
Boomerang Attacks on Hash Function using
Auxiliary Differentials

Gaëtan Leurent and Arnab Roy

Université du Luxembourg and SnT

Abstract. In this paper we study boomerang attacks in the chosen-key
setting. This is particularly relevant to hash function analysis, since many
boomerang attacks have been described against ARX-based designs.
We present a new way to combine message modifications, or auxiliary
differentials, with the boomerang attack. We show that under some con-
ditions, we can combine three independent paths instead of two for the
classical boomerang attack. Our main result is obtained by applying this
technique to round-reduced Skein-256, for which we show a distinguisher
on the keyed permutation with complexity only 257, and a distinguisher
on the compression function with complexity 2114. We also discuss appli-
cation of the technique to Skein-512 and show some problems with the
paths used in previous boomerang analysis of Skein-512.

Keywords: hash function, SHA-3 competition, chosen-key, Skein, Three-
fish, boomerang attack, higher order differential, zero-sum.

1 Introduction

The boomerang attack was proposed by Wagner in 1999 [16] as a cryptanalysis
technique against block ciphers. This clever idea allows to combine short differ-
ential paths for the top half and the bottom half of a cipher, instead of using a
long differential path for the full cipher.

Recently, this idea has been applied to hash function building blocks, as
part of the new hash function results inspired by the SHA-3 competition. In [4]
Biryukov et al. proposed boomerang distinguishers on compression functions
and applied it to round-reduced BLAKE. Mendel and Lamberger [11] also inde-
pendently proposed a boomerang attack on the compression function of SHA-2.
More recently at SAC 2011, Yu Sasaki [14] gave a boomerang distinguisher on
the full compression function of HAVAL. Boomerang distinguishers have also
been applied to Skein/Threefish [1,5].

Another related work by Joux and Peyrin [7] studies boomerangs in the
context of hash functions. However this result does not try to build a boomerang
property for a hash function, but only uses auxiliary differential paths, which are
related to the boomerang idea, as a tool for message modifications.

The SHA-3 competition [13] is now at the final phase with 5 remaining
hash function candidates; and Skein is one of them. It is one of the two ARX
(Addition-Rotation-Xor) designs amongst those candidates.



The most successful attack proposed against Skein is the rotational rebound
attack [10], by Khovratovich et al., reaching 57 out of 72 rounds. This work im-
proves upon the rotational cryptanalysis technique [9] which reached 42 rounds
for Skein-512 and 39 rounds for Skein-256. Those results are based on rotation-
invariant constants in the key schedule. However for the final round of the SHA-3
competition, Skein has been tweaked [6] to avoid those rotation invariant con-
stants, and this technique is no longer applicable.

Various other techniques have also been applied to Skein, which do not de-
pend on rotation-invariant constants. Su et al. [15] gave near collisons on 24
rounds for a cost of 260 and 2230 compression function calls on Skein-256 and
Skein-512 respectively. Aumasson et al. [1] also used a boomerang attack to
launch a key recovery attack on Threefish-512 for 32, 34 and 35 rounds. In [5]
Chen and Jia proposed a bommerang distinguisher with complexity 2189 on 32-
rounds of Threefish-512, and used it to mount a key-recovery attacks on 33 and
34 rounds, with complexity 2324.6 and 2474.4, respectively. However, we show in
Section 5.2 that the paths used in this attack are in fact incompatible. Another
recent result by Yu et al. gives semi-free start near collision for up to 32 rounds
of Skein-256 [18] with complexity 2105.

Our Contributions. We study boomerang distinguishers on round-reduced
Skein-256. The analysis is based on high probability related-key differential trails
in Threefish (probability 1, 2−6, and 2−39 for 8, 12, and 16 rounds respectively),
like previous analysis [1,5,15].

Our main contribution is a technique using auxiliary differentials, which al-
lows to skip some rounds in the middle of the boomerang in a chosen-key setting.
This is similar to previous works using message modifications (e.g. on Skein-
512 [18,10]) but we use it in a boomerang setting. When applied to the 32-round
attack on Skein, we can avoid 8 rounds in the middle, and this results in a sig-
nificant complexity improvement. Moreover, since the complexity is relatively
low, we can experimentally measure the amplification effect, by implementing
the attack on 28 rounds. This results in a boomerang distinguisher with com-
plexity 257 for the keyed-permutation (i.e. for Threefish-256). When applied to
the compression function with the feed-forward, we show that our attack has
complexity at most 2114, but we cannot measure experimentally the full effect of
the amplification, so we expect the actual complexity to be significantly lower.
A summary of our results is given in Table 1.

Additionally, we also discuss the hypothesis of independence between the
boomerang paths for ARX primitives, and give an example of previous work
where the hypothesis is not valid, and the paths are in fact incompatible.

2 The boomerang attack

The boomerang attack was introduced by David Wagner in 1999 [16] against
block ciphers, and the initial idea has been developed through many later results,



Table 1. Summary of the attacks on the compression function (CF) and the keyed
permutation (KP) of Skein. We only mention results which are independent of the
constants used Skein (i.e. which apply to the round-3 version).

