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Abstract. In this work we study the security of Chaskey, a recent
lightweight MAC designed by Mouha et al., currently being considered for
standardization by ISO/IEC and ITU-T. Chaskey uses an ARX structure
very similar to SipHash. We present the first cryptanalysis of Chaskey
in the single user setting, with a differential-linear attack against 6 and
7 rounds, hinting that the full version of Chaskey with 8 rounds has a
rather small security margin. In response to these attacks, a 12-round
version has been proposed by the designers.
To improve the complexity of the differential-linear cryptanalysis, we re-
fine a partitioning technique recently proposed by Biham and Carmeli to
improve the linear cryptanalysis of addition operations. We also propose
an analogue improvement of differential cryptanalysis of addition opera-
tions. Roughly speaking, these techniques reduce the data complexity of
linear and differential attacks, at the cost of more processing time per
data. It can be seen as the analogue for ARX ciphers of partial key guess
and partial decryption for SBox-based ciphers.
When applied to the differential-linear attack against Chaskey, this par-
titioning technique greatly reduces the data complexity, and this also
results in a reduced time complexity. While a basic differential-linear
attack on 7 round takes 278 data and time (respectively 235 for 6 rounds),
the improved attack requires only 248 data and 267 time (respectively
225 data and 229 time for 6 rounds). We also show an application of the
partitioning technique to FEAL-8X, and we hope that this technique will
lead to a better understanding of the security of ARX designs.

Keywords: Differential cryptanalysis, linear cryptanalysis, ARX, addi-
tion, partitioning, Chaskey, FEAL

1 Introduction

Linear cryptanalysis and differential cryptanalysis are the two major cryptanalysis
techniques in symmetric cryptography. Differential cryptanalysis was introduced
by Biham and Shamir in 1990 [6], by studying the propagation of differences in
a cipher. Linear cryptanalysis was discovered in 1992 by Matsui [27,26], using a
linear approximation of the non-linear round function.

In order to apply differential cryptanalysis (respectively, linear cryptanalysis),
the cryptanalyst has to build differentials (resp. linear approximations) for each
round of a cipher, such the output difference of a round matches the input
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difference of the next round (resp. linear masks). The probability of the full
differential or the imbalance of the full linear approximation is computed by
multiplying the probabilities (respectively imbalances) of each round. This yields
a statistical distinguisher for several rounds:

– A differential distinguisher is given by a plaintext difference δP and a cipher-
text difference δC , so that the corresponding probability p is non-negligible:

p = Pr
[
E(P ⊕ δP ) = E(P )⊕ δC

]
� 2−n.

The attacker collects D = O(1/p) pairs of plaintexts (Pi, P
′
i ) with P ′i =

Pi ⊕ δP , and checks whether a pair of corresponding ciphertexts satisfies
C ′i = Ci ⊕ δC . This happens with high probability for the cipher, but with
low probability for a random permutation.

– A linear distinguisher is given by a plaintext mask χP and a ciphertext mask
χC , so that the corresponding imbalance1 ε is non-negligible:

ε =
∣∣2 · Pr

[
P [χP ] = C[χC ]

]
− 1
∣∣� 2−n/2.

The attacker collects D = O(1/ε2) known plaintexts Pi and the corresponding
ciphertexts Ci, and computes the observed imbalance ε̂:

ε̂ = |2 ·# {i : Pi[χP ] = Ci[χC ]} /D − 1| .

The observed imbalance is close to ε for the attacked cipher, and smaller
than 1/

√
D (with high probability) for a random function.

Last round attacks. The distinguishers are usually extended to a key-recovery
attack on a few more rounds using partial decryption. The main idea is to guess
the subkeys of the last rounds, and to compute an intermediate state value
from the ciphertext and the subkeys. This allows to apply the distinguisher on
the intermediate value: if the subkey guess was correct the distinguisher should
succeed, but it is expected to fail for wrong key guesses. In a Feistel cipher,
the subkey for one round is usually much shorter than the master key, so that
this attack recovers a partial key without considering the remaining bits. This
allows a divide and conquer strategy were the remaining key bits are recovered
by exhaustive search. For an SBox-based cipher, this technique can be applied if
the difference δC or the linear mask χC only affect a small number of SBoxes,
because guessing the key bits affecting those SBoxes is sufficient to invert the
last round.

ARX ciphers. In this paper we study the application of differential and linear
cryptanalysis to ARX ciphers. ARX ciphers are a popular category of ciphers
built using only additions (x�y), bit rotations (x≪ n), and bitwise xors (x⊕y).
These simple operations are very efficient in software and in hardware, but they

1 The imbalance is also called correlation.
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interact in complex ways that make analysis difficult and is expected to provide
security. ARX constructions have been used for block ciphers (e.g. TEA, XTEA,
FEAL, Speck), stream ciphers (e.g. Salsa20, ChaCha), hash functions (e.g. Skein,
BLAKE), and for MAC algorithms (e.g. SipHash, Chaskey).

The only non-linear operation in ARX ciphers is the modular addition. Its
linear and differential properties are well understood [38,34,25,33,40,30,15], and
differential and linear cryptanalysis have been use to analyze many ARX designs
(see for instance the following papers: [4,42,41,22,23,17,8,27]).

However, there is no simple way to extend differential or linear distinguishers
to last-round attack for ARX ciphers. The problem is that they typically have
32-bit or 64-bit words, but differential and linear characteristics have a few active
bits in each word.2 Therefore a large portion of the key has to be guessed in
order to perform partial decryption, and this doesn’t give efficient attacks.

Besides, differential and linear cryptanalysis usually reach a limited number
of rounds in ARX designs because the trails diverge quickly and we don’t have
good techniques to keep a low number of active bits. This should be contrasted
with SBox-based designs where it is sometimes possible to build iterative trails,
or trails with only a few active SBoxes per round. For instance, this is case for
differential characteristics in DES [7] and linear trails in PRESENT [14].

Because of this, cryptanalysis methods that allow to divide a cipher E into
two sub-ciphers E = E⊥ ◦ E> are particularly interesting for the analysis of
ARX designs. In particular this is the case with boomerang attacks [39] and
differential-linear cryptanalysis [21,5]. A boomerang attack uses differentials with
probabilities p> and p⊥ in E> and E⊥, to build a distinguisher with complexity
O(1/p2

>p
2
⊥). A differential-linear attack uses a differential with probability p for

E> and a linear approximation with imbalance ε for E⊥ to build a distinguisher
with complexity about O(1/p2ε4) (using a heuristic analysis).

Table 1. Key-recovery attacks on Chaskey

Rounds Data Time Gain

6 235 235 1 bit Differential-Linear
6 225 228.6 6 bits Differential-Linear with partitioning
7 278 278 1 bit Differential-Linear
7 248 267 6 bits Differential-Linear with partitioning

Our results. In this paper, we consider improved techniques to attack ARX
ciphers, with application to Chaskey. Since Chaskey has a strong diffusion, we
start with differential-linear cryptanalysis, and we study in detail how to build a

2 A notable counterexample is FEAL, which uses only 8-bit additions.
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good differential-linear distinguisher, and how to improve the attack with partial
key guesses.

Our main technique follows a recent paper by Biham and Carmeli [3], by
partitioning the available data according to some plaintext and ciphertext bits. In
each subset, some data bits have a fixed value and we can combine this information
with key bit guesses to deduce bits after the key addition. These known bits
result in improved probabilities for differential and linear cryptanalysis. While
Biham and Carmeli considered partitioning with a single control bit (i.e. two
partitions), and only for linear cryptanalysis, we extend this analysis to multiple
control bits, and also apply it to differential cryptanalysis.

When applied to differential and linear cryptanalysis, this results in a signifi-
cant reduction of the data complexity. Alternatively, we can extend the attack to
a larger number of rounds with the same data complexity. Those results are very
similar to the effect of partial key guess and partial decryption in a last-round
attack: we turn a distinguisher into a key recovery attack, and we can add some
rounds to the distinguisher. While this can increase the time complexity in some
cases, we show that the reduced data complexity usually leads to a reduced
time complexity. In particular, we adapt a convolution technique used for linear
cryptanalysis with partial key guesses [16] in the context of partitioning.

