BC Security 00000000000000 SHA-1 Chosen-prefix Collisions

GEA

Conclusio 0

(Symmetric) Cryptanalysis in Practice

Gaëtan Leurent

Inria Paris, EPI COSMIQ

Cyber in Nancy July 5, 2022

Gaëtan Leurent (Inria)

(Symmetric) Cryptanalysis in Practice

Cyber in NancyJuly 5, 2022 1 / 71

CBC Security

HA-1 Chosen-prefix Collisions

SSM security

3EA

Conclusior

Cryptography and security

- Cryptography is an element to build a secure system
- There can be security issues at every step

Conclusion

Secure Cryptography

- Security is defined as a mathematical property
 - Discrete Log Problem: given g^x, finding x should be hard
 - AES-128 is expected to be a PRP
 - Protocols are proven secure assuming the primitives are secure
- Cryptographers build algorithm (primitive / mode / protocol)
 - Specific security goal: authenticity, integrity, ...
 - Specific assumptions: limits on message size, security model, random IVs, independent keys, ...

Classical approach

- Security of the protocol
 - Security proofs assuming security of cryptographic operations
- Security of the modes (HMAC, CBC, ...)
 - Security proofs (assuming security of the primitive)
- Security of the primitives (AES, SHA-1, RSA, ...)
 - Studied with cryptanalysis

CBC Security

HA-1 Chosen-prefix Collisions

GSM security

FEA

Conclusion

Cryptanalysis

Anybody can design a system that he himself cannot break

- We need public cryptanalysis research
 - Evaluation by the community
- Goal: replace weak algorithms before attacks are practical
 - We know that some government agencies attack weak cryptography

Cryptanalysis of primitives

- Evaluate new proposals and widely used standards
- Only way to evaluate their security

[Bruce Schneier]

CBC Security

6HA-1 Chosen-prefix Collisions

SM security

GEA

Conclusion

What is an attack?

For cryptographers

- Define expected security
- Anything faster is an attack
 - Eg. faster than trying all keys

For users

- Define attacker means
- Anything doable is an attack
 - Eg. one year on a PC

Attacks only get better

AES-256 has a 256-bit key

Related-key attack with 2¹⁰⁰ ops.

Not a practical threat

Blowfish-32 has a 32-bit key

▶ No attack faster than 2³²

Key-search takes minutes

Gaëtan Leurent (Inria)

CBC Security

6HA-1 Chosen-prefix Collisions

SM security

GEA

Conclusion

What is an attack?

For cryptographers

- Define expected security
- Anything faster is an attack
 - *Eg.* faster than trying all keys

Attacks only get better

For users

- Define attacker means
- Anything doable is an attack
 - Eg. one year on a PC

AES-256 has a 256-bit key

Related-key attack with 2¹⁰⁰ ops.

Not a practical threat

Blowfish-32 has a 32-bit key

No attack faster than 2³²

Key-search takes minutes

Gaëtan Leurent (Inria)

CBC Security

6HA-1 Chosen-prefix Collisions

GSM security

GEA

Conclusion

What is an attack?

For cryptographers

- Define expected security
- Anything faster is an attack
 - Eg. faster than trying all keys

Attacks only get better

For cryptographers

- Attack primitive
- If broken, stop using it
 - Proof hypothesis broken

For users

- Define attacker means
- Anything doable is an attack
 - Eg. one year on a PC

For users

- Does it break real protocols?
- Migration is expensive

CBC Security

SHA-1 Chosen-prefix Collisions

GSM security

GEA 00000000000000000000000 Conclusion

Cryptanalysis in theory and in practice

Cryptanalysis of MD5

- 1993 Compression function attack
- 2005 Collision attack
- 2007 Free-start collision attack

- $\rightarrow 2007$ Exploitable in APOP
- $\rightarrow 2009~$ Exploitable for rogue CA
- $\hookrightarrow 2013$ Exploited by Flame

Cryptanalysis of RC4

2000 Biases in RC4 keystream2001 Related-key attack on RC4

→ 2013 Exploitable in TLS → 2002 Exploitable in WEP

This talk

- Practical cryptanalysis of primitives
- Leverage weakness of crypto algorithms to break protocols

Gaëtan Leurent (Inria)

BC Security 00000000000000 SHA-1 Chosen-prefix Collisions

GSM security

GEA 0000000000000000000000000 Conclusion

Cryptanalysis in theory and in practice

Cryptanalysis of MD5

- 1993 Compression function attack
- 2005 Collision attack
- 2007 Free-start collision attack

