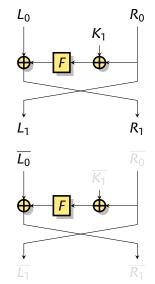

Application to Lesamnta

Application to XTEA 00000000 Application to ESSENCE

Another Look at Complementation Properties

Charles Bouillaguet, Orr Dunkelman, Gaëtan Leurent, Pierre-Alain Fouque

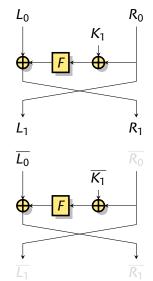
École Normale Supérieure Paris, France



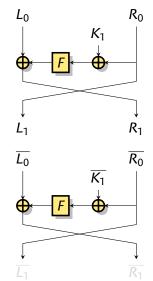
G. Leurent (ENS)

Application to Lesamnta 0000000000 Application to XTEA 00000000 Application to ESSENCE

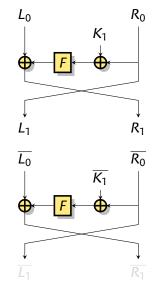
DES's Complementation Property


- If the key is bitwise complemented, so are all the subkeys.
 - $\frac{K \rightarrow K_1}{K \rightarrow K_1}, \frac{K_2}{K_2}, \dots, \frac{K_{16}}{K_{16}}$ and
- If the state is also complemented the input to the F function is the same.
- Therefore the output is the same. $R'_1 = \overline{L_0} \oplus F(\overline{K_1} \oplus \overline{R_0})$
- DES's complementation property:

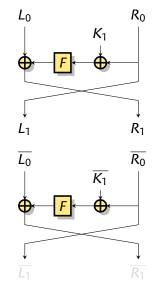
G. Leurent (ENS)


Application to Lesamnta 0000000000 Application to XTEA 00000000 Application to ESSENCE

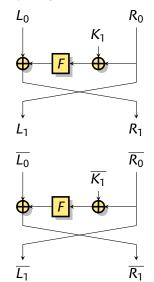
- If the key is bitwise complemented, so are all the subkeys.
 - $\frac{K \to K_1, K_2, \dots, K_{16}}{K \to K_1, K_2, \dots, K_{16}} \text{ and }$
- If the state is also complemented the input to the F function is the same.
- Therefore the output is the same. $R'_1 = \overline{L_0} \oplus F(\overline{K_1} \oplus \overline{R_0})$
- DES's complementation property:


Application to Lesamnta 0000000000 Application to XTEA 00000000 Application to ESSENCE

- If the key is bitwise complemented, so are all the subkeys.
 - $\frac{K \to K_1, K_2, \dots, K_{16}}{K \to K_1, K_2, \dots, K_{16}} \text{ and }$
- If the state is also complemented the input to the F function is the same.
- Therefore the output is the same. $R'_1 = \overline{L_0} \oplus F(\overline{K_1} \oplus \overline{R_0})$
- DES's complementation property:

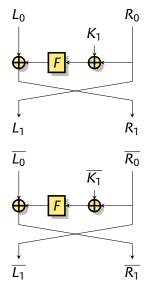

Application to Lesamnta 0000000000 Application to XTEA 00000000 Application to ESSENCE

- If the key is bitwise complemented, so are all the subkeys.
 - $\frac{K \to K_1, K_2, \dots, K_{16}}{K \to K_1, K_2, \dots, K_{16}} \text{ and }$
- If the state is also complemented the input to the F function is the same.
- Therefore the output is the same. $R'_1 = \overline{L_0} \oplus F(K_1 \oplus R_0)$
- DES's complementation property:


Application to Lesamnta 0000000000 Application to XTEA 00000000 Application to ESSENCE

- If the key is bitwise complemented, so are all the subkeys.
 - $\frac{K \to K_1, K_2, \dots, K_{16}}{K \to K_1, K_2, \dots, K_{16}} \text{ and }$
- If the state is also complemented the input to the F function is the same.
- Therefore the output is the same. $R'_1 = \overline{L_0 \oplus F(K_1 \oplus R_0)}$
- DES's complementation property:

Application to Lesamnta 0000000000 Application to XTEA 00000000 Application to ESSENCE