These techniques result in significant improvements over the basic differential-
linear technique: for 7 rounds of Chaskey (respectively 6 rounds), the differential-
linear distinguisher requires 278 data and time (respectively 235), but this can
be reduced to 248 data and 267 time (respectively 225 data and 229 time) (see
Table 1). The full version of Chaskey has 8 rounds, and is claimed to be secure
against attacks with 248 data and 280 time.

The paper is organized as follows: we first explain the partitioning technique
for linear cryptanalysis in Section 2 and for differential cryptanalysis in Section 3.
We discuss the time complexity of the attacks in Section 4. Then we demonstrate
the application of this technique to the differential-linear cryptanalysis of Chaskey
in Section 5. Finally, we show how to apply the partitioning technique to reduce
the data complexity of linear cryptanalysis against FEAL-8X in Appendix A.

2 Linear Analysis of Addition

We first discuss linear cryptanalysis applied to addition operations, and the
improvement using partitioning. We describe the linear approximations using
linear masks; for instance an approximation for E is written as Pr

[
E(x)[χ′] =

x[χ]
]

= 1/2± ε/2 where χ and χ′ are the input and output linear masks (x[χ]
denotes x[χ1]⊕ x[χ2]⊕ · · ·x[χ`], where χ = (χ1, . . . χ`) and x[χi] is bit χi of x),
and ε ≥ 0 is the imbalance. We also denote the imbalance of a random variable x
as I(x) = 2 ·Pr[x = 0]− 1, and ε(x) = |I(x)|. We will sometimes identify a mask
with the integer with the same binary representation, and use an hexadecimal
notation.
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We first study linear properties of the addition operation, and use an ARX
cipher E as example. We denote the word size as w. We assume that the cipher
starts with an xor key addition, and a modular addition of two state variables.3

We denote the remaining operations as E′, and we assume that we know a

linear approximation (α, β, γ)
E′

−→ (α′, β′, γ′) with imbalance ε for E′. We further
assume that the masks are sparse, and don’t have adjacent active bits. Following
previous works, the easier way to extend the linear approximation is to use the
following masks for the addition:

(α⊕ α� 1, α)
�−→ α. (1)

As shown in Figure 1, this gives the following linear approximation for E:

(α⊕ α� 1, β ⊕ α, γ)
E−→ (α′, β′, γ′). (2)

In order to explain our technique, we initially assume that α has a single active
bit, i.e. α = 2i. We explain how to deal with several active bits in Section 2.3. If
i = 0, the approximation of the linear addition has imbalance 1, but for other
values of i, it is only 1/2 [40]. In the following we study the case i > 0, where
the linear approximation (2) for E has imbalance ε/2.

E′

x3[α′]y3[β′]z3[γ′]

x2[α]y2[β]z2[γ]

x0[α⊕ α� 1]y0[β ⊕ α]z0[γ]

kxkykz

x1[α⊕ α� 1]y1[β ⊕ α]z1[γ]

Fig. 1. Linear attack against the first addition

3 This setting is quite general, because any operation before a key addition can be
removed, as well as any linear operation after the key addition. Ciphers where the key
addition is made with a modular addition do not fit this model, but the technique
can easily be adapted.
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2.1 Improved analysis with partitioning

We now explain the improved analysis of Biham and Carmeli [3]. A simple way to
understand their idea is to look at the carry bits in the addition. More precisely, we
study an addition operation s = a� b, and we are interested in the value s[α]. We
assume that α = 2i, i > 0, and that we have some amount of input/output pairs.
We denote individual bits of a as a0, a1, . . . an−1, where a0 is the LSB (respectively,
bi for b and si for s). In addition, we consider the carry bits ci, defined as c0 = 0,
ci+1 = MAJ(ai, bi, ci) (where MAJ(a, b, c) = (a∧ b)∨ (b∧ c)∨ (c∧ a)). Therefore,
we have si = ai ⊕ bi ⊕ ci.

Note that the classical approximation si = ai ⊕ ai−1 ⊕ bi holds with prob-
ability 3/4 because ci = ai−1 with probability 3/4. In order to improve this
approximation, Biham and Carmeli partition the data according to the value of
bits ai−1 and bi−1. This gives four subsets:

00 If (ai−1, bi−1) = (0, 0), then ci = 0 and si = ai ⊕ bi.
01 If (ai−1, bi−1) = (0, 1), then ε(ci) = 0 and ε(si ⊕ ai ⊕ ai−1) = 0.
10 If (ai−1, bi−1) = (1, 0), then ε(ci) = 0 and ε(si ⊕ ai ⊕ ai−1) = 0.
11 If (ai−1, bi−1) = (1, 1), then ci = 1 and si = ai ⊕ bi ⊕ 1.

If bits of a and b are known, filtering the data in subsets 00 and 11 gives a trail
for the addition with imbalance 1 over one half of the data, rather than imbalance
1/2 over the full data-set. This can be further simplified to the following:

si = ai ⊕ bi ⊕ ai−1 if ai−1 = bi−1 (3)

In order to apply this analysis to the setting of Figure 1, we guess the key
bits kxi−1 and kyi−1, so that we can compute the values of x1

i−1 and y1
i−1 from x0

and y0. More precisely, an attack on E can be performed with a single (logical)
key bit guess, using Eq. (3):

x2
i = x1

i ⊕ y1
i ⊕ x1

i−1 if x1
i−1 = y1

i−1

x2
i = x0

i ⊕ y0
i ⊕ x0

i−1 ⊕ kxi ⊕ k
y
i ⊕ k

x
i−1 if x0

i−1 ⊕ y0
i−1 = kxi−1 ⊕ k

y
i−1

If we guess the key bit kxi−1⊕k
y
i−1, we can filter the data satisfying x0

i−1⊕y0
i−1 =

kxi−1 ⊕ kyi−1, and we have ε(x2
i ⊕ x0

i ⊕ y0
i ⊕ x0

i−1) = 1. Therefore the linear
approximation (2) has imbalance ε. We need 1/ε2 data after the filtering for the
attack to succeed, i.e. 2/ε2 in total. The time complexity is also 2/ε2 because we
run the analysis with 1/ε2 data for each key guess. This is an improvement over
a simple linear attack using (2) with imbalance ε/2, with 4/ε2 data.

Complexity. In general this partitioning technique multiply the data and time
complexity by the following ratio:

RDlin =
µ−1/ε̃2

1/ε2
= ε2/µε̃2 RTlin =

2κ/ε̃2

1/ε2
= 2κε2/ε̃2 (4)

where µ is the fraction of data used in the attack, κ is the number of guessed key
bits, ε is the initial imbalance, and ε̃ is the improved imbalance for the selected
subset. For Biham and Carmeli’s attack, we have µ = 1/2, κ = 1 and ε̃ = 2ε,
hence RDlin = 1/2 and RTlin = 1/2.
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2.2 Generalized partitioning

? ai0 ? ?

+ ? bi 0 ? ?

? si ? ? ?

0

? ai1 ? ?

+ ? bi 1 ? ?

? si ? ? ?

1

? ai0 0 ?

+ ? bi 1 0 ?

? si ? ? ?

0 0

? ai0 1 ?

+ ? bi 1 1 ?

? si ? ? ?

1 1

? ai1 0 ?

+ ? bi 0 1 ?

? si ? ? ?

? ?

