Boomerang Attacks against ARX Hash Functions

Gaëtan Leurent \& Arnab Roy

Gaëtan Leurent

University of Luxembourg

Introduction to Hash Functions

An Ideal Hash Function: the Random Oracle

- Public Random Oracle
- The output can be used as a fingerprint of the document

An Ideal Hash Function: the Random Oracle

0x1d66ca77ab361c6f

- Public Random Oracle
- The output can be used as a fingerprint of the document

A Concrete Hash Function

- A public function with no structural property.
- Should behave like a random function.

$$
\begin{array}{r}
\text { Cryptographic stre } \\
F:\{0,1\}^{*} \rightarrow\{0,1\}^{n}
\end{array}
$$

A Concrete Hash Function

- A public function with no structural property.
- Should behave like a random function.
- Cryptographic strength without any key!
- $F:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$

Using Hash Functions

Hash functions are used in many different contexts:

- To generate unique identifiers
- Hash-and-sign signatures
- Commitment schemes
- As a one-way function
- One-Time-Passwords
- Forward security
- To break the structure of the input
- Entropy extractors
- Key derivation
- Pseudo-random number generator
- To build MACs
- HMAC
- Challenge/response authentication

The SHA-3 Competition

After Wang et al.'s attacks on the MD/SHA family, we need new hash functions

The SHA-3 competition

- Organized by NIST
- Similar to the AES competition
- Submission deadline was October 2008: 64 candidiates
- 51 valid submissions
- 14 in the second round (July 2009)
- 5 finalists in December 2010:
- Blake, Grøstl, JH, Keccak, Skein
- Winner in 2012?

Hash Function Design

- Build a small compression function, and iterate.
- Cut the message in chunks $M_{0}, \ldots M_{k}$
- $H_{i}=f\left(M_{i}, H_{-1}\right)$
- $F(M)=H_{k}$

Boomerang Attacks

RSNCONFERENCE2012

Boomerang Attacks

- Introduced by Wagner, many later improvements
- Combine two short differentials instead of using a long one.
- $f=f_{b} \circ f_{a}$
\downarrow for $f_{a}, \alpha \rightarrow \alpha^{\prime}$ with probability p_{a}
- for $f_{b}, \gamma \rightarrow \gamma^{\prime}$ with probability p_{b}
- Interesting when we don't know how to build iterative differentials.
- Uses an encryption oracle together with a decryption oracle
- Adaptive attack

Boomerang Attacks

1 Start with $P^{(0)}, P^{(1)}$

Build $C^{(2)}, C^{(3)}$

Boomerang Attacks

Boomerang Attacks

Boomerang Attacks

$$
C=\frac{1}{p_{a}} \frac{1}{p_{b}^{2} p_{a}}
$$

Boomerang Attacks

Boomerang Attacks

Boomerang Attacks

1 Start with $P^{(0)}, P^{(1)}$
2 Compute $C^{(0)}, C^{(1)}$
3 Build $C^{(2)}, C^{(3)}$
4 Compute $P^{(2)}, P^{(3)}$

$$
C=\frac{1}{p_{a}} \frac{1}{p_{b}^{2}} \frac{1}{p_{a}}
$$

$$
P^{(0)} \oplus P^{(1)}=\alpha
$$

$$
P^{(2)} \oplus P^{(3)}=\alpha
$$

$$
C^{(0)} \oplus C^{(1)}=\gamma^{\prime}
$$

$$
C^{(2)} \oplus C^{(3)}=\gamma^{\prime}
$$

Improvements to the Boomerang Attack

1 Amplified probabilities

- Do not specify α^{\prime} and γ
- $\hat{p}_{a}=\sqrt{\sum_{\alpha^{\prime}} \operatorname{Pr}\left[\alpha \rightarrow \alpha^{\prime}\right]}$
$\hat{p}_{b}=\sqrt{\sum_{\gamma} \operatorname{Pr}\left[\gamma \rightarrow \gamma^{\prime}\right]}$