Attack CF/KP Rounds CF/KP calls Reference

Near collisions (Skein-256) CF 24 260 [15]
Boomerang dist. (Threefish-512) KP 32 2189 [5]
Key Recovery (Threefish-512) KP 33 2324.6 [5]
Key Recovery (Threefish-512) KP 34 2474.4 [5]
Near collisions (Skein-256) CF 32 2105 [18]
Key Recovery (Threefish-512) KP 32 2312 [1]
Key Recovery (Threefish-512) KP 35 2478 [1]

Boomerang dist. (Skein-256) CF and KP 24 218 Sec. 4.2
Boomerang dist. (Threefish-256) KP 28 221 Sec. 4.2
Boomerang dist. (Skein-256) CF 28 224 Sec. 4.2
Boomerang dist. (Threefish-256) KP 32 257 Sec. 4.2
Boomerang dist. (Skein-256) CF 32 2114 Sec. 4.2

including [16,8,2,3,4,11]. In this section, we go through the main results of those
papers, in order to explain the techniques needed used in our attack on Skein.

The main idea of the boomerang attack is to consider a block cipher as a com-
position of two sub-ciphers, and to use an encryption oracle as well as a decryp-
tion oracle in order to build differential pair for each sub-cipher independently.
Given a permutation f that can be decomposed into two sub-permutations fa
and fb with f = fb ◦ fa (e.g. a block cipher), one first identifies some high
probability differentials1 α → α′ with probability pa for fa and γ → γ′ with
probability pb for fb, relative to a group operation + (in practice, the group
operation is either the exclusive or ⊕, or the modular addition �).

The attacker selects two plain-texts P (0) and P (1) with P (1) = P (0) + α,
and requests the corresponding cipher-texts C(0) and C(1). Then he builds the
cipher-texts C(2) = C(0)+γ′ and C(3) = C(1)+γ′, and requests the corresponding
plain-texts P (2) and P (3). This is illustrated by Figure 1. With this construction,
we expect that P (3) = P (2) + α with probability p2ap

2
b . This comes from the

following observations:

(i) With probability pa, (P (0), P (1)) is a good pair for the differential α→ α′

in fa, and we have X(1) = X(0) + α′, where X(i) = fa(P (i)).

(ii) With probability p2b , (C(0), C(2)) and (C(1), C(3)) are good pairs for the
differential γ′ → γ′ in f−1b , and we have X(2) −X(0) = X(3) −X(1) = γ,
where X(i) = f−1b (C(i)).

(iii) If (i) and (ii) are satisfied, then we have

X(3) −X(2) = (X(3) −X(1))− (X(2) −X(0)) + (X(1) −X(0)) = α′.

1 We use this to denote Prx,k [fa(x+ α) = fa(x) + α′] = pa.



With probability pa, (X(2), X(3)) is a good pair for the differential α′ → α
in f−1a , and we have P (3) = P (2) + α.

This basic attack gives a distinguisher for f , and it can be extended to a key-
recovery attack using partial encryption/decryption.

P (0)

P (1)

P (2)

P (3)

X(0)

X(1)

X(2)

X(3)

C(0)

C(1)

C(2)

C(3)

α

α

α′

α′

γ

γ

γ′

γ′

fa : Pr [α→ α′] = pa

fb : Pr [γ → γ′] = pb

Fig. 1. The boomerang attack

Boomerang attack are particularly efficient on ARX-like designs because the
probability of differential paths drops quickly when the number of rounds grows.
It is usually possible to find good differential for a few rounds, but extending
them leads to more diffusion and very bad probabilities. More generally, if we
denote the probability of the best differential for function f by bp(f), then the
boomerang attack is better than classical differential attack if:

bp(fa)2 bp(fb)
2 > bp(fb ◦ fa)

2.1 Amplified probabilities

We can compute a better estimate of the complexity of a boomerang attack
if we remark that we don’t actually need to specify the differences α′ and γ.
As long as the two pairs (C(0), C(2)) and (C(1), C(3)) reach the same difference
X(2) − X(0) = X(3) − X(1), the boomerang attack will work. We can compute
the complexity by summing over all possible α′ and γ, which is equivalent to



replacing the probabilities pa and pb by the following values:

p̂a =

√∑
α′

Pr [α→ α′] p̂b =

√∑
γ

Pr [γ → γ′]

These are sometimes called amplified probabilities, but this is unrelated to the
amplified bommerang attack of [8].

We can further improve the complexity by considering two independent dif-
ferentials α0 → α′0 and α1 → α′1 in fa, and γ0 → γ′0 and γ1 → γ′1 in fb. The
paths can be used for a boomerang attack as long as α′1−α′0 = γ1−γ0, as shown
in [16].

In practice, the amplified probabilities are often estimated experimentally
with random values.