- $\rightarrow 2007$ Exploitable in APOP
- $\rightarrow 2009~$ Exploitable for rogue CA
- $\hookrightarrow 2013$ Exploited by Flame

Cryptanalysis of RC4

2000 Biases in RC4 keystream2001 Related-key attack on RC4

 $\rightarrow 2013$ Exploitable in TLS $\rightarrow 2002$ Exploitable in WEP

This talk

- Practical cryptanalysis of primitives
- Leverage weakness of crypto algorithms to break protocols

3C Security 2000000000000 SHA-1 Chosen-prefix Collisions

GSM security

Conclusion

Introduction

CBC Security CBC Collision Attack Attack in Practice: SWEET32

SHA-1 Chosen-prefix Collisions Record Computation PGP/GPG Impersonation

GSM security A5/1 Cryptanalysis A5/2 Cryptanalysis

GPRS Encryption GEA-1 Cryptanalysis GEA-2 Cryptanalysis

CBC Security

6HA-1 Chosen-prefix Collisions

GSM security

Conclusion

CBC Security CBC Collision Attack Attack in Practice: SWEET32

🚺 K. Bhargavan, G. L.

On the Practical (In-)Security of 64-bit Block Ciphers: Collision Attacks on HTTP over TLS and OpenVPN ACM CCS 2016,

Gaëtan Leurent (Inria)

(Symmetric) Cryptanalysis in Practice

Cyber in NancyJuly 5, 2022 6 / 71

Block ciphers and Modes of operation

A block cipher is a family of permutations

- - To deal with variable-length messages
 - To include randomness

CBC Security

- To reach various security goals (encryption, authentication, ...)
- Important example: CBC: $c_i = E_k(m_i \oplus c_{i-1})$

Block ciphers and Modes of operation

- A block cipher is a family of permutations
- It is used with a mode of operation: CBC, CTR, GCM, ...
 - To deal with variable-length messages
 - To include randomness

CBC Security

- To reach various security goals (encryption, authentication, ...)
- Important example: CBC: $c_i = E_k(m_i \oplus c_{i-1})$

CBC Security

6HA-1 Chosen-prefix Collisions

JEA

Conclusion

Security of modes of operation

- Modes are proven secure assuming the block cipher is secure.
- Most modes (CBC, CTR, GCM, ...) have a security proof like:

$$Adv_{CBC-E}^{CPA}(q,t) \le Adv_{E}^{PRP}(q',t') + \frac{\sigma^2}{2^n}$$

- The CPA security of CBC is essentially the PRP security of E (the block cipher)
- As long as the number of encrypted blocks $\sigma \ll 2^{n/2}$
 - Usually matching attack with birthday complexity (2^{n/2})

CBC Security

SHA-1 Chosen-prefix Collisions

JEA

Conclusion

Security of modes of operation

- Modes are proven secure assuming the block cipher is secure.
- Most modes (CBC, CTR, GCM, ...) have a security proof like:

$$\operatorname{Adv}_{\operatorname{CBC-E}}^{\operatorname{CPA}}(q,t) \leq \operatorname{Adv}_{\operatorname{E}}^{\operatorname{PRP}}(q',t') + \frac{\sigma^2}{2^n}$$

- The CPA security of CBC is essentially the PRP security of E (the block cipher)
- As long as the number of encrypted blocks $\sigma \ll 2^{n/2}$
 - Usually matching attack with birthday complexity (2^{n/2})

CBC Security

CBC collisions

Well known collision attack against CBC

- ▶ If $c_i = c_j$, then $c_{i-1} \oplus m_i = c_{j-1} \oplus m_j$
- Ciphertext collision reveals the xor of two plaintext blocks

A-1 Chosen-prefix Collisions

GSM security

JEA

Conclusion

Birthday paradox

The birthday paradox

In a room with 23 people, there is a 50% chance that two of them share the same birthday.