Related-key

Improvements to the Boomerang Attack

1 Amplified probabilities

- Do not specify α^{\prime} and γ
- $\hat{p}_{a}=\sqrt{\sum_{\alpha^{\prime}} \operatorname{Pr}\left[\alpha \rightarrow \alpha^{\prime}\right]}$

$$
\hat{p}_{b}=\sqrt{\sum_{Y} \operatorname{Pr}\left[\gamma \rightarrow \gamma^{\prime}\right]}
$$

2 Related-key

$$
\begin{aligned}
p_{a} & =\operatorname{Pr}\left[\alpha \xrightarrow{\alpha_{k}} \alpha^{\prime}\right] \\
p_{b} & =\operatorname{Pr}\left[\gamma \xrightarrow{\gamma_{k}} \gamma^{\prime}\right]
\end{aligned}
$$

Boomerang Attacks on Hash Functions

- Most hash functions are based on a block cipher:

$$
\begin{aligned}
\text { Davies-Meyer } f(h, m) & =E_{m}(h) \oplus h \\
\text { Matyas-Meyer-Oseas } f(h, m) & =E_{h}(m) \oplus m
\end{aligned}
$$

- A (related-key) boomerang attack gives a quartet:

$$
\sum P^{(i)}=0 \quad \sum C^{(i)}=0 \quad \sum K^{(i)}=0
$$

- This is a zero-sum for the compression function:

$$
\sum h^{(i)}=0 \quad \sum m^{(i)}=0 \quad \sum f\left(h^{(i)}, m^{(i)}\right)=0
$$

- In general this is hard:
$\begin{aligned}-\sum f(h, m) & =0, \\ -\sum f(h, m) & =\sum h=\sum m=0,\end{aligned}$
- With a known key, one can start from the middle
- Message modification

New Technique: Better Use of Degrees of Freedom in a Hash Function Setting.

Using Auxiliary Paths

- Divide f in three sub-functions: $f=f_{c} \circ f_{b} \circ f_{a}$
- for $f_{a}, \alpha \rightarrow \alpha^{\prime}$ with probability p_{a}
- for $f_{b}, \beta_{j} \rightarrow \beta_{j}^{\prime}$ with probability p_{b}
- for $f_{c}, \gamma \rightarrow \gamma^{\prime}$ with probability p_{c}

1 Start with a boomerang quartet for f_{b} :

$$
\begin{array}{ll}
U^{(1)}=U^{(0)}+\alpha^{\prime} & U^{(3)}=U^{(2)}+\alpha^{\prime} \\
V^{(2)}=V^{(0)}+\gamma & V^{(2)}=V^{(1)}+\gamma
\end{array}
$$

2 For each auxiliary path, construct $U_{*}^{(i)}=U^{(i)}+\beta_{j}$.
With probability $p_{b}^{4}, V_{*}^{(i)}=V^{(i)}+\beta_{j}^{\prime}$, and we have a new quartet:

$$
\begin{array}{ll}
U_{*}^{(1)}=U_{*}^{(0)}+\alpha^{\prime} & U_{*}^{(3)}=U_{*}^{(2)}+\alpha^{\prime} \\
V_{*}^{(2)}=V_{*}^{(0)}+\gamma & V_{*}^{(2)}=V_{*}^{(1)}+\gamma
\end{array}
$$