Fig. 2. Some cases of partitioning for linear cryptanalysis of an addition

We now refine the technique of Biham and Carmeli using several control bits.
In particular, we analyze cases 01 and 10 with extra control bits ai−2 and bi−2

(some of the cases of shown in Figure 2):

01.00 If (ai−1, bi−1, ai−2, bi−2) = (0, 1, 0, 0),
then ci−1 = 0, ci = 0 and si = ai ⊕ bi.

01.01 If (ai−1, bi−1, ai−2, bi−2) = (0, 1, 0, 1),
then ε(ci−1) = 0, ε(ci) = 0, and ε(si ⊕ ai ⊕ ai−1) = 0.

01.10 If (ai−1, bi−1, ai−2, bi−2) = (0, 1, 1, 0),
then ε(ci−1) = 0, ε(ci) = 0, and ε(si ⊕ ai ⊕ ai−1) = 0.

01.11 If (ai−1, bi−1, ai−2, bi−2) = (0, 1, 1, 1),
then ci−1 = 1, ci = 1 and si = ai ⊕ bi ⊕ 1.

10.00 If (ai−1, bi−1, ai−2, bi−2) = (1, 0, 0, 0),
then ci−1 = 0, ci = 0 and si = ai ⊕ bi.

10.01 If (ai−1, bi−1, ai−2, bi−2) = (1, 0, 0, 1),
then ε(ci−1) = 0, ε(ci) = 0, and ε(si ⊕ ai ⊕ ai−1) = 0.

10.10 If (ai−1, bi−1, ai−2, bi−2) = (1, 0, 1, 0),
then ε(ci−1) = 0, ε(ci) = 0, and ε(si ⊕ ai ⊕ ai−1) = 0.

10.11 If (ai−1, bi−1, ai−2, bi−2) = (1, 0, 1, 1),
then ci−1 = 1, ci = 1 and si = ai ⊕ bi ⊕ 1.

This yields an improved partitioning because we now have a trail for the addition
with imbalance 1 in 12 out of 16 subsets: 00.00, 00.01, 00.10, 00.11, 01.00,
01.11, 10.00, 10.11, 11.00, 11.01, 11.10, 11.11. We can also simplify this
case analysis:

si =

{
ai ⊕ bi ⊕ ai−1

ai ⊕ bi ⊕ ai−2

if ai−1 = bi−1

if ai−1 6= bi−1 and ai−2 = bi−2
(5)
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This gives an improved analysis of E by guessing more key bits. More precisely
we need kxi−1 ⊕ k

y
i−1 and kxi−2 ⊕ k

y
i−2, as shown below:

x2
i =

{
x1
i ⊕ y1

i ⊕ x1
i−1

x1
i ⊕ y1

i ⊕ x1
i−2

if x1
i−1 = y1

i−1

if x1
i−1 6= y1

i−1 and x1
i−2 = y1

i−2

x2
i =

x
0
i ⊕ y0

i ⊕ x0
i−1 ⊕ kxi ⊕ k

y
i ⊕ kxi−1

x0
i ⊕ y0

i ⊕ x0
i−2 ⊕ kxi ⊕ k

y
i ⊕ kxi−2

if x0
i−1 ⊕ y0

i−1 = kxi−1 ⊕ k
y
i−1

if x0
i−1 ⊕ y0

i−1 6= kxi−1 ⊕ k
y
i−1

and x0
i−2 ⊕ y0

i−2 = kxi−2 ⊕ k
y
i−2

ε(x2
i ⊕ x0

i ⊕ y0
i ⊕ x0

i−1) = 1 if x0
i−1 ⊕ y0

i−1 = kxi−1 ⊕ k
y
i−1

ε(x2
i ⊕ x0

i ⊕ y0
i ⊕ x0

i−2) = 1
if x0

i−1 ⊕ y0
i−1 6= kxi−1 ⊕ k

y
i−1

and x0
i−2 ⊕ y0

i−2 = kxi−2 ⊕ k
y
i−2

Since this analysis yields different input masks for different subsets of the data,
we use an analysis following multiple linear cryptanalysis [9]. We first divide the
data into four subsets, depending on the value of x0

i−1 ⊕ y0
i−1 and x0

i−2 ⊕ y0
i−2,

and we compute the measured (signed) imbalance Î[s] of each subset. Then, for
each guess of the key bits kxi−1 ⊕ k

y
i−1, and kxi−2 ⊕ k

y
i−2, we deduce the expected

imbalance Ik[s] of each subset, and we compute the distance to the observed
imbalance as

∑
s(Î[s]−Ik[s])2. According to the analysis of Biryukov, De Cannière

and Quisquater, the correct key is ranked first (with minimal distance) with
high probability when using O(1/c2) samples, where c2 =

∑
i I2
i =

∑
i ε

2
i is the

capacity of the system of linear approximations. Since we use three approximations
with imbalance ε, the capacity of the full system is 3ε2, and we need 1/3 · 1/ε2

data in each subset after partitioning, i.e. 4/3 · 1/ε2 in total.
Again, the complexity ratio of this analysis can be computed as RDlin = ε2/µε̃2

RTlin = 2κε2/ε̃2 With µ = 3/4 and ε̃ = 2ε, we find:

RDlin = 1/3 RTlin = 1.

The same technique can be used to refine the partitioning further, and give a
complexity ratio of RDlin = 1/4× 2κ/(2κ − 1) when guessing κ bits.

Time complexity. In general, the time complexity of this improved partitioning
technique is the same as the time complexity as the basic attack (RTlin = 1),
because we have to repeat the analysis 4 times (for each key of the key bits) with
one fourth of the amount of data. We describe some techniques to reduce the
time complexity in Section 4.

2.3 Combining partitions

Finally, we can combine several partitions to analyze an addition with several
active bits. If we use k1 partitions for the first bit, and k2 for the second bit,
this yields a combined partition with k1 · k2 cases. If the bits are not close to
each other, the gains of each bit are multiplied. This can lead to significant
improvements even though Rlin is small for a single active bit.
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For more complex scenarios, we select the filtering bits assuming that the
active bits don’t interact, and we evaluate experimentally the probability in each
subset. We can further study the matrix of probabilities to detect (logical) bits
with no or little effect on the total capacity in order to improve the complexity of
the attack. This will be used for our applications in Section 5 and Appendix A.

3 Differential Analysis of Addition

δx3= α′δy3= β′δz3= γ′

δx2= αδy2= βδz2= γ

δx0= α⊕ βδy0= βδz0= γ

kxkykz

δx1= α⊕ βδy1= βδz1= γ

Fig. 3. Differential attack against the first addition

We now study differential properties of the addition. We perform our analysis
in the same way as the analysis of Section 2, following Figure 3. We consider the
first addition operation separately, and we assume that we know a differential
(α, β, γ)→ (α′, β′, γ′) with probability p for the remaining of the cipher. Following
previous works, a simple way to extend the differential is to linearize the first
addition, yielding the following differences for the addition:

α⊕ β, β �−→ α.

Similarly to our analysis of linear cryptanalysis, we consider a single ad-
dition s = a � b, and we first assume that a single bit is active through the
addition. However, we have to consider several cases, depending on how many
input/output bits are active. The cases are mostly symmetric, but there are
important differences in the partitioning.
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3.1 Analysis of (α = 0, β = 2i)

With i < w − 1, the probability for the addition is Pr[(2i, 2i)
�−→ 0] = 1/2.

Improved analysis with structures. We first discuss a technique using mul-
tiple differentials and structures. More precisely, we use the following differentials
for the addition:4

D1 : (2i, 2i)
�−→ 0 Pr

[
(2i, 2i)

�−→ 0
]

= 1/2

D2 : (2i ⊕ 2i+1, 2i)
�−→ 0 Pr

[
(2i ⊕ 2i+1, 2i)

�−→ 0
]

= 1/4

We can improve the probability of D2 using a partitioning according to (ai, ai+1):

00 If (ai, ai+1) = (0, 0), then a′ = a� 2i � 2i+1 and s 6= s′.
01 If (ai, ai+1) = (0, 1), then a′ = a� 2i and Pr[s = s′] = 1/2.
10 If (ai, ai+1) = (1, 0), then a′ = a� 2i and Pr[s = s′] = 1/2.
11 If (ai, ai+1) = (1, 1), then a′ = a� 2i � 2i+1 and s 6= s′.