Security of CBC

- CBC leaks plaintext after 2^{n/2} blocks encrypted with the same key
- Security of mode can be lower than security of cipher

Gaëtan Leurent (Inria)

HA-1 Chosen-prefix Collisions

GSM security

Conclusion

Birthday paradox

The birthday paradox

- Draw r random values from [0, N 1]
 - Constant probability of having a collision with $r = \Theta(\sqrt{N})$
 - Expected number of collisions is about r²/2N

Variant: Let A, B be random subsets of [0, N - 1]

- $\mathcal{A} \cap \mathcal{B} \neq \emptyset$ with constant probability if $|\mathcal{A}| = |\mathcal{B}| = \sqrt{N}$
- Expected number of matches $|\mathcal{A} \cap \mathcal{B}| \approx |\mathcal{A}| \times |\mathcal{B}|/N$

Security of CBC

- CBC leaks plaintext after 2^{n/2} blocks encrypted with the same key
- Security of mode can be lower than security of cipher

Gaëtan Leurent (Inria)

CBC Security

SHA-1 Chosen-prefix Collisions

GSM security

EA 0000000000000000000000000 Conclusion

Communication issues

What cryptographers say

[Rogaway 2011]

[Birthday] attacks can be a serious concern when employing a blockcipher of n = 64 bits, requiring relatively frequent rekeying to keep $\sigma \ll 2^{32}$

What standards say

[ISO SC27 SD12]

The maximum amount of plaintext that can be encrypted before rekeying must take place is 2^{n/2} blocks, due to the birthday paradox. As long as the implementation of a specific block cipher do not exceed these limits, using the block cipher will be safe.

What implementation did (in 2016)

TLS libraries, web browsers no rekeying *OpenVPN* no rekeying (PSK mode) / rekey every hour (TLS mode)

Gaëtan Leurent (Inria)

CBC Security

SHA-1 Chosen-prefix Collisions

GSM security

Conclusion

Communication issues

What cryptographers say

[Rogaway 2011]

[Birthday] attacks can be a serious concern when employing a blockcipher of n = 64 bits, requiring relatively frequent rekeying to keep $\sigma \ll 2^{32}$

What standards say

[ISO SC27 SD12]

The maximum amount of plaintext that can be encrypted before rekeying must take place is 2^{n/2} blocks, due to the birthday paradox. As long as the implementation of a specific block cipher do not exceed these limits, using the block cipher will be safe.

What implementation did (in 2016)

TLS libraries, web browsers no rekeying *OpenVPN* no rekeying (PSK mode) / rekey every hour (TLS mode)

Gaëtan Leurent (Inria)

CBC Security

SHA-1 Chosen-prefix Collisions

EA 0000000000000000000000000 Conclusion

Communication issues

What cryptographers say

[Rogaway 2011]

[Birthday] attacks can be a serious concern when employing a blockcipher of n = 64 bits, requiring relatively frequent rekeying to keep $\sigma \ll 2^{32}$

What standards say

[ISO SC27 SD12]

The maximum amount of plaintext that can be encrypted before rekeying must take place is 2^{n/2} blocks, due to the birthday paradox. As long as the implementation of a specific block cipher do not exceed these limits, using the block cipher will be safe.

What implementation did (in 2016)

TLS libraries, web browsers no rekeying *OpenVPN* no rekeying (PSK mode) / rekey every hour (TLS mode)

Gaëtan Leurent (Inria)

Conclusio

Impact

- How bad is it?
 - Is it bad to leak a few xors of blocks of plaintexts?
 - Do applications encrypt enough data under the same key?

64-bit block cipher used in important protocols

- 64-bit ciphers with CBC were the norm before AES
- With a 64-bit block cipher, first collision around 32GB!
- Blowfish-CBC in OpenVPN (default cipher in 2016)
- 3DES-CBC in TLS (around 1-2% in 2016)
- Kasumi in 3G (UMTS)

Collision attacks usually not considered a practical threat

- openssl ciphers HIGH used to be sorted by key length
 - ▶ Before 2014: AES256, CAMELLIA256, 3DES, AES128, CAMELLIA128
 - After 2014: AES256, CAMELLIA256, AES128, CAMELLIA128, 3DES

Conclusion

Impact

- How bad is it?
 - Is it bad to leak a few xors of blocks of plaintexts?
 - Do applications encrypt enough data under the same key?
- 64-bit block cipher used in important protocols
 - 64-bit ciphers with CBC were the norm before AES
 - With a 64-bit block cipher, first collision around 32GB!
 - Blowfish-CBC in OpenVPN (default cipher in 2016)
 - 3DES-CBC in TLS (around 1-2% in 2016)
 - Kasumi in 3G (UMTS)