- If the key is bitwise complemented, so are all the subkeys.
 - $\frac{K \to K_1, K_2, \dots, K_{16}}{K \to K_1, K_2, \dots, K_{16}} \text{ and }$
- If the state is also complemented the input to the F function is the same.
- Therefore the output is the same. $R'_1 = \overline{R_1}$
- DES's complementation property:

Application to Lesamnta 0000000000 Application to XTEA 00000000 Application to ESSENCE

- If the key is bitwise complemented, so are all the subkeys.
 - $\frac{K \to K_1, K_2, \dots, K_{16}}{K \to K_1, K_2, \dots, K_{16}} \text{ and }$
- If the state is also complemented the input to the F function is the same.
- Therefore the output is the same. $R'_1 = \overline{R_1}$
- DES's complementation property:

$$\overline{DES_{\overline{K}}(\overline{P})} = DES_{K}(P)$$

Application to Lesamnt

Application to XTEA

Application to ESSENCE

Other similar properties

- Complementation property on LOKI: $E_{K \oplus \alpha}(P \oplus \alpha) = E_K(P) \oplus \alpha$
- Equivalent keys of TEA: $E_{K \oplus \Delta_{msb}}(P) = E_K(P)$
- Pseudo-collisions in CHI: $CF(\overline{H}, \overline{M}) = CF(H, M)$
- ▶ Pseudo-collisions in MD5: $CF(H \oplus \Delta_{msb}, M) = CF(H, M)$ with probability 2⁻⁴⁸

G. Leurent (ENS)

Application to Lesamnta

Application to XTEA 00000000 Application to ESSENCE

Generalization of the complementation property

Definition (Self-similarity relation in a block cipher)

Invertible and easy to compute transformations ϕ , ψ and θ such that: $\forall K, P : E_{\psi(K)}(\phi(P)) = \theta(E_K(P))$

Definition (Self-similarity relation in a compression function)

Invertible and easy to compute transformations ϕ , ψ and θ such that: $\forall H, M : CF(\phi(H), \psi(M)) = \theta(CF(H, M))$

• We also consider probabilistic relations.

Broad definition.

- Related key differential.
- Related key slide attack.
- Rotational cryptanalysis.

G. Leurent (ENS)

Application to Lesamnta 0000000000 Application to XTEA 00000000 Application to ESSENCE

Generalization of the complementation property

Definition (Self-similarity relation in a block cipher)

Invertible and easy to compute transformations ϕ , ψ and θ such that: $\forall K, P : E_{\psi(K)}(\phi(P)) = \theta(E_K(P))$

Definition (Self-similarity relation in a compression function)

Invertible and easy to compute transformations ϕ , ψ and θ such that: $\forall H, M : CF(\phi(H), \psi(M)) = \theta(CF(H, M))$

• We also consider probabilistic relations.

- Broad definition.
 - Related key differential.
 - Related key slide attack.
 - Rotational cryptanalysis.

Application to Lesamnta

Application to XTEA

Application to ESSENCE

Our results

- Attacks on Lesamnta.
 - For any number of round.
 - ▶ Collision attack in 2^{*n*/4} on the compression function.
 - Improved herding attack on the hash function.
- Related key differential attack on XTEA.
 - Attack on 36 rounds.
 - ▶ 50 rounds for a class of weak keys.
- Rotational relations in *ESSENCE*.
- Algebraic relations in \mathcal{PURE} .
- Results on first round SHAvite-3₅₁₂ with weak salt.

G. Leurent (ENS)

Application to Lesamnta

Application to XTEA 00000000 Application to ESSENCE

Introduction

Application to Lesamnta

Application to XTEA

Application to ESSENCE

G. Leurent (ENS)

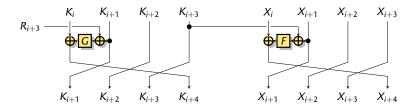
Application to Lesamnta •••••• Application to XTEA

Application to ESSENCE

Lesamnta

- First round SHA-3 candidate
- Merkle-Damgård with an MMO compression function
- Generalized Feistel
- Round function is AES-based

Shoichi Hirose, Hidenori Kuwakado, Hirotaka Yoshida SHA-3 Proposal: Lesamnta Submission to the NIST SHA-3 competition