This can be written as:

Pr
[
(2i, 2i)

�−→ 0
]

= 1/2

Pr
[
(2i ⊕ 2i+1, 2i)

�−→ 0
]

= 1/2 if ai 6= ai+1

The use of structures allows to build pairs of data for both differentials from
the same data set. More precisely, we consider the following inputs:

p = (x0, y0, z0) q = (x0 ⊕ 2i, y0 ⊕ 2i, z0)

r = (x0 ⊕ 2i+1, y0, z0) s = (x0 ⊕ 2i+1 ⊕ 2i, y0 ⊕ 2i, z0)

We see that (p, q) and (r, s) follow the input difference of D1, while (p, s) and
(r, q) follow the input difference of D2. Moreover, we have from the partitioning:

Pr[E(p)⊕ E(q) = (α′, β′, γ′)] = 1/2 · p
Pr[E(r)⊕ E(s) = (α′, β′, γ′)] = 1/2 · p
Pr[E(p)⊕ E(s) = (α′, β′, γ′)] = 1/2 · p if x0

i ⊕ x0
i+1 6= kxi ⊕ kxi+1

Pr[E(r)⊕ E(q) = (α′, β′, γ′)] = 1/2 · p if x0
i ⊕ x0

i+1 = kxi ⊕ kxi+1

For each key guess, we select three candidate pair out of a structure of four plain-
texts, and every pair follows a differential for E with probability p/2. Therefore
we need 2/p pairs, with a data complexity of 8/3 · 1/p rather than 4 · 1/p.

In general this partitioning technique multiply the data and time complexity
by the following ratio:

RDdiff =
p̃−1T/(µT 2/4)

p−1T/(T/2)
=

2p

µT p̃
RTdiff = 2κµRDdiff =

2κ+1p

T p̃
, (6)

4 Note that in the application to E, we can modify the difference in x1 but not in y1.
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where µ is the fraction of data used in the attack, κ is the number of guessed key
bits, T is the number of plaintexts in a structure (we consider T 2/4 pairs rather
than T/2 without structures) p is the initial probability, and p̃ is the improved
probability for the selected subset. Here we have µ = 3/4, κ = 1, T = 4, and
p̃ = p, hence

RDdiff = 2/3 RTdiff = 1

Moreover, if the differential trail is used in a boomerang attack, or in a
differential-linear attack, it impacts the complexity twice, but the involved key
bits are the same, and we only need to use the structure once. Therefore, the
complexity ratio should be evaluated as:

RDdiff-2 =
p̃−2T/(µT 2/4)

p−2T/(T/2)
=

2p2

µT p̃2
RTdiff-2 = 2κµRDdiff-2 =

2κ+1p2

T p̃2
, (7)

In this scenario, we have the same ratios:

RDdiff-2 = 2/3 RTdiff-2 = 1

Generalized partitioning. We can refine the analysis of the addition by
partitioning according to (bi). This gives the following:

Pr
[
(2i, 2i)→ 0

]
= 1 if ai 6= bi

Pr
[
(2i ⊕ 2i+1, 2i)→ 0

]
= 1 if ai = bi and ai 6= ai+1

This gives an attack with T = 4, µ = 3/8, κ = 2 and p̃ = 2p, which yield the
same ratio in a simple differential setting, but a better ratio for a boomerang or
differential-linear attack:

RDdiff = 2/3 RTdiff = 1

RDdiff-2 = 1/3 RTdiff-2 = 1/2

In addition, this analysis allows to recover an extra key bit, which can be useful
for further steps of an attack.

Larger structure. Alternatively, we can use a larger structure to reduce the
complexity: with a structure of size 2t, we have an attack with a ratio RDdiff =
1/2× 2κ/(2κ − 1), by guessing κ− 1 key bits.

3.2 Analysis of (α = 2i, β = 0)

With i < w − 1, the probability for the addition is Pr[(2i, 0)
�−→ 2i] = 1/2.
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Improved analysis with structures. As in the previous section, we consider
multiple differentials, and use partitioning to improve the probability:

D1 : Pr
[
(2i, 0)

�−→ 2i
]

= 1/2

D2 : Pr
[
(2i ⊕ 2i+1, 0)

�−→ 2i
]

= 1/2 if ai 6= ai+1

We also use structures in order to build pairs of data for both differentials
from the same data set. More precisely, we consider the following inputs:

p = (x0, y0, z0) q = (x0 ⊕ 2i, y0, z0)

r = (x0 ⊕ 2i+1, y0, z0) s = (x0 ⊕ 2i+1 ⊕ 2i, y0, z0)

We see that (p, q) and (r, s) follow the input difference of D1, while (p, s) and
(r, q) follow the input difference of D2. Moreover, we have from the partitioning:

Pr[E(p)⊕ E(q) = (α′, β′, γ′)] = 1/2 · p
Pr[E(r)⊕ E(s) = (α′, β′, γ′)] = 1/2 · p
Pr[E(p)⊕ E(s) = (α′, β′, γ′)] = 1/2 · p if x0

i ⊕ x0
i+1 6= kxi ⊕ kxi+1

Pr[E(r)⊕ E(q) = (α′, β′, γ′)] = 1/2 · p if x0
i ⊕ x0

i+1 = kxi ⊕ kxi+1

In this case, we also have µ = 3/4, T = 4, and p̃ = p, hence

RDdiff = 2/3 RTdiff = 1

RDdiff-2 = 2/3 RTdiff-2 = 1

Generalized partitioning. Again, we can refine the analysis of the addition
by partitioning according to (si). This gives the following:

Pr
[
(2i, 0)→ 2i

]
= 1 if ai = si

Pr
[
(2i ⊕ 2i+1, 0)→ 2i

]
= 1 if ai 6= si and ai 6= ai+1

Since we can not readily filter according to bits of s, we use the results of Section 2:

ai ⊕ bi ⊕ ai−1 = si if ai−1 = bi−1

This gives:

Pr
[
(2i, 0)→ 2i

]
= 1 if bi = ai−1 and ai−1 = bi−1

Pr
[
(2i ⊕ 2i+1, 0)→ 2i

]
= 1 if bi 6= ai−1 and ai−1 = bi−1 and ai 6= ai+1

Unfortunately, we can only use a small fraction of the pairs µ = 3/16. With
T = 4 and p̃ = 2p, this yields, an increase of the data complexity for a simple
differential attack:

RDdiff = 4/3 RTdiff = 1/2

RDdiff-2 = 2/3 RTdiff-2 = 1/4

12



3.3 Analysis of (α = 2i, β = 2i)

With i < w − 1, the probability for the addition is Pr[(0, 2i)
�−→ 2i] = 1/2.

The results in this section will be the same as in the previous section, but we
have to use a different structure. Indeed when this analysis is applied to E, we
can freely modify the difference in x0 but not in y0, because it would affect the
differential in E′.

More precisely, we use the following differentials:

D1 : Pr
[
(0, 2i)

�−→ 2i
]

= 1/2

D2 : Pr
[
(2i+1, 2i)

�−→ 2i
]

= 1/2 if ai+1 6= bi

and the following structure:

p = (x0, y0, z0) q = (x0, y0 ⊕ 2i, z0)

r = (x0 ⊕ 2i+1, y0, z0) s = (x0 ⊕ 2i+1, y0 ⊕ 2i, z0)

This yields:

Pr[E(p)⊕ E(q) = (α′, β′, γ′)] = 1/2 · p
Pr[E(r)⊕ E(s) = (α′, β′, γ′)] = 1/2 · p
Pr[E(p)⊕ E(s) = (α′, β′, γ′)] = 1/2 · p if x1

i ⊕ x0
i+1 6= kyi ⊕ k

x
i+1

Pr[E(r)⊕ E(q) = (α′, β′, γ′)] = 1/2 · p if x1
i ⊕ x0

i+1 = kyi ⊕ k
x
i+1

4 Improving the Time Complexity

The analysis of the previous sections assume that we repeat the distinguisher
for each key guess, so that the data complexity is reduced in a very generic way.
When this is applied to differential or linear cryptanalysis, it usually result in
an increased time complexity (RT > 1). However, when the distinguisher is a
simple linear of differential distinguisher, we can perform the analysis in a more
efficient way, using the same techniques that are used in attacks with partial key
guess against SBox-based ciphers. For linear cryptanalysis, we use a variant of
Matsui’s Algorithm 2 [26], and the improvement using convolution algorithm [16];
for differential cryptanalysis we filter out pairs that can not be a right pair for
any key. In the best cases, the time complexity of the attacks can be reduced to
essentially the data complexity.