Collision attacks usually not considered a practical threat

- openssl ciphers HIGH used to be sorted by key length
 - ▶ Before 2014: AES256, CAMELLIA256, 3DES, AES128, CAMELLIA128
 - After 2014: AES256, CAMELLIA256, AES128, CAMELLIA128, 3DES

HA-1 Chosen-prefix Collisions

Conclusio

Impact

- How bad is it?
 - Is it bad to leak a few xors of blocks of plaintexts?
 - Do applications encrypt enough data under the same key?
- 64-bit block cipher used in important protocols
 - 64-bit ciphers with CBC were the norm before AES
 - With a 64-bit block cipher, first collision around 32GB!
 - Blowfish-CBC in OpenVPN (default cipher in 2016)
 - 3DES-CBC in TLS (around 1-2% in 2016)
 - Kasumi in 3G (UMTS)
- Collision attacks usually not considered a practical threat
 - openssl ciphers HIGH used to be sorted by key length
 - Before 2014: AES256, CAMELLIA256, 3DES, AES128, CAMELLIA128
 - After 2014: AES256, CAMELLIA256, AES128, CAMELLIA128, 3DES

CBC Security

HA-1 Chosen-prefix Collisions

EA 00000000000000000000000 Conclusion

Towards a practical attack

- Assume a fixed message is repeatedly encrypted (under a fixed key)
 - Including a high value secret (cookie, password, ...)
 - And some known/predictable sections (headers, ...)
- Each collision reveals the xor of two plaintext blocks
- With some luck, xor of a known value and the secret

 $\underbrace{\text{cookie} \oplus \text{header}}_{\text{unknown}} = \underbrace{c_{i-1} \oplus c_{j-1}}_{\text{known}}$

- Recover secret: $cookie = header \oplus c_{i-1} \oplus c_{j-1}$
- Concrete target: 3DES usage in HTTPS

a few blocks 2^t blocks

CBC Security

HA-1 Chosen-prefix Collisions

EA 00000000000000000000000 Conclusion

Towards a practical attack

- Assume a fixed message is repeatedly encrypted (under a fixed key)
 - Including a high value secret (cookie, password, ...)
 - And some known/predictable sections (headers, ...)
- Each collision reveals the xor of two plaintext blocks
- With some luck, xor of a known value and the secret

 $\underbrace{\texttt{cookie} \oplus \texttt{header}}_{\texttt{unknown}} = \underbrace{c_{i-1} \oplus c_{j-1}}_{\texttt{known}}$

- Recover secret: $cookie = header \oplus c_{i-1} \oplus c_{j-1}$
- Concrete target: 3DES usage in HTTPS

a few blocks 2^t blocks

Gaëtan Leurent (Inria)

(Symmetric) Cryptanalysis in Practice

Cyber in NancyJuly 5, 2022 14 / 71

CBC Security

5HA-1 Chosen-prefix Collisions

GSM security

3EA

Conclusion

Poorly configured websites

TLS cipher negotiation

- Client sends ordered list of supported ciphersuites
- Server chooses ciphersuite

https://discovery.cryptosense.com/analyze/208.83.241.15

0 ++++	208.83	24	1.15	IP address Last scan	208.83.241.15 2016-10-20 12:29:18 UTC			
	TLS HTT Rules applie	P (po cable	ort 44 13	43)				
		Α	$\mathbf{A}^!$	в	С	D		
	D	9	2	2	0	0		
	TLS (port	44	3 – ŀ	ITT	P)			
	Show scan c	letail	s 👻					
	Versions		TI	LS 1.0	, TLS	1.1		
	Fallback S	CSV	Ν	ot su	pport	ed		
	Ciphers		TI	S RS	Δ WTT	TH 3DES EDE CBC SHA TISTOTI	511	

Gaëtan Leurent (Inria)

[Duong & Rizzo 2011]

BEAST Attack Setting

CBC Security

- Attacker has access to the network (eg. public WiFi)
- Attacker uses JS to generate traffic
 - Tricks victim to malicious site
 - JS makes cross-origin requests
- 2 Attacker captures encrypted data
- Very powerful model Chosen plaintext

CBC Security

IA-1 Chosen-prefix Collisions

EA

Conclusion

HTTP authentication tokens

- HTTP is stateless: authentication tokens sent with every request
- Also sent with cross-origin requests to allow "Facebook button"

HTTP Basic Auth (RFC 7617)

User/Password sent in a header (base64 encoded)