G. Leurent (ENS)

Application to Lesamnta

Application to XTEA

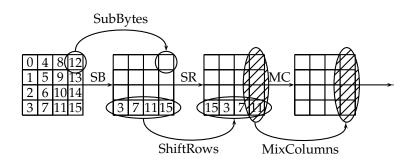
Application to ESSENCE

Lesamnta (cont.)

$$X_{i+4} = X_i \oplus F(X_{i+1} \oplus K_{i+3})$$

$$K_{i+4} = K_i \oplus G(K_{i+1} \oplus R_{i+3}).$$

- ▶ Message loaded to K₋₃, K₋₂, K₋₁, K₀
- Chaining value loaded to X₋₃, X₋₂, X₋₁, X₀
- F and G AES-based


G. Leurent (ENS)

Application to Lesamnta

Application to XTEA

Application to ESSENCE

The AES Round function


G. Leurent (ENS)

Application to Lesamnta

Application to XTEA

Application to ESSENCE

Α	В	С	D		а	Ь	с	d		а	Ь	с	d		α	β	γ	δ
Ε	F	G	Η	SB	е	f	8	h	SR	f	S	h	е	MC	ϵ	ζ	η	θ
1	J	Κ	L		i	j	k	l		k	l	i	j		l	к	λ	μ
M	N	0	Р		т	n	0	p		р	m	n	0		ν	ξ	0	π

Application to Lesamnta

Application to XTEA

Application to ESSENCE

Α	В	С	D		а	Ь	с	d		а	b	С	d		α	β	γ	δ
Ε	F	G	Н	SB	е	f	8	h	SR	f	g	h	е	MC	ϵ	ζ	η	θ
1	J	Κ	L		i	j	k	l		k	l	i	j		l	к	λ	μ
Μ	Ν	0	Р		т	n	0	р		р	т	п	0		ν	ξ	0	π

С					С	d	а	b		С	d	а	Ь		γ	δ	α	β
G	Η	Ε	F	SB	3	h	е	f	SR	h	е	f	3	MC	η	θ	ϵ	ζ
Κ	L	1	J		k	l	i	j		i	j	k	l		λ	μ	l	\mathcal{K}
0	Р	Μ	Ν		0	р	m	п		п	0	р	m		0	π	V	ξ

Application to Lesamnta

Application to XTEA

Application to ESSENCE

Α	В	С	D		а	Ь	с	d		а	b	с	d		α	β	γ	δ
Ε	F	G	Н	SB	е	f	8	h	SR	f	ջ	h	е	MC	ϵ	ζ	η	θ
1	J	Κ	L		i	j	k	l		k	l	i	j		l	к	λ	μ
Μ	Ν	0	Р		т	п	0	р		р	т	п	0		ν	ξ	0	π

С	D	Α	В		с	d	а	b		С	d	а	Ь		γ	δ	α	β
G	Η	Ε	F	SB	8	h	е	f	SR	h	е	f	8	MC	η	θ	Е	ζ
Κ	L	1	J	,	k	l	i	j		i	j	k	l		λ	μ	l	\mathcal{K}
0	Р	Μ	Ν		0	р	т	n		п	0	Р	т		0	π	ν	ξ

Application to Lesamnta

Application to XTEA

Application to ESSENCE

Α	В	С	D		а	Ь	с	d		а	b	с	d		α	β	γ	δ
Ε	F	G	Н	SB	е	f	8	h	SR	f	ջ	h	е	MC	ϵ	ζ	η	θ
1	J	Κ	L		i	j	k	l		k	l	i	j		l	к	λ	μ
Μ	Ν	0	Р		т	п	0	р		р	т	п	0		ν	ξ	0	π

С	D	Α	В		с	d	а	Ь		с	d	а	Ь		γ	δ	α	β
G	Н	Ε	F	SB	8	h	е	f	SR	h	е	f	8	MC	η	θ	ϵ	ζ
Κ	L	1	J		k	l	i	j		i	j	k	l		λ	μ	l	K
0	Р	Μ	Ν		0	р	m	n		п	0	р	т		0	π	ν	ξ

Application to Lesamnta

Application to XTEA

Application to ESSENCE

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	no		α		d	C	b	а		d	С	Ь	а		D	С	В	Α
$I I K L$ $i i k I$ $k I i i$ $\iota \kappa \lambda$	1 0	ζη	ϵ	MC	е	h	8	f	SR	h	z	f	е	SB	Н	G	F	Ε
	$\lambda \mid \mu$	κλ	l		j	i	l	k		l	k	j	i		L	K	J	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ο π	ξο	ν		0	n	т	р		p	0	п	т		Р	0	Ν	Μ
		<u> </u>																

