (dist.)	2 ^{127.8}	ACC	2 ^{127.8}	New

Truncated Boomerang Distinguisher

runcated Boomerang Key-recovery

Application

Conclusion

Conclusion

- Analysis of truncated bommerang attacks
 - Use of structures
 - Generic formulas for data complexity
- 2 Revisiting boomerangs on 6-round AES
 - Competitive with recently proposed 6-round attacks
 - Statistical distinguisher ("key-independent")
 - Key recovery
 - Key-recovery with secret S-Boxes
- 3 Applications
 - Best attack on KIASU
 - Marginal distinguisher on TNT-AES
 - First application of a 6-round distinguisher
- 4 Implementation as a MILP model
 - New results on Deoxys