3 Check if the f_{a} and f_{b} paths are satisfied.

f_{a}
$\operatorname{Pr}\left[\alpha \rightarrow \alpha^{\prime}\right]=p_{a}$
f_{b}
$\operatorname{Pr}\left[\beta_{j} \rightarrow \beta_{j}^{\prime}\right]=p_{b}$
f_{c}
$\operatorname{Pr}\left[\gamma \rightarrow \gamma^{\prime}\right]=p_{c}$

$$
\begin{aligned}
& f_{c} \\
& \operatorname{Pr}\left[\gamma \rightarrow \gamma^{\prime}\right]=p_{c}
\end{aligned}
$$

$$
\begin{aligned}
& f_{c} \\
& \operatorname{Pr}\left[\gamma \rightarrow \gamma^{\prime}\right]=p_{c}
\end{aligned}
$$

f_{C}
$\operatorname{Pr}\left[\gamma \rightarrow \gamma^{\prime}\right]=p_{c}$

Using Auxiliary Paths

- Hash function setting allows to start from the middle and to build related quartets (instead of related pairs)
- Complexity:

$$
\frac{1}{p_{a}^{2} p_{c}^{2}}\left(\frac{c}{b \cdot p_{b}^{4}}+1\right)
$$

- Cost C to build an initial quartet
- b paths with probability p_{b} for f_{b}
- Also works with related-key paths
- New quartet with a different key
- Very efficient with a large family of probability 1 paths
- We can combine three paths instead of two

Application

RSNCONFERENCE2012

Application to ARX Designs

- Several recent design are based on the ARX design
- Use only Addition, Rotation, Xor
- Skein, Blake are SHA-3 finalists
- Short RK paths with high probability
Complexity $\underbrace{}_{\text {Rounds }}$
- Hard to build controlled characteristics

Application to ARX Designs

- Several recent design are based on the ARX design
- Use only Addition, Rotation, Xor
- Skein, Blake are SHA-3 finalists
- Short RK paths with high probability

- Using auxiliary paths

Skein

Threefish-256 round

MMO mode

- SHA-3 finalist
- ARX design
- 64-bit words
- $\operatorname{MIX}_{r}(a, b):=((a \boxplus b),(b \lll r) \oplus c)$
- Word permutations
- Key addition every four rounds
- Threefish-256:
- 256-bit key: $K_{0}, K_{1}, K_{2}, K_{3}$
- 128-bit tweak: T_{0}, T_{1}
- 256-bit text

Skein: Differential Trails

Key schedule (Threefish-256):

- 256-bit key: $K_{0}, K_{1}, K_{2}, K_{3}$
- 128-bit tweak: T_{0}, T_{1}
- $K_{4}:=K_{0} \oplus K_{1} \oplus K_{2} \oplus K_{3} \oplus C$
- $T_{2}:=T_{0} \oplus T_{1}$

Round

0	K_{0}	$K_{1}+T_{0}$	$K_{2}+T_{1}$	$K_{3}+0$
4	K_{1}	$K_{2}+T_{1}$	$K_{3}+T_{2}$	$K_{4}+1$
8	K_{2}	$K_{3}+T_{2}$	$K_{4}+T_{0}$	$K_{0}+2$
12	K_{3}	$K_{4}+T_{0}$	$K_{0}+T_{1}$	$K_{1}+3$
16	K_{4}	$K_{0}+T_{1}$	$K_{1}+T_{2}$	$K_{2}+4$

Use a difference in the tweak and in the key
so that they cancel out

One key addition without any difference

Skein: Differential Trails

Key schedule (Threefish-256):

- 256-bit key: $K_{0}, K_{1}, K_{2}, K_{3}$
- 128-bit tweak: T_{0}, T_{1}
- $K_{4}:=K_{0} \oplus K_{1} \oplus K_{2} \oplus K_{3} \oplus C$
- $T_{2}:=T_{0} \oplus T_{1}$

Round				
0	K_{0}	$K_{1}+T_{0}$	$K_{2}+T_{1}$	$K_{3}+0$
4	K_{1}	$K_{2}+T_{1}$	$K_{3}+T_{2}$	$K_{4}+1$
8	K_{2}	$K_{3}+T_{2}$	$K_{4}+T_{0}$	$K_{0}+2$
12	K_{3}	$K_{4}+T_{0}$	$K_{0}+T_{1}$	$K_{1}+3$
16	K_{4}	$K_{0}+T_{1}$	$K_{1}+T_{2}$	$K_{2}+4$