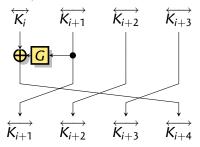
С	D	A	В		с	d	а	Ь		с	d	а	Ь		γ	δ	α	β
G	Η	Ε	F	SB	8	h	е	f	SR	h	е	f	8	MC	η	θ	е	ζ
Κ	L	1	J		k	l	i	j		i	j	k	l		λ	μ	l	κ
0	Р	Μ	Ν		0	р	m	n		n	0	р	т		0	π	ν	ξ

Application to Lesamnta

Application to XTEA 00000000 Application to ESSENCE

Some Interesting Properties of Lesamnta's F and G

- Lesamnta's F posses similar properties: $F(X, Y) = (Z, W) \Rightarrow F(Y, X) = (W, Z).$
- The same is true for G as well: $G(X, Y) = (Z, W) \Rightarrow G(Y, X) = (W, Z).$


• Let
$$\overrightarrow{(a,b)} = (b,a)$$

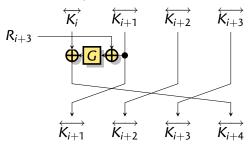
• $F(\overrightarrow{x}) = \overleftarrow{F(x)}$
• $G(\overrightarrow{x}) = \overrightarrow{G(x)}$

Application to Lesamnta

Application to XTEA 00000000 Application to ESSENCE

Complementation-like property in Lesamnta

Can we use this in the key-schedule?


- ► No, because of the constants
- On the other hand, the constants are almost symmetric...

Application to Lesamnta

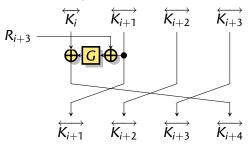
Application to XTEA 00000000 Application to ESSENCE

Complementation-like property in Lesamnta

Can we use this in the key-schedule?

No, because of the constants

On the other hand, the constants are almost symmetric...


G. Leurent (ENS)

Application to Lesamnta

Application to XTEA 00000000 Application to ESSENCE

Complementation-like property in Lesamnta

Can we use this in the key-schedule?

- No, because of the constants
- On the other hand, the constants are almost symmetric...

G. Leurent (ENS)

Application to Lesamnta

Application to XTEA 00000000 Application to ESSENCE

Lesamnta's constants

$$\blacktriangleright R_i = (2i, 2i+1)$$

$$\blacktriangleright R_i \oplus \overleftarrow{R_i} = (1,1)$$

• Let
$$(a, b) = (a, b) \oplus (1, 1) = (b \oplus 1, a \oplus 1)$$

 $\blacktriangleright \widetilde{R}_i = R_i$

Application to Lesamnta

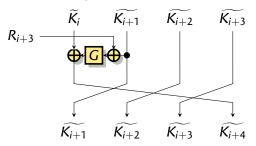
Application to XTEA 00000000 Application to ESSENCE

Lesamnta's constants

$$\blacktriangleright R_i = (2i, 2i+1)$$

$$\blacktriangleright R_i \oplus \overleftarrow{R_i} = (1,1)$$

• Let
$$(\widetilde{a,b}) = \overleftarrow{(a,b)} \oplus (1,1) = (b \oplus 1, a \oplus 1)$$


 $\blacktriangleright \widetilde{R}_i = R_i$

Application to Lesamnta

Application to XTEA 00000000 Application to ESSENCE

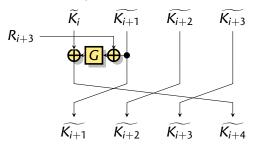
Complementation-like property in Lesamnta, part II

Can we use this in the key-schedule?

$$\widetilde{K_{i+1}} \oplus R_{i+3} = \overleftarrow{K_{i+1}} \oplus \overrightarrow{R_{i+3}}$$

$$\widetilde{G(K_{i+1}} \oplus R_{i+3}) = \overleftarrow{G(K_{i+1}} \oplus \overrightarrow{R_{i+3}})$$

$$\widetilde{K_i} \oplus G(\widetilde{K_{i+1}} \oplus R_{i+3}) = K_i \oplus G(\widetilde{K_{i+1}} \oplus R_{i+3}) = \widetilde{K_{i+4}}$$


G. Leurent (ENS)

Application to Lesamnta

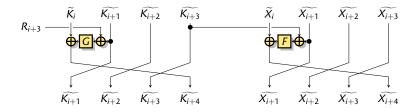
Application to XTEA 00000000 Application to ESSENCE

Complementation-like property in Lesamnta, part II

Can we use this in the key-schedule?