Authorization: Basic dGVzdDoxMjPCow=

HTTP Cookies (RFC 6265)

- 1 User sends password in a from
- 2 Server reply with a Cookie
- 3 Cookie is included in every subsequent request

Cookie: C=123456

CBC Security

6HA-1 Chosen-prefix Collisions

GSM security

3EA

Conclusion

BEAST collision attack

- Assume user logged-in to secure website worker.js Javascript generates queries to HTTPS website Including high value secret a few blocks var url = "https://target"; var xhr = new XMLHttpRequest; And known content 2^t blocks while(true) { Each collision reveals the xor of two plaintext blocks xhr.open("HEAD", url, false); xhr.withCredentials = true; Eventually a collision will reveal the secret xhr.send(); xhr.abort(); Success after roughly 2^t collisions } \blacktriangleright 2^{n/2-t/2} aueries, 2^{n/2+t/2} blocks Tradeoff between # queries and total amount of data
 - ▶ If rekeying after 2^{n/2} blocks, attack still possible
 - 2^{n/2} queries, 2^{n/2+t} blocks

CBC Security

SHA-1 Chosen-prefix Collisions

Conclusion

BEAST collision attack

								- 2 ^t -						
Plaintext		GET	⊔/i	nde	x.h	tml	⊔HT	TP/	1.1	Coo	kie	:⊔C	=??	???
T	178	4E5	71A	A39	68A	399	7D8	8F0	FEA	902	932	204	85A	969
	E57	1AA		8A3	997	D88	FOF	EA9	029	322	048	5A9	6E0	EA4
	1D6	645	EA2		FAE	D74	A72	E5C	913	447	3B4	BAA	321	784
	7A5	322	700	DE3	BA8	7DD		040	A8D	9A2	05A	EE5	330	9EC
	9BE	78D		AF5	327	311	F5B	252	77A	C45	49E	2ED	20C	
$2^{n/2-t/2}$	289	597	BED	540	A60	7AF	F96	511	AF2	41F	278	D25	400	4EB
Ciphertexts	031	ED8	EEB	6CC	B5A	440	067	154	AB5	CEE	015	70A	1ED	1B7
	38E	018	41A	DEB	970	2D3	97A	FOE	45C	94B	251	218	5FB	82A
	417	FF4	81D	OOD	49D	D9A	841	737	416	BA8	452	ACO	335	793
	21B	B07	A20	4F4	C1D	B07	2DF	410	340	6AB	0D2	96B	CE9	4C9
	536	BDA	A93	B85	351	831	763	FAO	E95	E5F	1EE		7D5	8C0
	5F5	935	574	21D	EE0	1BF	338	6DB	DDC	F67		7F6	8EC	A8D

CBC Security

SHA-1 Chosen-prefix Collisions

Conclusio

BEAST collision attack

		H						- 2 ^t -						
Plaintext		GET	⊔/i	nde	x.h	tml	⊔HT	TP/	1.1	Coo	kie	:⊔C	=??	???
T	178	4E5	71A	A39	68A	399	7D8	8F0	FEA	902	932	204	85A	969
	E57	1AA		8A3	997	D88	FOF	EA9	029	322	048	5A9	6E0	EA4
	1D6	645	EA2		FAE	D74	A72	E5C	913	447	3B4	BAA	321	784
	7A5	322	700	DE3	BA8	7DD		040	A8D	9A2	05A	EE5	330	9EC
	9BE	78D		AF5	327	311	F5B	252	77A	C45	49E	2ED	20C	
$2^{n/2-t/2}$	289	597	BED	540	A60	7AF	F96	511	AF2	41F	278	D25	400	4EB
Ciphertexts	031	ED8	EEB	6CC	B5A	440	067	154	AB5	CEE	015	70A	1ED	1B7
	38E	018	41A	DEB	970	2D3	97A	FOE	45C	94B	251	218	5FB	82A
	417	FF4	81D	00D	49D	D9A	841	737	416	BA8	452	ACO	335	793
	21B	B07	A20	4F4	C1D	B07	2DF	410	340	6AB	0D2	96B	CE9	4C9
	536	BDA	A93	B85	351	831	763	FAO	E95	E5F	1EE		7D5	8C0
	5F5	935	574	21D	EE0	1BF	338	6DB	DDC	F67		7F6	8EC	A8D