2.2 Related-key boomerang

The boomerang attack can also be used with related-key differentials, instead
of fixed-key differentials, as shown in [3]. In this case, we use a differential2

α, αk → α′ with probability pa for fa, and β, βk → β′ with probability pb for fb.
Starting from a random plain-text P (0), we compute

P (1) = P (0) + α

C(0) = f(P (0), k) C(1) = f(P (1), k + αk)

C(2) = C(0) + β′ C(3) = C(1) + β′

P (2) = f−1(C(2), k + βk) P (3) = f−1(C(3), k + αk + βk)

and we obtain P (3) = P (2) + α with probability p2ap
2
b .

2.3 Application to the known-key setting

In a known-key or chosen-key setting, a boomerang property can be used to
distinguish a given permutation from a random one, as first used in [4] and [11].
The boomerang attack can generate quartets (C(i), P (i))3i=0 with:

C(i) = f(P (i))

P (1) − P (0) = P (3) − P (2) = α C(2) − C(0) = C(3) − C(1) = γ′ (1)

Alternatively, we can consider the boomerang as a zero-sum property [4], or
higher-order differential collision [11] since a quartet satisfies:

∆P (i) = (P (3) − P (2))− (P (1) − P (0)) = 0

∆C(i) = (C(3) − C(2))− (C(1) − C(0)) = (C(3) − C(1))− (C(2) − C(0)) = 0

2 We use this to denote Prx,k [fa(x+ α, k + αk)− fa(x, k) = α′] = pa.



Moreover, in a known-key or chosen-key setting, it is possible to start from the
middle. First one selects some values X(0), X(1), X(2), X(3) with X(2) −X(0) =
X(3) −X(1) = γ and X(1) −X(0) = X(3) −X(2) = α′; then he compute P (i) =
f−1a (X(i)) and C(i) = fb(X

(i)). This allows to select specific X(i)’s that satisfy
the paths with better probability that a random quartet.

For an n-bit random permutation, the generic complexity for obtaining a
quartet satisfying (1) with fixed α, γ′ is 2n. However, if only the difference
(P (3) − P (2)) = (P (1) − P (0)) = α is fixed, the complexity is only 2n/2. If we
only want ∆P (i) = 0 and ∆C(i) = 0, the complexity is lower bounded by 2n/3,
but the best known attack still takes time 2n/2.

2.4 Application to hash function

Boomerang attacks have been applied to hash function, in order to attack some
of the components of the design. A bommerang attack can readily be applied
to the block-cipher or permutation inside most of the designs. It can also be
extended to a distinguisher against the compression function of most block-
cipher based designs, as shown in [11] and [4]. For instance let us consider a
compression function following the MMO construction: CF(h,m) = Eh(m) +m,
and a quartet P (i), C(i) for the block cipher E under the related keys K(i). The
quartet satisfies:

C(i) = EK(i)(P (i))

∆K(i) = (K(3) −K(2))− (K(1) −K(0)) = 0

∆P (i) = (P (3) − P (2))− (P (1) − P (0)) = 0

∆C(i) = (C(3) − C(1))− (C(2) − C(0)) = 0.

Moreover, we have

∆CF(K(i), P (i))

=
[
CF(K(3), P (3))− CF(K(2), P (2))

]
−
[
CF(K(1), P (1))− CF(K(0), P (0))

]
=
[
(C(3) + P (3))− (C(2) + P (2))

]
−
[
(C(1) + P (1))− (C(0) + P (0))

]
= (C(3) − C(1))− (C(2) − C(0)) + (P (3) − P (2))− (P (1) − P (0)) = 0

This is a zero-sum property for the compression function. For an n-bit random
compression function the best known attack to build a quartet with a zero-sum
output takes time 2n/3 using Wagner’s generalized birthday attack [17]. If we
also want the inputs to be a zero-sum, the best known attack takes time 2n/2.

3 Boomerang Attack using Auxiliary Differentials

The main idea of our attack is to use auxiliary paths as message modifications.
This idea has already be applied to hash function cryptanalysis by Joux and



Peyrin in [7], in the context of a classical differential attack. Here, we apply
it to the boomerang setting, with related-key paths. The main idea is to build
boomerang quartet in an inside-out fashion, and to use auxiliary paths to effi-
ciently generate values in the middle, so that they conform to several rounds.

We consider a function f that can be decomposed into three sub-functions
f = fc ◦ fb ◦ fa, and we consider a differential in each of those sub-functions:

– for fa, we use a differential α→ α′ with probability pa
– for fb, we use a set B of b differentials βj → β′j with probability pb
– for fc, we use a differential γ → γ′ with probability pc

We describe the idea with fixed-key differential for simplicity, but it works in
the same way with related key differentials. We start with a boomerang quartet
(U (0), U (1), U (2), U (3))→ (V (0), V (1), V (2), V (3)) for fb, with

U (1) = U (0) + α′ U (3) = U (2) + α′ V (2) = V (0) + γ V (2) = V (1) + γ

Using an auxiliary path βj → β′j , we construct U
(i)
∗ = U (i)+βj . With probability

p4b , we obtain a new quartet (U
(0)
∗ , U

(1)
∗ , U

(2)
∗ , U

(3)
∗ ) → (V

(0)
∗ , V

(1)
∗ , V

(2)
∗ , V

(3)
∗ ),

where V
(i)
∗ = V (i) + β′j . Then, we have

U
(1)
∗ = U

(0)
∗ + α′ U

(3)
∗ = U

(2)
∗ + α′ V

(2)
∗ = V

(0)
∗ + γ V

(2)
∗ = V

(1)
∗ + γ

We compute the plain-texts and cipher-texts corresponding to these values, and
with probability p2a · p2c , this will result in a boomerang quartet for f , as shown
in Figure 2.