•
$$\widetilde{K_{i+1}} \oplus R_{i+3} = \overleftarrow{K_{i+1} \oplus R_{i+3}}$$

• $G(\widetilde{K_{i+1}} \oplus R_{i+3}) = \overleftarrow{G(K_{i+1} \oplus R_{i+3})}$
• $\widetilde{K_i} \oplus G(\widetilde{K_{i+1}} \oplus R_{i+3}) = K_i \oplus G(\widetilde{K_{i+1}} \oplus R_{i+3}) = \widetilde{K_{i+4}}$


G. Leurent (ENS)

Application to Lesamnta

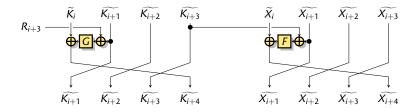
Application to XTEA 00000000 Application to ESSENCE

Complementation-like property in Lesamnta, part II

Can we use this in the full compression function?

 \blacktriangleright $K_i \rightarrow \widetilde{K}_i$

- $\blacktriangleright \widetilde{X_{i+1}} \oplus \widetilde{K_{i+3}} = \overleftarrow{X_{i+1}} \oplus \overrightarrow{K_{i+3}}$
- $\blacktriangleright F(\widetilde{X_{i+1}} \oplus \widetilde{K_{i+3}}) = \overleftarrow{F(X_{i+1} \oplus K_{i+3})}$
- $\blacktriangleright \widetilde{X}_i \oplus F(\widetilde{X_{i+1}} \oplus \widetilde{K_{i+3}}) = X_i \oplus F(\widetilde{X_{i+1}} \oplus K_{i+3}) = \widetilde{X_{i+4}}$


G. Leurent (ENS)

Application to Lesamnta

Application to XTEA 00000000 Application to ESSENCE

Complementation-like property in Lesamnta, part II

Can we use this in the full compression function?

$$\begin{array}{l} \mathbf{k}_{i} \rightarrow \widetilde{K}_{i} \\ \mathbf{k}_{i+1} \oplus \widetilde{K_{i+3}} = \overleftarrow{X_{i+1} \oplus K_{i+3}} \\ \mathbf{k}_{i+1} \oplus \widetilde{K_{i+3}} = \overleftarrow{F(X_{i+1} \oplus K_{i+3})} \\ \mathbf{k}_{i} \oplus F(\widetilde{X_{i+1}} \oplus \widetilde{K_{i+3}}) = \overleftarrow{X_{i} \oplus F(X_{i+1} \oplus K_{i+3})} = \widetilde{X_{i+4}} \end{array}$$

Application to Lesamnta

Application to XTEA 00000000 Application to ESSENCE

Some Really Interesting Property of Lesamnta

- $\blacktriangleright CF(\widetilde{X},\widetilde{K}) = \overleftarrow{CF(X,K)}$
- If $\widetilde{X} = X$ and $\widetilde{K} = K$, then $\overleftarrow{CF(X, K)} = CF(X, K)$
 - The output is in a subspace of size $2^{n/2}$.
- Collision in the compression function in time 2^{n/4}
- Second-preimage on weak messages
- Improved herding attack
 - 2^{n/2} instead of 2^{2n/3}

Application to Lesamnta

Application to XTEA 00000000 Application to ESSENCE

Some Really Interesting Property of Lesamnta

- $\blacktriangleright CF(\widetilde{X},\widetilde{K}) = \overleftarrow{CF(X,K)}$
- If $\widetilde{X} = X$ and $\widetilde{K} = K$, then $\overleftarrow{CF(X, K)} = CF(X, K)$
 - The output is in a subspace of size $2^{n/2}$.
- Collision in the compression function in time 2^{n/4}
- Second-preimage on weak messages
- Improved herding attack
 - 2^{n/2} instead of 2^{2n/3}