4.1 Linear analysis

We follow the analysis of Matsui’s Algorithm 2, with a distillation phase using
counters to keep track of the important features of the data, and an analysis
phase for every key that requires only the counters rather than the full dataset.
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More precisely, let us explain this idea within the setting of Section 2.2 and
Figure 1. For each key guess, the attacker computes the observed imbalance
over a subset Sk corresponding to the data with x0

i−1 ⊕ y0
i−1 = kxi−1 ⊕ k

y
i−1, or(

x0
i−1 ⊕ y0

i−1 6= kxi−1 ⊕ k
y
i−1 and x0

i−2 ⊕ y0
i−2 = kxi−2 ⊕ k

y
i−2

)
:

Î = ISk(P [χP ]⊕ C[χC ])

= 1/ |Sk| ×
∑
Sk

(−1)P [χP ]⊕C[χC ]

where (using α = 2i)

P [χP ]⊕ C[χC ] = x2
i ⊕ y2[β]⊕ z2[γ]⊕ x3[α′]⊕ y3[β′]⊕ z3[γ′]

=


x0
i ⊕ y0

i ⊕ x0
i−1 ⊕ y0[β]⊕ z0[γ]⊕ x3[α′]⊕ y3[β′]⊕ z3[γ′]

if x0
i−1 ⊕ y0

i−1 = kxi−1 ⊕ k
y
i−1

x0
i ⊕ y0

i ⊕ x0
i−2 ⊕ y0[β]⊕ z0[γ]⊕ x3[α′]⊕ y3[β′]⊕ z3[γ′]

if x0
i−1 ⊕ y0

i−1 6= kxi−1 ⊕ k
y
i−1

and x0
i−2 ⊕ y0

i−2 = kxi−2 ⊕ k
y
i−2

Therefore, the imbalance can be efficiently reconstructed from a series of 24

counters keeping track of the amount of data satisfying every possible value of
the following bits:

x0
i ⊕ y0

i ⊕ x0
i−1 ⊕ y0[β]⊕ z0[γ]⊕ x3[α′]⊕ y3[β′]⊕ z3[γ′],

x0
i−1 ⊕ x0

i−2, x0
i−1 ⊕ y0

i−1, x0
i−2 ⊕ y0

i−2

This results in an attack where the time complexity is equal to the data complexity,
plus a small cost to compute the imbalance. The analysis phase require only
about 26 operations in this case (adding 24 counters for 22 key guesses). When
the amount of data required is larger than 26, the analysis step is negligible.

When several partitions are combined (with several active bits in the first
additions), the number of counters increases to 2b, where b is the number of control
bits. To reduce the complexity of the analysis phase, we can use a convolution
algorithm (following [16]), so that the cost of the distillation is only O(b · 2b)
rather than O(2κ · 2b). This will be explained in more details with the application
to Chaskey in Section 5.

In general, there is a trade-off between the number of partitioning bits, and
the complexity. A more precise partitioning allows to reduce the data complexity,
but this implies a larger set of counters, hence a larger memory complexity. When
the number of partitioning bits reaches the data complexity, the analysis phase
becomes the dominant phase, and the time complexity is larger than the data
complexity.

4.2 Differential analysis

For a differential attack with partitioning, we can also reduce the time complexity,
by filtering pairs before the analysis phase. In the following, we assume that
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we use a simple differential distinguisher with output difference δ′, following
Section 3 (where δ′ = (α′, β′, γ′))

We first define a linear function L with rank n− 1 (where n is the block size),
so that L(δ′) = 0. In particular, any pair x, x′ = x ⊕ δ′ satisfies L(x) = L(x′).
This allows to detect collisions by looking at all values in a structure, rather than
all pairs in a structure. We just compute L(E(x)) for all x’s in a structure, and
we look for collisions.

5 Application to Chaskey

Chaskey is a recent MAC proposal designed jointly by researchers from COSIC
and Hitachi [32]. The mode of operation of Chaskey is based on CBC-MAC with
an Even-Mansour cipher; but it can also be described as a permutation-based
design as seen in Figure 4. Chaskey is designed to be extremely fast on 32-bit
micro-controllers, and the internal permutation follows an ARX construction with
4 32-bit words based on SipHash; it is depicted in Figure 5. Since the security of
Chaskey is based on an Even-Mansour cipher, the security bound has a birthday
term O(TD · 2−128). More precisely, the designers claim that it should be secure
up to 248 queries, and 280 computations.

K

m0

π

m1

π

m2 K′

π

K′

τ

Fig. 4. Chaskey mode of operation (full block message)

v1

v0

v2

v3

5

8

16

7

13

16

Fig. 5. One round of the Chaskey permutation. The full permutation has 8 rounds.

So far, the only external cryptanalysis results on Chaskey are generic attacks
in the multi-user setting [28]. The only analysis of the permutation is in the
submission document; the best result is a 4 round bias, that can probably be
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extended into a 5 round attack following the method of attacks against the
Salsa family[1]. It is important to try more advanced techniques in order to
understand the security of Chaskey, in particular because it is being considered
for standardization.

5.1 Differential-linear cryptanalysis

Table 2. Probabilities of the best differential characteristics of Chaskey reported by
the designers [32]

Rounds: 1 2 3 4 5 6 7 8

Probability: 1 2−4 2−16 2−37 2−73.1 2−132.8 2−205.6 2−289.9

The best differential characteristics found by the designers of Chaskey quickly
become unusable when the number of rounds increase (See Table 2). The designers
also report that those characteristics have an “hourglass structure”: there is a
position in the middle where a single bit is active, and this small difference is
expanded by the avalanche effect when propagating in both direction. This is
typical of ARX designs: short characteristics have a high probability, but after a
few rounds the differences cannot be controlled and the probability decrease very
fast. The same observation typically holds also for linear trails.

Because of these properties, attacks that can divide the cipher E in two parts
E = E⊥ ◦ E> and build characteristics or trail for both half independently –
such as the boomerang attack or differential-linear cryptanalysis – are partic-
ularly interesting. In particular, many attacks on ARX designs are based on
the boomerang attack [43,29,11,24,20,36] or differential-linear cryptanalysis [19].
Since Chaskey never uses the inverse permutation, we cannot apply a boomerang
attack, and we focus on differential-linear cryptanalysis.

x

y

z

E>

E⊥>

x′

y′

z′

E>

E⊥>

δi

δoχi

χo

χi

χo

Fig. 6. Differential-linear cryptanalysis
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Differential-linear cryptanalysis uses a differential δi
E>−→ δo with probability

p for E>, and a linear approximation χi
E⊥−→ χo with imbalance ε for E⊥ (see

Figure 6). The attacker uses pairs of plaintexts (Pi, P
′
i ) with P ′i = Pi ⊕ δi,

and computes the observed imbalance ε̂ = |2 ·# {i : Ci[χo] = C ′i[χo]} /D − 1|.
Following the heuristic analysis of [5], the expected imbalance is about pε2, which
gives an attack complexity of O(2/p2ε4):

– A pair of plaintext satisfies E>(P )⊕E>(P ′) = δo with probability p. In this
case, we have E>(P )[χi] ⊕ E>(P ′)[χi] = δo[χi]. Without loss of generality,
we assume that δo[χi] = 0.