If the initial cost to build a quartet for fb is C, then we can build a quartet
for the full f with complexity:

1

p2ap
2
c

(
C

b · p4b
+ 1

)
For the application to Skein, we use properties of the key-schedule to build a

set of related-key differentials βk with probability 1. This results in C � b · p4c ,
and we essentially skip rounds in the middle of the permutation for free.

4 Application to Skein

Brief description of Skein The compression function of Skein is based on the
block cipher Threefish. Let Ur,i be the ith word of the encrypted state after r
rounds and nw be the number of words in a state. Then for each round we have

Vr,i =

{
Ur,i +Kr/4,i if r mod 4 = 0

Ur,i otherwise



U(0)

U(1)

U(2)

U(3)

V (0)

V (1)

V (2)

V (3)

α′

α′

γ

γ

U(0)
∗

U(1)
∗

U(2)
∗

U(3)
∗

V (0)
∗

V (1)
∗

V (2)
∗

V (3)
∗

α

α

α′

α′

γ

γ

γ′

γ′

βk

βk

βk

βk

β′k

β′k

β′k

β′k

fa

Pr
[
α→ α′

]
= pa

fb

Pr
[
βk → β′k

]
= pb

fc

Pr
[
γ → γ′

]
= pc

Fig. 2. Using auxiliary paths in a boomerang distinguisher

where Kr/4,i is the ith word of the round key at round r/4. The state Ur+1,i

(for i = 0, 1, .., nw) after round r + 1 is obtained from Vr,i by applying a MIX

transformation and a permutaion of nw words as following:

(Xr,2k, Xr,2k+1) := MIXr,k(Vr,2k, Vr,2k+1) for k = 0, 1, .., nw/2
Ur+1,i := Xr,σ(i) for i = 0, 1, .., nw

where σ is a permutaion specified in [6] and (c, d) = MIXr,k(a, b) is described as

c = (a+ b) mod 264

d = (b≪ Rr mod 8,k)⊕ c

The rotations Rr mod 8,k are speicifed in [6]. The key scheduling algorithm of
Threefish produces 18 round keys from a tweak (T0, T1) and a key as following

Kl,i = K(l+i) mod (nw+1) for i = 0, 1, .., nw − 4
Kl,i = K(l+i) mod (nw+1) + Tl mod 3 for i = nw − 3
Kl,i = K(l+i) mod (nw+1) + Tl mod 3 for i = nw − 2
Kl,i = K(l+i) mod (nw+1) + l for i = nw − 1

.

where Knw
= C240 ⊕

⊕nw−1
i=0 Ki with C240 a constant specified in [6], and T2 =

T0 ⊕ T1. The compression function F for Skein is given as F = ECV,T (M)⊕M .
For Skein-256 nw = 4 and word size is 8 byte. We use the notation k(l) to denote
the expanded key used at round 4l, i.e. k(l) = Kl,0,Kl,1, . . .Kl,nw−1.



∆4∆30∆1∆0

∆⊥ +∆4∆⊥∆30000∆1∆>∆> +∆0

Pr
[
∆3 → ∆⊥

]
= 2−6

p = 1p = 1

Pr
[
∆1 → ∆>

]
= 2−33

Fig. 3. Linearized differential path for Skein

Table 2. Subkey differential trails

Round Subkey Trail1: K3,K4, T0, T2

0 K0 K1 + T0 K2 + T1 K3 + 0
4 K1 K2 + T1 K3 + T2 K4 + 1
8 K2 K3 + T2 K4 + T0 K0 + 2
12 K3 K4 + T0 K0 + T1 K1 + 3
16 K4 K0 + T1 K1 + T2 K2 + 4

Round Subkey Trail2: K2,K3, T0, T1

16 K4 K0 + T1 K1 + T2 K2 + 4
20 K0 K1 + T2 K2 + T0 K3 + 5
24 K1 K2 + T0 K3 + T1 K4 + 6
28 K2 K3 + T1 K4 + T2 K0 + 7
32 K3 K4 + T2 K0 + T0 K1 + 8

4.1 Round-reduced Differential Trails in Skein-256

Due to the key schedule of Skein, it is possible to build differential trails over 8
rounds with probability one, using a difference in the tweak T . To do this, we
just use a key difference and tweak difference that cancel each other at a given
round r, and we compute the corresponding key differences for rounds r+ 4 and
r − 4. By injecting this difference in the state, we obtain an 8-round path.