G. Leurent (ENS)

Another Look at Complementation Properties

FSE 2010 16 / 28

Application to Lesamnta

Application to XTEA 00000000 Application to ESSENCE

Some Really Interesting Property of Lesamnta

- $\blacktriangleright CF(\widetilde{X},\widetilde{K}) = \overleftarrow{CF(X,K)}$
- If $\widetilde{X} = X$ and $\widetilde{K} = K$, then $\overleftarrow{CF(X, K)} = CF(X, K)$
 - The output is in a subspace of size $2^{n/2}$.
- Collision in the compression function in time 2^{n/4}
- Second-preimage on weak messages
- Improved herding attack
 - 2^{n/2} instead of 2^{2n/3}

Application to Lesamnta

Application to XTEA

Application to ESSENCE

XTEA

- Lightweight block cipher.
- Successor to TEA with a more complex key schedule to avoid RK.
- Feistel Design
- Implemented in the Linux kernel

David Wheeler, Roger Needham Tea extensions Technical report, 1997

G. Leurent (ENS)

Another Look at Complementation Properties

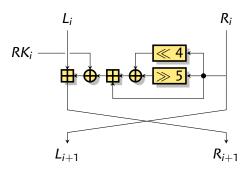
FSE 2010 17 / 28

Application to Lesamnt

Application to XTEA

Application to ESSENCE

XTEA


```
void encipher(int num_rounds, u32 v[2], u32 const k[4]) {
    int i:
    u32 v0=v[0], v1=v[1], sum=0, delta=0x9E3779B9;
    for (i=0; i < num rounds; i++)
        v0 += (((v1 << 4) \land (v1 >> 5)) + v1)
              ^ (sum + k[sum & 3]):
        sum += delta;
        v1 += (((v0 << 4) \land (v0 >> 5)) + v0)
              ^ (sum + k[(sum>>11) & 3]);
    }
    v[0] = v0; v[1] = v1;
}
```

Application to Lesamnta

Application to XTEA

Application to ESSENCE

XTEA

$$L_{i+1} = R_i$$

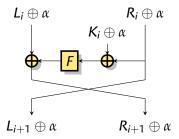
$$R_{i+1} = L_i \boxplus (F(R_i) \oplus RK_i)$$

$$\blacktriangleright F(x) = ((x \ll 4) \oplus (x \gg 5)) \boxplus x$$

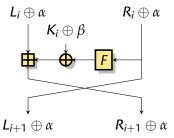
128 bit key: K₀, K₁, K₂, K₃

64 rounds

G. Leurent (ENS)


- $\blacktriangleright RK_{2i} = (i \land \delta) \boxplus K_{((i \cdot \delta) \gg 11) \mod 4}$
- $\blacktriangleright RK_{2i+1} = ((i+1) \cdot \delta) \boxplus K_{((i+1) \cdot \delta) \mod 4}$
 - Another Look at Complementation Properties

Application to Lesamnta

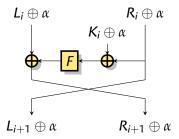

Application to XTEA

Application to ESSENCE

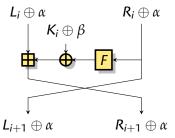
A Simple RK Differential

Complementation property

RK iterative differential on XTEA


G. Leurent (ENS)

Application to Lesamnta


Application to XTEA

Application to ESSENCE

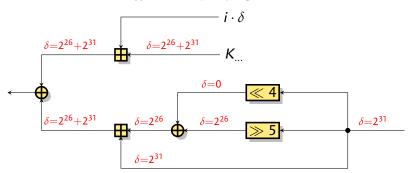
A Simple RK Differential

Complementation property

RK iterative differential on XTEA

$$F: \alpha \rightsquigarrow \beta$$

$$\alpha = 2^{31}, \beta = 2^{31} + 2^{26}$$


$$Prob. 1/2.$$

G. Leurent (ENS)

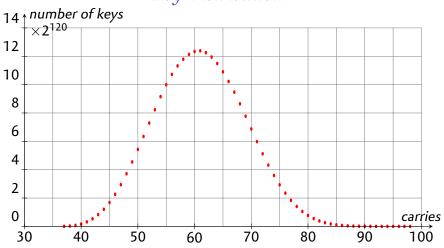
Application to Lesamnt 0000000000 Application to XTEA

Application to ESSENCE

Difference propagation

- Modular differences
- With prob. 1/3, the XOR-difference is the same

For a given key, we can compute the XOR-difference


- $p = 2^{-1}$ if no carries
- $p = 2^{-1-c}$ if c carries.