CBC Security

SHA-1 Chosen-prefix Collisions

Conclusio

BEAST collision attack

		├ ──						- 2 ^t -						
Plaintext		GET	⊔/i	nde	x.h	tml	⊔HT	TP/	1.1	Coo	kie	:⊔C	=??	???
T	178	4E5	71A	A39	68A	399	7D8	8F0	FEA	902	932	204	85A	969
	E57	1AA	396	8A3	997	D88	FOF	EA9	029	322	048	5A9	6E0	EA4
	1D6	645	EA2		FAE	D74	A72	E5C	913	447	3B4	BAA	321	784
	7A5	322	700	DE3	BA8	7DD		040	A8D	9A2	05A	EE5	330	9EC
	9BE	78D		AF5	327	311	F5B	252	77A	C45	49E	2ED	20C	
$2^{n/2-t/2}$	289	597	BED	540	A60	7AF	F96	511	AF2	41F	278	D25	400	4EB
Ciphertexts	031	ED8	EEB	6CC	B5A	440	067	154	AB5	CEE	015	70A	1ED	1B7
	38E	018	41A	DEB	970	2D3	97A	FOE	45C	94B	251	218	5FB	82A
	417	FF4	81D	00D	49D	D9A	841	737	416	BA8	452	ACO	335	793
	21B	B07	A20	4F4	C1D	B07	2DF	410	340	6AB	0D2	96B	CE9	4C9
	536	BDA	A93	B85	351	831	763	FAO	E95	E5F	1EE		7D5	8C0
	5F5	935	574	21D	EE0	1BF	338	6DB	DDC	F67		7F6	8EC	A8D

CBC Security

SHA-1 Chosen-prefix Collisions

Conclusio

BEAST collision attack

								- 2 ^t -						
Plaintext		GET	⊔/i	nde	x.h	tml	⊔HT	TP/	1.1	Coo	kie	:⊔C	=??	???
T	178	4E5	71A	A39	68A	399	7D8	8F0	FEA	902	932	204	85A	969
	E57	1AA	396	8A3	997	D88	FOF	EA9	029	322	048	5A9	6E0	EA4
	1D6	645	EA2	050	FAE	D74	A72	E5C	913	447	3B4	BAA	321	784
	7A5	322	700	DE3	BA8	7DD		040	A8D	9A2	05A	EE5	330	9EC
	9BE	78D		AF5	327	311	F5B	252	77A	C45	49E	2ED	20C	
$2^{n/2-t/2}$	289	597	BED	540	A60	7AF	F96	511	AF2	41F	278	D25	400	4EB
Ciphertexts	031	ED8	EEB	6CC	B5A	440	067	154	AB5	CEE	015	70A	1ED	1B7
	38E	018	41A	DEB	970	2D3	97A	FOE	45C	94B	251	218	5FB	82A
	417	FF4	81D	OOD	49D	D9A	841	737	416	BA8	452	ACO	335	793
	21B	B07	A20	4F4	C1D	B07	2DF	410	340	6AB	0D2	96B	CE9	4C9
	536	BDA	A93	B85	351	831	763	FAO	E95	E5F	1EE		7D5	8C0
	5F5	935	574	21D	EE0	1BF	338	6DB	DDC	F67		7F6	8EC	A8D

CBC Security

SHA-1 Chosen-prefix Collisions

Conclusio

BEAST collision attack

		<u>2</u> ^t												
Plaintext		GET	⊔/i	nde	x.h	tml	⊔HT	TP/	1.1	Coo	kie	:⊔C	=??	???
T	178	4E5	71A	A39	68A	399	7D8	8F0	FEA	902	932	204	85A	969
	E57	1AA	396	8A3	997	D88	FOF	EA9	029	322	048	5A9	6E0	EA4
	1D6	645	EA2	050	FAE	D74	A72	E5C	913	447	3B4	BAA	321	784
	7A5	322	700	DE3	BA8	7DD	998	040	A8D	9A2	05A	EE5	330	9EC
	9BE	78D		AF5	327	311	F5B	252	77A	C45	49E	2ED	20C	
$2^{n/2-t/2}$	289	597	BED	540	A60	7AF	F96	511	AF2	41F	278	D25	400	4EB
Ciphertexts	031	ED8	EEB	6CC	B5A	440	067	154	AB5	CEE	015	70A	1ED	1B7
	38E	018	41A	DEB	970	2D3	97A	FOE	45C	94B	251	218	5FB	82A
	417	FF4	81D	OOD	49D	D9A	841	737	416	BA8	452	ACO	335	793
	21B	B07	A20	4F4	C1D	B07	2DF	410	340	6AB	0D2	96B	CE9	4C9
	536	BDA	A93	B85	351	831	763	FAO	E95	E5F	1EE		7D5	8C0
	5F5	935	574	21D	EEO	1BF	338	6DB	DDC	F67		7F6	8EC	A8D
CBC Security