In order to achieve the best probability, we use a difference ∆msb on the most
significant bit of both tweaks used at round r, and on the corresponding keys.
This results in a 12-round path with probability 2−6 and a 16-round path with
probability 2−43 (we don’t consider the key addition for those probabilities). The
path is shown in Figure 3. For a boomerang attack on 32-round Skein, we use
this with r = 8 and r = 24, and the corresponding key-differential as shown in
Table 2. Previous analysis of Skein[1,5,15,18] are based on the same trails.

For our attack, we also need a set of auxiliary paths. We build this set using
the same 8-round paths with probability one, but we do not restrict ourselves to
a difference on the most significant bit. We can set the tweak T to an arbitrary
value, and recompute the key in order the have the same expanded key k(4) at
rounds 16. This gives a set of 2128 paths with probability one.

4.2 Description of the attack on Skein-256

Our attack on skein is similar to a boomerang attack on 32 rounds using two
16-round trails, but we build a valid quartet starting from the middle, and we
use auxiliary trails to avoid paying the probabilities of 8 rounds in the middle.
We proceed with three consecutive steps, as shown by Figure 5, page 16.



First step. The first part of the attack considers rounds 16 to 20. We try to
build a quartet u(i) = R(t(i)) with

t(0) ⊕ t(1) = t(2) ⊕ t(3) = ∆⊥ ⊕∆4 (2)

u(0) ⊕ u(2) = u(1) ⊕ u(3) = ∆1 (3)

One possible way to build such a quartet is to start with a set of t(i) that
satisfies (2) and t(0) ⊕ t(2) = t(1) ⊕ t(3) = ∆⊥ ⊕∆4, and to compute the corre-
sponding u(i) = R(t(i)). The quartet will satisfy (3) with probability 2−66, but
we can fix some bits of the state in order to improve this complexity.

Actually, it is more efficient to follow the steps of a boomerang attack:

– start from a pair t(0), t(1) with t(0) ⊕ t(1) = ∆⊥ ⊕∆4;
– compute u(0) = R(t(0)), u(1) = R(t(1)), u(2) = u(0) ⊕∆1, u(3) = u(1) ⊕∆1;
– compute t(2) = R−1(u(2)) and t(3) = R−1(u(3)); check whether (2) holds.

Using this procedure allows us to benefit from amplified probabilities, since we
do not specify the path from (u(0), u(2)) to (t(0), t(2)) and from (u(1), u(3)) to
(t(1), t(3)), respectively, we only check that the differences are the same. Experi-
mentations show that this step costs around 218.

Second step. The second part of the attack concerns rounds 12 to 16. We start
with a quartet u(i) = R(t(i)) satisfying (2) and (3), and we want to extend it

with s(i) = R−1(t(i) − k(i)4 ) so that

s(0) ⊕ s(1) = s(2) ⊕ s(3) = ∆3. (4)

The main idea is to use the key injection at round 16 in order to randomize
the state, until we find pairs that follows the differential ∆⊥ → ∆3. First we
select the keys that result in:

(t(0) − k(0)4 )⊕ (t(1) − k(1)4 ) = (t(2) − k(2)4 )⊕ (t(3) − k(3)4 ) = ∆⊥ with

k
(0)
4 ⊕ k

(1)
4 = k

(2)
4 ⊕ k

(3)
4 = ∆4 and k

(0)
4 ⊕ k

(2)
4 = k

(1)
4 ⊕ k

(3)
4 = ∆0.

We can find the suitable solution by solving a simple system of additions and
xors. Then, we compute the corresponding s(i), and we check whether(4) is
satisfied. On average, we expect this step to cost 212. According to our experi-
mentations, however, there seem to be some dependency between the paths, and
the average cost is about 218.

This step can be seen as an application of the technique of Section 3. We use
a trivial related-key differential where the key difference just cancels the state
difference in order to extend a 4-round quartet into 8-round quartets.

Third step. This is the main step of the attack, following the ideas of Sec-

tion 3. We start with a quartet u(i) = R(R(s(i))+k
(i)
4 ), and we use probability-1



differentials to build many more quartets, until the top and bottom paths are
satisfied.

The best result are achieved using the modular difference, because the key-
additions are modular additions. Note that we include the initial and final key-
addition in our 32-round reduced Threefish/Skein. More precisely, for each quar-
tet generated for rounds 12–16 verifying (3) and (4), we compute the correspond-
ing plain-text and cipher-text and we check whether

∆�P (i) = (P (3) � P (2))� (P (1) � P (0)) = 0 (5)

∆�C(i) = (C(3) � C(2))� (C(1) � C(0)) = 0 (6)

Experimentally, a quartet satisfies (5) with probability 2−36 and (6) with
probability 2−21 (see Appendix A). This gives a distinguisher for the keyed
permutation with complexity around 257. Note that if we do an analysis similar
to the one in [5], we would expect this attack to have a complexity of around
295; the amplification effect detected in practice is much stronger than predicted
by [5].