- Use a difference in the tweak and in the key so that they cancel out
- One key addition without any difference

Skein: Differential Trails

- 16-round trail:

- Use a MSB difference for best probability
- Use any difference for auxiliary paths
- $2^{64} 8$-round paths with probability 1

Skein: Description of the Attack

Skein: Description of the Attack

1 Build a quartet for rounds 16-20.
cost: 2^{18}

2 Extend to rounds 12-20 using random keys.
cost: 2^{18}

Use auxiliary paths
to generate quartets.

1 Build a quartet for rounds 16-20.
cost: 2^{18}

2 Extend to rounds 12-20 using random keys.
cost: 2^{18}

3 Use auxiliary paths to generate quartets.
amortized cost: 2^{0}

Limitations of the Technique

Why not attack more rounds?

Limitations of the Technique

Why not attack more rounds?

Paths are incompatible!

Incompatible Characteristics

Incompatibilities in Boomerang Paths

- For a Boomerang attack, we usually assume that the path are independent
- We are building a quartet $X^{(0)}, X^{(1)}, X^{(2)}, X^{(3)}$:

$$
\begin{array}{ll}
X^{(1)}=X^{(0)}+\alpha^{\prime} & X^{(3)}=X^{(2)}+\alpha^{\prime} \\
X^{(2)}=X^{(0)}+\gamma & X^{(2)}=X^{(1)}+\gamma
\end{array}
$$

We expect:

$$
\begin{array}{ll}
\left(X^{(0)}, X^{(1)}\right) \stackrel{f_{a}}{\square} \alpha & \left(X^{(2)}, X^{(3)}\right) \stackrel{f_{a}}{\leftrightarrows} \alpha \\
\left(X^{(0)}, X^{(2)}\right) \stackrel{f_{b}}{\longrightarrow} \gamma^{\prime} & \left(X^{(1)}, X^{(3)}\right) \xrightarrow{f_{b}} \gamma^{\prime}
\end{array}
$$

- But these events are not independent!
[Murphy 2011]

Boomerang Incompatibility

$\delta a=-x-\quad \delta b=---$
$\delta a=-\mathrm{x}-\quad \delta b=-\mathrm{x}-$

$\delta u=--$

$$
u=a+b
$$

Top path: $\quad\left(a^{(0)}, b^{(0)} ; a^{(2)}, b^{(2)}\right)\left(a^{(1)}, b^{(1)} ; a^{(3)}, b^{(3)}\right)$

Bottom path: $\left(a^{(0)}, b^{(0)} ; a^{(1)}, b^{(1)}\right)\left(a^{(2)}, b^{(2)} ; a^{(3)}, b^{(3)}\right)$

Boomerang Incompatibility

$\delta u=--$

$$
u=a+b
$$

- Wlog, assume $a^{(0)}=0$

Boomerang Incompatibility

$\delta u=--$

$$
u=a+b
$$

	$x^{(0)}$	$x^{(1)}$	$x^{(2)}$	$x^{(3)}$
a	0	1	1	0
b	1	0	0	1

- Wlog, assume $a^{(0)}=0$
- Compute $a^{(i)}$,

Bottom path: $\left(a^{(0)}, b^{(0)} ; a^{(1)}, b^{(1)}\right)\left(a^{(2)}, b^{(2)} ; a^{(3)}, b^{(3)}\right)$

Boomerang Incompatibility

$\delta u=--$

$$
u=a+b
$$

	$x^{(0)}$	$x^{(1)}$	$x^{(2)}$	$x^{(3)}$
a	0	1	1	0
b	1	0	0	1

- Wlog, assume $a^{(0)}=0$
- Compute $a^{(i)}$, deduce sign of b

Boomerang Incompatibility

$\delta u=--$
$u=a+b$

	$x^{(0)}$	$x^{(1)}$	$x^{(2)}$	$x^{(3)}$
a	0	1	1	0
b	1	0	0	1

- Wlog, assume $a^{(0)}=0$
- Compute $a^{(i)}$, deduce sign of b
- Contradiction for b !