– Otherwise, we expect that E>(P )[χi]⊕ E>(P ′)[χi] is not biased. This gives
the following:

Pr
[
E>(P )[χi]⊕ E>(P ′)[χi] = 0

]
= p+ (1− p) · 1/2 = 1/2 + p/2 (8)

ε(E>(P )[χi]⊕ E>(P ′)[χi]) = p (9)

– We also have ε(E>(P )[χi]⊕ C[χo]) = ε(E>(P ′)[χi]⊕ C ′[χo]) = ε from the
linear approximations. Combining with (9), we get ε(C[χo]⊕ C ′[χo]) = pε2.

A more rigorous analysis has been recently provided by Blondeau, Leander and
Nyberg [13], but since we use experimental values to evaluate the complexity of
our attacks, this heuristic explanation will be sufficient.

5.2 Using partitioning

A differential-linear distinguisher can easily be improved using the results of
Section 2 and 3. We can improve the differential and linear part separately,
and combine the improvements on the differential-linear attack. More precisely,
we have to consider structures of plaintexts, and to guess some key bits in the
differential and linear parts. We partition all the potential pairs in the structures
according to the input difference, and to the filtering bits in the differential
and linear part; then we evaluate the observed imbalance Î[s] in every subset s.
Finally, for each key guess k, we compute the expected imbalance Ik[s] for each
subset s, and then we evaluate the distance between the observed and expected
imbalances as L(k) =

∑
s(Î[s]− Ik[s])2 (following the analysis of multiple linear

cryptanalysis [10]).
While we follow the analysis of multiple linear cryptanalysis to evaluate the

complexity of our attack, we use each linear approximation on a different subset
of the data, partitioned according to the filtering bits. In particular, we don’t
have to worry about the independence of the linear approximations.

If we use structures of size T , and select a fraction µdiff of the input pairs
with an improved differential probability p̃, and a fraction µlin of the output
pairs with an improved linear imbalance ε̃, the data complexity of the attack is

O(µlinµ
2
diffT/2× 2/p̃2ε̃4). This corresponds to a complexity ratio of RDdiff-2R

D
lin

2
.

More precisely, using differential filtering bits pdiff and linear filtering bits
clin, the subsets are defined by the input difference ∆, the plaintext bits P [pdiff]
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and the cipher text bits C[clin] and C ′[clin], with C = E(P ) and C ′ = E(P ⊕
∆). In practice, for every P, P ′ in a structure, we update the value of Î[P ⊕
P ′, P [plin], C[cdiff], C ′[cdiff]].

We also take advantage of the Even-Mansour construction of Chaskey, without
keys inside the permutation. Indeed, the filtering bits used to define the subsets s
correspond to the key bits used in the attack. Therefore, we only need to compute
the expected imbalance for the zero key, and we can deduce the expected imbalance
for an arbitrary key as Ikdiff,klin [∆, p, c, c′] = I0[∆, p⊕ klin, c⊕ kdiff, c

′ ⊕ kdiff].

Time complexity. This description lead to an attack with low time complexity
using an FFT algorithm, as described previously for linear cryptanalysis [16] and
multiple linear cryptanalysis [18]. Indeed, the distance between the observed and
expected imbalance can be written as:

L(k) =
∑
s

(Î[s]− Ik[s])2

=
∑
s

(Î[s]− I0[s⊕ φ(k)])2, where φ(kdiff, klin) = (0, klin, kdiff, kdiff)

=
∑
s

Î[s]2 +
∑
s

I0[s⊕ φ(k)]2 − 2
∑
s

Î[s]I0[s⊕ φ(k)],

where only the last term depend on the key. Moreover, this term can be seem as
the φ(k)-th component of the convolution I0 ∗ Î. Using the convolution theorem,
we can compute the convolution efficiently with an FFT algorithm.

This gives the following fast analysis:

1. Compute the expected imbalance I0[s] of the differential-linear distinguisher
for the zero key, for every subset s.

2. Collect D plaintext-ciphertext pairs, and compute the observed imbalance
Î[s] of each subset.

3. Compute the convolution I ∗ Î, and find k that maximizes coefficient φ(k).

5.3 Differential-linear Cryptanalysis of Chaskey

In order to find good differential-linear distinguishers for Chaskey, we use a
heuristic approach. We know that most good differential characteristics and good
linear trails have an “hourglass structure”, with a single active bit in the middle.
If a good differential-linear characteristics is given with this “hourglass structure”,
we can divide E in three parts E = E⊥ ◦E⊥> ◦E>, so that the single active bit in
the differential characteristic falls between E> and E⊥>, and the single active bit
in the linear trail falls between E⊥> and E⊥. We use this decomposition to look
for good differential-linear characteristics: we first divide E in three parts, and

we look for a differential characteristic δi
E>−→ δo in E> (with probability p), a

differential-linear characteristic δo
E⊥>−→ χi in E⊥> (with imbalance b), and a linear

characteristic χi
E⊥−→ χo in E⊥ (with imbalance ε), where δo and χi have a single
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active bit. This gives a differential-linear distinguisher with imbalance close to
bpε2:

– We consider a pair of plaintext (P, P ′) with P ′ = P ⊕ δi, and we denote
X = E>(P ), Y = E⊥>(X), C = E⊥(Y ).

– We have X ⊕X ′ = δo with probability p. In this case, ε(Y [χi]⊕ Y ′[χi]) = b
– Otherwise, we expect that Y [χi]⊕Y ′[χi] is not biased. This gives the following:

Pr
[
Y [χi]⊕ Y ′[χi] = 0

]
= (1− p) · 1/2 + p · (1/2 + b/2) = 1/2 + bp/2 (10)

ε(Y [χi]⊕ Y ′[χi]) = bp (11)

– We also have ε(Y [χi] ⊕ C[χo]) = ε(Y ′[χi] ⊕ C ′[χo]) = ε from the linear
approximations. Combining with (11), we get ε(C[χo]⊕ C ′[χo]) = bpε2.

In the E⊥> section, we can see the characteristic as a small differential-linear
characteristic with a single active input bit and a single active output bit, or as
a truncated differential where the input difference has a single active bit and the
output value is truncated to a single bit. In other words, we use pairs of values
with a single bit difference, and we look for a biased output bit difference.

We ran an exhaustive search over all possible decompositions E = E⊥◦E⊥>◦E>
(varying the number of rounds), and all possible positions for the active bits i at
the input of E⊥> and the biased bit5 j at the output of E⊥>. For each candidate,
we evaluate experimentally the imbalance ε(E⊥>(x)[j]⊕ E⊥>(x⊕ 2i)[j]), and we
study the best differential and linear trails to build the full differential-linear
distinguisher. This method is similar to the analysis of the Salsa family by
Aumasson et al. [1]: they decompose the cipher in two parts E = E⊥ ◦ E⊥>, in
order to combine a biased bit in E⊥> with an approximation of E⊥.

This approach allows to identify good differential-linear distinguisher more
easily than by building full differential and linear trails. In particular, we avoid
most of the heuristic problems in the analysis of differential-linear distinguish-
ers (such as the presence of multiple good trails in the middle) by evaluating
experimentally ε(E⊥>(x)[j] ⊕ E⊥>(x ⊕ 2i)[j]) without looking for explicit trails
in the middle. In particular, the transition between E> and E⊥> is a transition
between two differential characteristics, while the transition between E⊥> and E⊥
is a transition between two linear characteristics.

5.4 Attack against 6-round Chaskey

The best distinguisher we identified for an attack against 6-round Chaskey uses 1
round in E>, 4 rounds in E⊥>, and 1 round in E⊥. The optimal differences and
masks are:

– Differential for E> with probability p> ≈ 2−5:

v0[26], v1[26], v2[6, 23, 30], v3[23, 30]
E>−→ v2[22]

5 We also consider pairs of adjacent bits, following the analysis of [15].
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Fig. 7. 6-round attack: differential characteristic, and linear trail.