If we want to build a distinguisher for the compression function, we will
instead use the xor-difference, because the feed-forward is an xor operation.
Therefore, we will check whether:

∆⊕P (i) = P (0) ⊕ P (1) ⊕ P (2) ⊕ P (3) = 0 (7)

∆⊕C(i) = C(0) ⊕ C(1) ⊕ C(2) ⊕ C(3) = 0 (8)

Experimentally, we find that (8) is verified with probability 2−24. The probability
for (7) is too low to check experimentally, but we can estimate it from the
probability of (5): a quartet satisfying (5) is composed of two pairs of plain-text
with (P (1)�P (0)) = (P (3)�P (2)) = ∆, where ∆ has weight around 34. For each
active position, there is a probability 1/3 that the carry extension in (P (0), P (1))
is the same as in (P (2), P (3)), which leads to:

Pr
[
∆⊕P (i) = 0

]
≥ Pr

[
∆�P (i) = 0

]
× (1/3)34 ≥ 2−90.

This gives a distinguisher on the compression function with complexity 2114.
In practice we expect the complexity to be significantly lower, because a quartet
satisfying (7) does not necessarily satisfy (5).

Attack on 24 and 28 rounds can be build with the same approach.

5 Extensions and Limitations

The technique described in the previous sections can be applied to improve al-
most any chosen-key boomerang distinguisher. The main limitation is that we
need to be able to generate an initial quartet for the middle rounds, similarly to
what we do in steps one and two of the attack on Skein-256. We note that any
successful boomerang attack does provide such quartets; therefore, as long as a



standard boomerang attack works, our improved attack with auxiliary differen-
tials will also work.

However, an often overlooked problem of boomerang attacks is that we need
the top and bottom paths to be somehow independent. More precisely, in a
standard boomerang attack as depicted by Figure 1, we expect that if a pair
(P0, P1) → (X0, X1) with is a good pair for fa (i.e. P1 = P0 + α and X1 =
X0 + α′), then the pair (X0 + γ,X1 + γ) behaves like a random pair regarding
fa, and will satisfy the differential with probability pa. However, in practice this
may not be the case.

In the following section, we discuss cases where boomerang attacks on ARX
design can fail because of this property. This problem was already discussed by
Murphy in [12], where he gives examples of non-compatible paths for the DES
and the AES. It has also been discussed by Sasaki in [14] for boomerang attacks
on Haval.

5.1 Extension to more rounds

We tried to extend the attack by adding middle rounds, at the bottom of the top
path, or at the top of the bottom path. For instance, using a 16-round path for
the bottom part should only increase the complexity by a factor of roughly 212.
However, this usually results in incompatible paths, for which no valid quartet
exist. In particular linearized paths are incompatible, and we have not been able
to build compatible paths.

By studying those incompatible paths, we found that very simple patterns
can lead to incompatibilities. Figure 4 gives an example of a pattern that results
in incompatible paths. A quartet following those paths would have to satisfy:

x(0) ⊕ x(2) = x(1) ⊕ x(3) = 01 y(0) ⊕ y(2) = y(1) ⊕ y(3) = 00 (Top) (9)

x(0) ⊕ x(1) = x(2) ⊕ x(3) = 01 y(0) ⊕ y(1) = y(2) ⊕ y(3) = 01 (Bottom) (10)

x(0) � y(0) = x(1) � y(1) x(2) � y(2) = x(3) � y(3) (11)

Without loss of generality, we can assume that lsb(x(0)) = 0. This implies
lsb(x(1)) = 1 from (10), and lsb(x(2)) = 1 and lsb(x(3)) = 0 from (9). We
can deduce y(0) = y(1) � 1 and y(3) = y(2) � 1 from (11). Combined with (10)
this yields lsb(y(0)) = 1, lsb(y(1)) = 0, lsb(y(2)) = 0, and lsb(y(3)) = 1. This is
incompatible with (9).

This pattern seems to appear very frequently when using linearized paths in
ARX designs, and shows that some very natural paths cannot be combined in a
boomerang attack.

5.2 Application to Skein-512

By applying our technique to Skein-512, we would expect distinguishers with a
similar complexity for the same number of rounds. However, in order to apply the
technique, we need to be able to generate quartets for the middle rounds, and we



δx = -x δy = -- Top path

(x(0), y(0);x(2), y(2)) (x(1), y(1);x(3), y(3))

Bottom path

(x(0), y(0);x(1), y(1)) (x(2), y(2);x(3), y(3))

δx = -x δy = -x

δx′ = -- δy′ = -x

Fig. 4. Example of incompatible paths

failed to build any such quartet for a 32-round attack. Since a boomerang attack
on Skein-512 was presented in [5], we studied the paths used in this attacks, and
we found that they are in fact not compatible.