Other Incompatible Paths

$$
\delta u=-x
$$

$$
u=a+b+c
$$

$$
u=a+b
$$

Many "natural" characteristics are in fact incompatible.

- Previous boomerang attacks on Skein-512 do not work
- Works on Skein-256

Results on Skein

Attack	CF/KP	Rounds CF/KP calls	Ref.	
Unknown Key				
Near collisions (Skein-256)	CF	24	2^{60}	[CANS '10]
Boomerang dist. (Threefish-512)	KP	32	2^{189}	[ISPEC '10]
Key Recovery (Threefish-512)	KP	34	$2^{474.4}$	[ISPEC '10]
Key Recovery (Threefish-512)	KP	32	2^{312}	[AC '09]
Open key				
Boomerang dist. (Threefish-512)	KP	35	2^{478}	[AC '09]
Near collisions (Skein-256)	CF	32	2^{105}	[ePrint '11]
Boomerang dist. (Skein-256)	CF and KP	24	2^{18}	
Boomerang dist. (Threefish-256)	KP	28	2^{21}	
Boomerang dist. (Skein-256)	CF	28	2^{24}	
Boomerang dist. (Threefish-256)	KP	32	2^{57}	
Boomerang dist. (Skein-256)	CF	32	2^{114}	

Conclusion

1 Boomerang attack on hash functions

- Start from the middle
- Use auxiliary path to avoid middle rounds
- Significant improvement over previous results
- New result: also works on Blake

2 Analysis of differentials paths

- Problems found in several previous works

Appendix

RSNCONFERENCE2012

Related work

- Similar to "Boomerang" of Joux and Peyrin (auxiliary paths)
- In the context of collision attacks
- Similar to message modifications for Boomerang attacks
- Blake
- SHA-2
[ML '11]
- HAVAL
[Sasaki '11]
- Skein/Threefish
- Auxiliary paths allow to skip more rounds

New Result: Application to Blake

- The same technique can be applied to Blake
- Another ARX SHA-3 finalist
- Significant improvement over previous results
[FSE '11]
- Compression function attack:
- 6.5 rounds: 2^{140} (vs. z^{184})
- 7 rounds: 2^{183} (vs. Z^{232})
- Keyed-permutation attacks (Open-key vs. Unknown-key)
- 7 rounds: 2^{32} (vs. 2^{122})
- 8 rounds: $2^{1 x x}$ (vs. 2^{242})

Blake

- State is 4×4 matrix:

a_{0}	a_{1}	a_{2}	a_{3}
b_{0}	b_{1}	b_{2}	b_{3}
c_{0}	c_{1}	c_{2}	c_{3}
d_{0}	d_{1}	d_{2}	d_{3}

- Column step: $G\left(a_{0}, b_{0}, c_{0}, d_{0}\right)$ $G\left(a_{1}, b_{1}, c_{1}, d_{1}\right)$ $G\left(a_{2}, b_{2}, c_{2}, d_{2}\right)$ $G\left(a_{3}, b_{3}, c_{3}, d_{3}\right)$
- Diagonal step:
$G\left(a_{0}, b_{1}, c_{2}, d_{3}\right)$
$G\left(a_{1}, b_{2}, c_{3}, d_{0}\right)$
$G\left(a_{2}, b_{3}, c_{0}, d_{1}\right)$
$G\left(a_{3}, b_{0}, c_{1}, d_{2}\right)$

Blake

- State is 4×4 matrix:

a_{0}	a_{1}	a_{2}	a_{3}
b_{0}	b_{1}	b_{2}	b_{3}
c_{0}	c_{1}	c_{2}	c_{3}
d_{0}	d_{1}	d_{2}	d_{3}