– Biased bit for E⊥> with imbalance ε⊥> = 2−6.05:

v2[22]
E⊥>−→ v2[16]

– Linear approximations for E⊥ with imbalance ε⊥ = 2−2.6:

v2[16]
E⊥−→ v0[5], v1[23, 31], v2[0, 8, 15], v3[5]

The differential and linear trails are shown in Figure 7. The expected imbalance is
p> · ε⊥> · ε2

⊥ = 2−16.25. This gives a differential-linear distinguisher with expected
complexity in the order of D = 2/p2

>ε
2
⊥>ε

4
⊥ ≈ 233.5.

We can estimate the data complexity more accurately using [12, Eq. (11)]:
we need about 234.1 pairs of samples in order to reach a false positive rate of 2−4.
Experimentally, with 234 pairs of samples (i.e. 235 data), the measured imbalance
is larger than 2−16.25 with probability 0.5; with random data, it is larger than
2−16.25 with probability 0.1. This matches the predictions of [12], and confirms
the validity of our differential-linear analysis.

This simple differential-linear attack is more efficient than generic attacks
against the Even-Mansour construction of Chaskey. It follows the usage limit of
Chaskey, and reaches more rounds than the analysis of the designers. Moreover,
it we can be improved significantly using the results of Sections 2 and 3.

Analysis of linear approximations with partitioning. To make the de-
scription easier, we remove the linear operations at the end, so that the linear
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trail becomes:

v2[16]
E⊥−→ v1[16, 24], v2[16, 23, 24], v3[24]

We select control bits to improve the probability of the addition between v1

and v2 on active bits 16 and 24. Following the analysis of Section 2.2, we need
v1[14]⊕v2[14] and v1[15]⊕v2[15] as control bits for active bit 16. To identify more
complex control bits, we consider v1[14, 15, 22, 23], v2[14, 15, 22, 23] as potential
control bits, as well as v3[23] because it can affect the addition on the previous
half-round. Then, we evaluate the bias experimentally (using the round function
as a black box) in order to remove redundant bits. This leads to the following 8
control bits:

v1[14]⊕ v2[14] v1[14]⊕ v1[15] v1[22] v1[23]

v1[15]⊕ v2[15] v1[15]⊕ v3[23] v2[22] v2[23]

This defines 28 partitions of the ciphertexts, after guessing 8 key bits. We evaluated
the bias in each partition, and we found that the combined capacity is c2 = 26.84.
This means that we have the following complexity ratio

RDlin = 2−2·2.6/2−826.84 ≈ 2−4 (12)

Analysis of differential with partitioning. There are four active bits in the
first additions:

– Bit 23 in v2 � v3: (223, 223)
�−→ 0

– Bit 30 in v2 � v3: (230, 230)
�−→ 231

– Bit 6 in v2 � v3: (26, 0)
�−→ 26

– Bit 26 in v0 � v1: (226, 226)
�−→ 0

Following the analysis of Section 3, we can use additional input differences for
each of them. However, we reach a better trade-off by selected only three of them.
More precisely, we consider 23 input differences, defined by δi and the following
extra active bits:

v2[24] v2[31] v0[27]

As explained in Section 2, we build structures of 24 plaintexts, where each
structure provides 23 pairs for every input difference, i.e. 26 pairs in total.

Following the analysis of Section 3, we use the following control bits to improve
the probability of the differential:

v2[23]⊕ v2[24] v2[30]⊕ v3[30] v0[26]⊕ v0[27]

v2[24]⊕ v3[23] v0[27]⊕ v1[26]

This divides each set of pairs into 25 subsets, after guessing 5 key bits. In total
we have 28 subsets to analyze, according to the control bits and the multiple
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differentials. We found that, for 18 of those subsets, there is a probability 2−2

to reach δo (the probability is 0 for the remaining subsets). This leads to a
complexity ratio:

RDdiff =
2 · 2−5

18/28 × 24 × 2−2
= 2/9

RDdiff-2 =
2 · 22×−5

18/28 × 24 × 22×−2
= 1/36

This corresponds to the analysis of Section 3: we have a ratio of 2/3 for bits
v2[23] and v0[27] (Section 3.1), and a ratio of 1/2 for v2[31] in the simple linear
case. In the differential-linear case, we have respectively ratios of 1/3 and 1/4.

Finally, the improved attack requires a data complexity in the order of:

RDlin
2
RDdiff-2D ≈ 220.3.

We can estimate the data complexity more accurately using the analysis of
Biryukov, De Cannière and Quisquater [9]. First, we give an alternate description
of the attack similar the multiple linear attack framework. Starting from D chosen
plaintexts, we build 22D pairs using structures, and we keepN = 18·2−8·2−14·22D
samples per approximation after partitioning the differential and linear parts.
The imbalance of the distinguisher is 2−2 · 2−6.05 · 26.84 = 2−1.21. Following [9,
Corollary 1], the gain of the attack with D = 224 is estimated as 6.6 bits, i.e. the
average key rank should be about 42 (for the 13-bit subkey).

Using the FFT method of Section 5.2, we perform the attack with 224

counters Î[s]. Each structure of 24 plaintexts provides 26 pairs, so that we
need 22D operations to update the counters. Finally, the FFT computation
require 24× 224 ≈ 228.6 operations.

We have implemented this analysis, and it runs in about 10s on a single core
of a desktop PC.6 Experimentally, we have a gain of about 6 bits (average key
rank of 64 with 128 experiments); this validates our theoretical analysis. We also
notice some key bits don’t affect the distinguisher and cannot be recovered. On
the other hand, the gain of the attack can be improved using more data, and
further trade-offs are possible using larger or smaller partitions.

5.5 Attack against 7-round Chaskey

The best distinguisher we identified for an attack against 7-round Chaskey uses
1.5 round in E>, 4 rounds in E⊥>, and 1.5 round in E⊥. The optimal differences
and masks are:

– Differential for E> with probability p> = 2−17:

v0[8, 18, 21, 30], v1[8, 13, 21, 26, 30], v2[3, 21, 26], v3[21, 26, 27]
E>−→ v0[31]

6 Haswell microarchitecture running at 3.4 GHz
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– Biased bit for E⊥> with imbalance ε⊥> = 2−6.1:

v0[31]
E⊥>−→ v2[20]

– Linear approximations for E⊥ with imbalance ε⊥ = 2−7.6:

v2[20]
E⊥−→ v0[0, 15, 16, 25, 29], v1[7, 11, 19, 26], v2[2, 10, 19, 20, 23, 28], v3[0, 25, 29]

This gives a differential-linear distinguisher with expected complexity in the order
of D = 2/p2

>ε
2
⊥>ε

4
⊥ ≈ 277.6. This attack is more expensive than generic attacks

against on the Even-Mansour cipher, but we now improve it using the results of
Sections 2 and 3.

Analysis of linear approximations with partitioning. We use an automatic
search to identify good control bits, starting from the bits suggested by the result
of Section 2. We identified the following control bits:

v1[3]⊕ v1[11]⊕ v3[10] v1[3]⊕ v1[11]⊕ v3[11] v0[15]⊕ v3[14]

v0[15]⊕ v3[15] v1[11]⊕ v1[18]⊕ v3[17] v1[11]⊕ v1[18]⊕ v3[18]

v1[3]⊕ v2[2] v1[3]⊕ v2[3] v1[11]⊕ v2[9]

v1[11]⊕ v2[10] v1[11]⊕ v2[11] v1[18]⊕ v2[17]

v1[18]⊕ v2[18] v1[2]⊕ v1[3] v1[9]⊕ v1[11]

v1[10]⊕ v1[11] v1[17]⊕ v1[18] v0[14]⊕ v0[15]

v0[15]⊕ v1[3]⊕ v1[11]⊕ v1[18]

Note that the control bits identified in Section 2 appear as linear combinations
of those control bits.