Following the notations of [5], the path for rounds 0–16 has a difference
e15,5[10, 39, 49, ∗64]. If this path is applied to states (e(0), e(1)) and (e(2), e(3)),
this implies that on bit 49, we have:

v
(0)
15,5 = 0 v

(1)
15,5 = 1 v

(2)
15,5 = 0 v

(3)
15,5 = 1 (12)

Assuming there are no carries, the path for round 16–32 has e16,5[−34,−50]
and e16,2[5, 11, 16, 41, 44, 47]. Since e16,2, e16,5 = MIX(e15,4, e15,5), and the rota-
tion used at that step is 56, we have e15,5 = (e16,2 ⊕ e16,5)≫56. This results
in e15,5 being active on bits 13, 19, 24, 42, 49, 52, 55, and 58. If this path is
applied to states (e(0), e(2)) and (e(1), e(3)), this implies that on bit 49, we have

v
(0)
15,5 6= v

(2)
15,5 and v

(0)
15,5 6= v

(2)
15,5. This is contradictory with (12).

We tried to fix the paths using a carry extension from bit 34 to 41 in e16,5,
by using different signs in the paths (e(0), e(1)) and (e(2), e(3)), or by using a
carry extension in e15,5[49], but this always ends up with a similar contradiction.
However, we note that if the attack of [5] can be fixed, then our technique is
expected to yield a distinguisher on Skein-512 with complexity similar to the
distinguisher on Skein-256.

6 Conclusions

In this paper we have presented a technique to improve the boomerang attack
in the chosen-key setting and applied it to obtain an efficient distinguisher for
32 rounds of the compression function of Skein-256. We also discuss extension
of the attack, and application of the technique to Skein-512. This technique
can essentially be used to improve any chosen-key boomerang distinguisher.
However, we explain that boomerang attack on ARX-design can fail because
of incompatible paths. This is not a limitation of the auxiliary paths, but of the
underlying boomerang technique.



Acknowledgment. Gaëtan Leurent is supported by the AFR grant PDR-10-
022 of the FNR Luxembourg.

References

1. Aumasson, J.P., Calik, C., Meier, W., Ozen, O., Phan, R.C.W., Varici, K.: Im-
proved cryptanalysis of Skein. In: ASIACRYPT. Volume 5912 of LNCS., Springer
(2009) 542–559

2. Biham, E., Dunkelman, O., Keller, N.: The Rectangle Attack - Rectangling the
Serpent. In Pfitzmann, B., ed.: EUROCRYPT. Volume 2045 of Lecture Notes in
Computer Science., Springer (2001) 340–357

3. Biham, E., Dunkelman, O., Keller, N.: Related-Key Boomerang and Rectangle
Attacks. In Cramer, R., ed.: EUROCRYPT. Volume 3494 of Lecture Notes in
Computer Science., Springer (2005) 507–525

4. Biryukov, A., Nikolic, I., Roy, A.: Boomerang attacks on BLAKE-32. In Joux,
A., ed.: FSE. Volume 6733 of Lecture Notes in Computer Science., Springer (2011)
218–237

5. Chen, J., Jia, K.: Improved related-key boomerang attacks on round-reduced
Threefish-512. In Kwak, J., Deng, R.H., Won, Y., Wang, G., eds.: ISPEC. Volume
6047 of Lecture Notes in Computer Science., Springer (2010) 1–18

6. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The Skein hash function family. Submission to NIST (2008/2010)

7. Joux, A., Peyrin, T.: Hash functions and the (amplified) boomerang attack. In
Menezes, A., ed.: CRYPTO. Volume 4622 of Lecture Notes in Computer Science.,
Springer (2007) 244–263

8. Kelsey, J., Kohno, T., Schneier, B.: Amplified boomerang attacks against reduced-
round MARS and Serpent. In Schneier, B., ed.: FSE. Volume 1978 of Lecture
Notes in Computer Science., Springer (2000) 75–93

9. Khovratovich, D., Nikolic, I.: Rotational cryptanalysis of ARX. In Hong, S., Iwata,
T., eds.: FSE. Volume 6147 of Lecture Notes in Computer Science., Springer (2010)
333–346

10. Khovratovich, D., Nikolic, I., Rechberger, C.: Rotational rebound attacks on re-
duced Skein. In Abe, M., ed.: ASIACRYPT. Volume 6477 of Lecture Notes in
Computer Science., Springer (2010) 1–19

11. Lamberger, M., Mendel, F.: Higher-order differential attack on reduced SHA-256.
Cryptology ePrint Archive, Report 2011/037 (2011) http://eprint.iacr.org/.

12. Murphy, S.: The return of the cryptographic boomerang. IEEE Transactions on
Information Theory 57(4) (2011) 2517–2521

13. National Institute of Standards and Technology: Cryptographic hash algorithm
competition. http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

14. Sasaki, Y.: Boomerang distinguishers on MD4-based hash functions: First practical
results on full 5-pass HAVAL. In: SAC. (2011)

15. Su, B., Wu, W., Wu, S., Dong, L.: Near-Collisions on the Reduced-Round Com-
pression Functions of Skein and BLAKE. In Heng, S.H., Wright, R.N., Goi, B.M.,
eds.: CANS. Volume 6467 of Lecture Notes in Computer Science., Springer (2010)
124–139

16. Wagner, D.: The boomerang attack. In Knudsen, L.R., ed.: FSE. Volume 1636 of
Lecture Notes in Computer Science., Springer (1999) 156–170

http://eprint.iacr.org/
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html


17. Wagner, D.: A Generalized Birthday Problem. In Yung, M., ed.: CRYPTO. Volume
2442 of Lecture Notes in Computer Science., Springer (2002) 288–303

18. Yu, H., Chen, J., Ketingjia, Wang, X.: Near-collision attack on the step-reduced
compression function of Skein-256. Cryptology ePrint Archive, Report 2011/148
(2011) http://eprint.iacr.org/.