- Column step:

$$
G\left(a_{0}, b_{0}, c_{0}, d_{0}\right)
$$

$$
G\left(a_{1}, b_{1}, c_{1}, d_{1}\right)
$$

$$
G\left(a_{2}, b_{2}, c_{2}, d_{2}\right)
$$

$$
G\left(a_{3}, b_{3}, c_{3}, d_{3}\right)
$$

- Diagonal step:

$$
\begin{aligned}
& G\left(a_{0}, b_{1}, c_{2}, d_{3}\right) \\
& G\left(a_{1}, b_{2}, c_{3}, d_{0}\right) \\
& G\left(a_{2}, b_{3}, c_{0}, d_{1}\right) \\
& G\left(a_{3}, b_{0}, c_{1}, d_{2}\right)
\end{aligned}
$$

Blake

- State is 4×4 matrix:

a_{0}	a_{1}	a_{2}	a_{3}
b_{0}	b_{1}	b_{2}	b_{3}
c_{0}	c_{1}	c_{2}	c_{3}
d_{0}	d_{1}	d_{2}	d_{3}

- Column step: $G\left(a_{0}, b_{0}, c_{0}, d_{0}\right)$ $G\left(a_{1}, b_{1}, c_{1}, d_{1}\right)$ $G\left(a_{2}, b_{2}, c_{2}, d_{2}\right)$ $G\left(a_{3}, b_{3}, c_{3}, d_{3}\right)$
- Diagonal step:

$$
\begin{aligned}
& G\left(a_{0}, b_{1}, c_{2}, d_{3}\right) \\
& G\left(a_{1}, b_{2}, c_{3}, d_{0}\right) \\
& G\left(a_{2}, b_{3}, c_{0}, d_{1}\right) \\
& G\left(a_{3}, b_{0}, c_{1}, d_{2}\right)
\end{aligned}
$$

Blake: Differential Trails

- Key schedule: permutation based

$\sigma_{3}:$	7	3	13	11	9	1	12	14	2	5	4	15	6	10	0	8
$\sigma_{4}:$	9	5	2	10	0	7	4	15	14	11	6	3	1	12	8	13

Choose a message word used at the beginning of a round at the end of the next round

4-round trail:

Blake: Differential Trails

- Key schedule: permutation based

$\sigma_{3}:$	7	3	13	11	9	1	12	14	2	5	4	15	6	10	0	8
$\sigma_{4}:$	9	5	2	10	0	7	4	15	14	11	6	3	1	12	8	13

- Choose a message word used
- at the beginning of a round
- at the end of the next round

4-round trail:

Blake: Differential Trails

- Key schedule: permutation based

$\sigma_{3}:$	7	3	13	11	9	1	12	14	2	5	4	15	6	10	0	8
$\sigma_{4}:$	9	5	2	10	0	7	4	15	14	11	6	3	1	12	8	13

- Choose a message word used
- at the beginning of a round
- at the end of the next round
- 4-round trail:

Blake: Description of the Attack

The hard part is the middle round

- Column step is part of the top path
- Diagonal step is part of the bottom path

1 Find (state, message) candidates for each diagonal G function

- Start with middle quartets with all differences fixed

2 Look for combinations of candidates that follow the first part of the diagonal step

- Use the message to randomize

3 Look for candidates that follow the full diagonal step

- Use the message to randomize

Blake-256: Results

Attack	CF/KP	Rounds	CF/KP calls	Ref.
Unknown Key				
Boomerang dist.	KP	7	2^{122}	[FSE '11]
Boomerang dist.	KP	8	2^{242}	[FSE '11]
Open Key				
Boomerang dist.	GF w/lnit	7	2^{232}	[FSE '11]
Boomerang dist.	CF w/ Init	7	2^{183}	
Boomerang dist.	KP	7	2^{32}	
Boomerang dist.	KP	8	$2^{1 \times x}$	