Application to Lesamnt

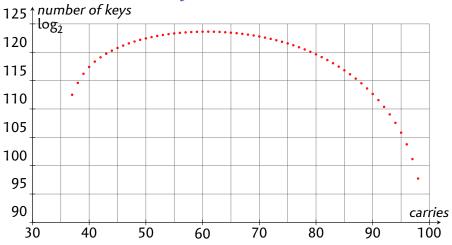
Application to XTEA

Application to ESSENCE

Key Distribution

number of keys with a given prob. (rounds 20–50)

48% of the keys have less than 60 carries


G. Leurent (ENS)

Application to Lesamnt

Application to XTEA

Application to ESSENCE

Key Distribution

number of keys with a given prob. (rounds 20–50) (log₂)

Some keys have only 37 carries

G. Leurent (ENS)

Application to Lesamnt

Application to XTEA

Application to ESSENCE

36 Rounds Attack

- Consider rounds 20–55
- Rounds 51–55 only use K₂ and K₃
- Take 2⁶² message pairs
- Partial decrypt by guessing K₂ and K₃
 - ▶ If the key is in the 48% weak keys, at least one good pair for 20–50
 - Good pair gives carry pattern
- If it fails, then the key is not in the weak class
 - ▶ 52 % of the keyspace remaining.

Complexity:

Rounds	Data	Time
36	2 ⁶²	2 ¹²⁷
37	$2^{64-\epsilon}$	2 ¹²⁷

Application to Lesamnta 0000000000 Application to XTEA

Application to ESSENCE

50 Rounds Attack for Weak Keys

- Consider rounds 10–59
- Rounds 56–59 only use K₀ and K₁
- There is a class of weak keys with 60 carries in 10–55
 - 2^{107.5} weak keys out of 2¹²⁸
- Complexity
 - Data 2⁶²
 - Time 2¹²⁶
- Recent improvement (WiP)
 - 53 rounds
 - Data 2⁶²
 - Time 2⁹⁹

G. Leurent (ENS)

Application to Lesamnta

Application to XTEA 00000000 Application to ESSENCE

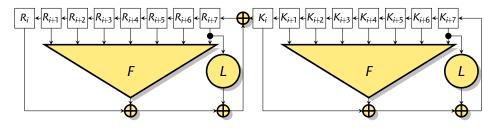
ESSENCE

- First round SHA-3 candidate
- Merkle-Damgård with a Davies-Meyer compression function
- Shift-Register based design

Jason Worth Martin ESSENCE: A Candidate Hashing Algorithm for the NIST Competition Submission to the NIST SHA-3 competition

G. Leurent (ENS)

Another Look at Complementation Properties


FSE 2010 25 / 28

Application to Lesamnta

Application to XTEA

Application to ESSENCE 0000

ESSENCE

- 32 rounds.
- Message loaded to K_{-7}, \ldots, K_0 .
- ▶ Chaining value loaded to *R*₋₇,..., *R*₀.
- ► *F* is non-linear bit-wise.
- L is linear based on a LFSR.

Application to Lesamnta

Application to XTEA 00000000 Application to ESSENCE

Self-similarity property in ESSENCE

- Since L is LFSR based, a rotation can give a slide
 - $LFSR(x^{\ll 1}) = LFSR(x)^{\ll 1}$ with prob. 1/4
- L is the only non-bitwise operation.
 - ► ESSENCE-round($R^{\ll 1}$, $K^{\ll 1}$) = ESSENCE-round(R, K)^{$\ll 1$} with prob. 1/4
- $CF(H^{\ll 1}, M^{\ll 1}) = CF(H, M)^{\ll 1}$ with prob. 2^{-128}
 - We can construct a good pair for a cost of 2⁴⁸

Application to Lesamnt

Application to XTEA

Application to ESSENCE

Conclusion

Sometimes, a simple relation can go through a function

- The constant are used to avoid this...
 - But sometimes the constants are weak

Nice properties when the self-similarity relations have fixed points.

G. Leurent (ENS)