A Boomerang quartets for 28 round Threefish

In this section, we give examples of quartets, to show that the techniques used
for the 32-round attack are valid. Table 3 gives is a zero-sum for rounds 4–32
of Threefish, with ∆�P ′(i) = 0 and ∆�C(i) = 0. Generating such a quartet
costs around 221. Table 4 gives is a zero-sum for rounds 0–28 of Threefish, with
∆�P (i) = 0 and ∆�C ′(i) = 0. Generating such a quartet costs around 236.

Table 3. A quartet that satisfies the paths for rounds 4–32

Plain-text before round 4

P ′(0) fe5ab24b9481e005 dcf5504b75b919e5 076e43e18e3a50ce d31433344b540c75

P ′(1) fe5ab24b9481e005 dcf5504b75b919e5 076e43e18e3a50ce 531433344b540c75

P ′(2) 64309deb8a55633f 71f578e8ddfd6e89 4e299c34006568b0 95847e8860164845

P ′(3) 64309deb8a55633f 71f578e8ddfd6e89 4e299c34006568b0 15847e8860164845

Key

K(0) 674dfabf537e5a73 92a94934d0ca3e21 90ce87c17d8540d1 ff65c869e8cdadd4

K(1) 674dfabf537e5a73 92a94934d0ca3e21 90ce87c17d8540d1 7f65c869e8cdadd4

K(2) 674dfabf537e5a73 92a94934d0ca3e21 10ce87c17d8540d1 7f65c869e8cdadd4

K(3) 674dfabf537e5a73 92a94934d0ca3e21 10ce87c17d8540d1 ff65c869e8cdadd4

Tweak

T (0,1) 182d916b255ae5e8 5cba243a3b82278e 982d916b255ae5e8 5cba243a3b82278e

T (2,2) 982d916b255ae5e8 dcba243a3b82278e 182d916b255ae5e8 dcba243a3b82278e

Table 4. A quartet that satisfies the paths for rounds 0–28

Plain-text before round 0

P (0) d9d7934ee20a9c9a d7c7d25a8f42f324 25ac377afcb411bb 424daed3f2425bc1

P (1) d4d82358b1e9945a 58c7c2587f63fb24 25ec3b7b6eb84fb7 c20daed37e421dc5

P (2) 0404cce3c56e92df 1887e00caa229acc 5bdad7995f5f036a a7b69f1a1274d559

P (3) ff055ced954d8a9f 9987d00a9a43a2cc 5c1adb99d1634166 27769f199e74975d

Key

K(0) 8cb950f444a069e3 48380fb03c6b84c6 2034665dbf7fbfb9 59a45c529130786a

K(1) 8cb950f444a069e3 48380fb03c6b84c6 2034665dbf7fbfb9 d9a45c529130786a

K(2) 8cb950f444a069e3 48380fb03c6b84c6 a034665dbf7fbfb9 d9a45c529130786a

K(3) 8cb950f444a069e3 48380fb03c6b84c6 a034665dbf7fbfb9 59a45c529130786a

Tweak

T (0,1) 684e3541ef841667 b3a8cd11bb94bb5d e84e3541ef841667 b3a8cd11bb94bb5d

T (2,3) e84e3541ef841667 33a8cd11bb94bb5d 684e3541ef841667 33a8cd11bb94bb5d

http://eprint.iacr.org/


t
(0

)
t
(1

)

t
(2

)
t
(3

)

u
(0

)
u
(1

)

u
(2

)
u
(3

)

∆
⊥

+
∆

4

∆
⊥

+
∆

4

∆
1

∆
1

s
(0

)
s
(1

)

s
(2

)
s
(3

)

k
(0

)
4

k
(1

)
4

k
(2

)
4

k
(3

)
4

u
(0

)
u
(1

)

u
(2

)
u
(3

)

∆
⊥

+
∆

4

∆
⊥

+
∆

4

∆
⊥

∆
⊥

∆
3

∆
3

∆
1

∆
1

∆
>

∆
>

0

0

∆
3

∆
3

∆
1

∆
1

0
0

∆
⊥

∆
⊥

T
o
p
pa
th

(0
–
1
2
)

M
id
d
le

pa
rt

(1
2
–
2
0
)

B
o
tto

m
pa
th

(2
0
–
3
2
)

F
ig
.
5
.

O
v
erv

iew
o
f

th
e

a
tta

ck
,

sh
ow

in
g

th
e

th
ree

co
n
secu

tiv
e

step
s.


	Boomerang Attacks on Hash Function using Auxiliary Differentials