This defines 219 partitions of the ciphertexts, after guessing 19 key bits. We
evaluated the bias in each partition, and we found that the combined capacity is
c2 = 214.38. This means that we gain the following factor:

RDlin = 2−2·7.6/2−19214.38 ≈ 2−10.5 (13)

This example clearly shows the power of the partitioning technique: using a few
key guesses, we essentially avoid the cost of the last layer of additions.

Analysis of differential with partitioning. We consider 29 input differences,
defined by δi and the following extra active bits:

v0[9] v0[22] v0[31] v0[19]

v0[14] v0[27] v2[22] v2[27] v2[4]

As explained in Section 2, we build structures of 210 plaintexts, where each
structure provides 29 pairs for every input difference, i.e. 218 pairs in total.

Again, we use an automatic search to identify good control bits, starting from
the bits suggested in Section 3. We use the following control bits to improve the
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probability of the differential:

v0[4]⊕ v2[3] v2[22]⊕ v3[21] v2[27]⊕ v3[26] v2[27]⊕ v3[27]

v2[3]⊕ v2[4] v2[21]⊕ v2[22] v2[26]⊕ v2[27] v0[9]⊕ v1[8]

v0[14]⊕ v1[13] v0[27]⊕ v1[26] v0[30]⊕ v1[30] v0[8]⊕ v0[9]

v0[18]⊕ v0[19] v0[21]⊕ v0[22]

This divides each set of pairs into 214 subsets, after guessing 14 key bits. In total
we have 223 subsets to analyze, according to the control bits and the multiple
differentials. We found that, for 17496 of those subsets, there is a probability
2−11 to reach δo (the probability is 0 for the remaining subsets). This leads to a
ratio:

RDdiff-2 =
2 · 2−2·17

17496/223 × 210 × 2−2·11
= 1/4374 ≈ 2−12.1

Finally, the improved attack requires a data complexity of:

RDlin
2
RDdiff-2D ≈ 244.5.

Again, we can estimate the data complexity more accurately using [9]. In this
attack, starting from N0 chosen plaintexts, we build 28N0 pairs using structures,
and we keep N = 17496 · 2−23 · 2−38 · 28N0 samples per approximation after
partitioning the differential and linear parts. The imbalance of the distinguisher
is 2−11 · 2−6.1 · 214.38 = 2−2.72. Following [9, Corollary 1], the gain of the attack
with N0 = 248 is estimated as 6.3 bits, i.e. the average rank of the 33-bit subkey
should be about 225.7. Following the experimental results of Section 5.4, we expect
this to estimation to be close to the real gain (the gain can also be increased if
more than 248 data is available).

Using the FFT method of Section 5.2, we perform the attack with 261 counters
Î[s]. Each structure of 210 plaintexts provides 218 pairs, so that we need 28D
operations to update the counters. Finally, the FFT computation require 61×
261 ≈ 267 operations.

This attack recovers only a few bits of a 33-bit subkey, but an attacker can
run the attack again with a different differential-linear distinguisher to recover
other key bits. For instance, a rotated version of the distinguisher will have a
complexity close to the optimal one, and the already known key bits can help
reduce the complexity.

Conclusion

In this paper, we have described a partitioning technique inspired by Biham and
Carmeli’s work. While Biham and Carmeli consider only two partitions and a
linear approximation for a single subset, we use a large number of partitions,
and linear approximations for every subset to take advantage of all the data.
We also introduce a technique combining multiple differentials, structures, and
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partitioning for differential cryptanalysis. This allows a significant reduction of
the data complexity of attacks against ARX ciphers, and is particularly efficient
with boomerang and differential-linear attacks.

Our main application is a differential-linear attack against Chaskey, that
reaches 7 rounds out of 8. In this application, the partitioning technique allows
to go through the first and last additions almost for free. This is very similar
to the use of partial key guess and partial decryption for SBox-based ciphers.
This is an important result because standard bodies (ISO/IEC JTC1 SC27 and
ITU-T SG17) are currently considering Chaskey for standardization, but little
external cryptanalysis has been published so far. After the first publications
of these results, the designers of Chaskey have proposed to standardize a new
version with 12 rounds [31].
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A Appendix: Application to FEAL-8X

We now present application of our techniques to reduce the data complexity of
differential and linear attacks.

FEAL is an early block cipher proposed by Shimizu and Miyaguchi in 1987 [37].
FEAL uses only addition, rotation and xor operations, which makes it much
more efficient than DES in software. FEAL has inspired the development of many
cryptanalytic techniques, in particular linear cryptanalysis.

At the rump session of CRYPTO 2012, Matsui announced a challenge for
low data complexity attacks on FEAL-8X using only known plaintexts. At the
time, the best practical attack required 224 known plaintexts [2] (Matsui and
Yamagishi had non-practical attacks with as little as 214 known plaintext [27]),
but Biham and Carmeli won the challenge with a new linear attack using 215

known plaintexts, and introduced the partitioning technique to reduce the data
complexity to 214 [3]. Later Sakikoyama et al. improved this result using multiple
linear cryptanalysis, with a data complexity of only 212 [35].

We now explain how to apply the generalized partitioning to attack FEAL-8X.
Our attack follows the attack of Biham and Carmeli [3], and uses the generalized
partitioning technique to reduce the data complexity further. The attack by
Biham and Carmeli requires 214 data and about 245 time, while our attack needs
only 212 data, and 245 time. While the attack of Sakikoyama et al. is more efficient
with the same data complexity, this shows a simple example of application of the
generalized partitioning technique.
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The attacks are based on a 6-round linear approximation with imbalance
2−5, using partial encryption for the first round (with a 15 bit key guess), and
partial decryption for the last round (with a 22 bit key guess). This allows to
compute enough bits of the state after the first round and before the last round,
respectively, to compute the linear approximation. For more details of the attack,
we refer the reader to the description of Biham and Carmeli [3].

In order to improve the attack, we focus on the round function of the
second-to-last round. The corresponding linear approximation is x[10115554]→
y[04031004] with imbalance of approximately 2−3.

We partition the data according to the following 4 bits7 (note that all those
bits can be computed in the input of round 6 with the 22-bit key guess of DK7):

b0 = f0,3 ⊕ f1,3 ⊕ f2,2 ⊕ f3,2 b1 = f0,3 ⊕ f1,3 ⊕ f2,3 ⊕ f3,3

b2 = f0,3 ⊕ f1,3 ⊕ f2,5 ⊕ f3,5 b3 = f0,2 ⊕ f1,2 ⊕ f0,3 ⊕ f1,3

The probability of the linear approximation in each subset is as follows (indexed
by the value of b3, b2, b1, b0):

p0000 = 0.250 p0001 = 0.270 p0010 = 0.531 p0011 = 0.746

p0100 = 0.406 p0101 = 0.699 p0110 = 0.750 p0111 = 0.652

p1000 = 0.254 p1001 = 0.469 p1010 = 0.730 p1011 = 0.750

p1100 = 0.652 p1101 = 0.750 p1110 = 0.699 p1111 = 0.406

This gives a total capacity c2 =
∑
i(2 · pi − 1)2 = 2.49, using subsets of 1/16

of the data. For reference, a linear attack without partitioning has a capacity
(2−3)2, therefore the complexity ratio can be computed as:

RDlin = 2−6/(1/16× 2.49) ≈ 1/10

This can be compared to Biham and Carmeli’s partitioning, where they use a
single linear approximation with capacity 0.1 for 1/2 of the data, this gives a
ratio of only:

RDlin = 2−6/(1/2× 0.1) ≈ 1/3.2

With a naive implementation of this attack, we have to repeat the analysis
16 times, for each guess of 4 key bits. Since the data is reduced by a factor 4, the
total time complexity increases by a factor 4 compared to the attack on Biham
and Carmeli. This result in an attack with 212 data and 247 time.

However, the time complexity can also be reduced using counters, because the
4 extra key bits only affect the choice of the partitions. This leads to an attack
with 212 data and 243 time.
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