SHA-1 Chosen-prefix Collisions

Conclusio

BEAST collision attack

		 						- 2 ^t -						
Plainte	xt	GET	⊔/i	nde	x.h	tml	⊔HT	TP/	1.1	Coo	kie	:⊔C	=??	???
T	178	4E5	71A	A39	68A	399	7D8	8F0	FEA	902	932	204	85A	969
	E57	1AA	396	8A3	997	D88	FOF	EA9	029	322	048	5A9	6E0	EA4
	1D6	645	EA2	050	FAE	D74	A72	E5C	913	447	3B4	BAA	321	784
	7A5	322	700	DE3	BA8	7DD	998	040	A8D	9A2	05A	EE5	330	9EC
	9BE	78D	350	AF5	327	311	F5B	252	77A	C45	49E	2ED	20C	030
2 ^{n/2-t}	/2 289	597	BED	540	A60	7AF	F96	511	AF2	41F	278	D25	400	4EB
Ciphertex	ts 031	ED8	EEB	6CC	B5A	440	067	154	AB5	CEE	015	70A	1ED	1B7
	38E	018	41A	DEB	970	2D3	97A	FOE	45C	94B	251	218	5FB	82A
	417	FF4	81D	OOD	49D	D9A	841	737	416	BA8	452	ACO	335	793
	21B	B07	A20	4F4	C1D	B07	2DF	410	340	6AB	0D2	96B	CE9	4C9
	536	BDA	A93	B85	351	831	763	FAO	E95	E5F	1EE		7D5	8C0
	5F5	935	574	21D	EEO	1BF	338	6DB	DDC	F67		7F6	8EC	A8D

CBC Security

SHA-1 Chosen-prefix Collisions

Conclusio

BEAST collision attack

		H						- 2 ^t -						
Plaintext		GET	⊔/i	nde	x.h	tml	\sqcup HT	TP/	1.1	Coo	kie	:⊔C	=??	???
T	178	4E5	71A	A39	68A	399	7D8	8F0	FEA	902	932	204	85A	969
	E57	1AA	396	8A3	997	D88	FOF	EA9	029	322	048	5A9	6E0	EA4
	1D6	645	EA2	050	FAE	D74	A72	E5C	913	447	3B4	BAA	321	784
	7A5	<mark>322</mark>	700	DE3	BA8	7DD	998	040	A8D	9A2	05A	EE5	330	9EC
	9BE	78D	350	AF5	327	311	F5B	252	77A	C45	49E	2ED	20C	030
$2^{n/2-t/2}$	289	597	BED	540	A60	7AF	F96	511	AF2	41F	278	D25	400	4EB
Ciphertexts	031	ED8	EEB	6CC	B5A	440	067	154	AB5	CEE	015	70A	1ED	1B7
	38E	018	41A	DEB	970	2D3	97A	FOE	45C	94B	251	218	5FB	82A
	417	FF4	81D	00D	49D	D9A	841	737	416	BA8	452	ACO	335	793
	21B	B07	A20	4F4	C1D	B07	2DF	410	340	6AB	0D2	96B	CE9	4C9
	536	BDA	A93	B85	351	831	763	FAO	E95	E5F	1EE		7D5	8C0
	5F5	935	574	21D	EEO	1BF	338	6DB	DDC	F67		7F6	8EC	A8D

CBC Security

SHA-1 Chosen-prefix Collisions

Conclusio

BEAST collision attack

		I						- 2 ^t -						
Plaintext		GET	⊔/i	nde	x.h	tml	⊔HT	TP/	1.1	Coo	kie	:⊔C	=??	???
T	178	4E5	71A	A39	68A	399	7D8	8F0	FEA	902	932	204	85A	969
	E57	1AA	396	8A3	997	D88	FOF	EA9	029	322	048	5A9	6E0	EA4
	1D6	645	EA2	050	FAE	D74	A72	E5C	913	447	3B4	BAA	321	784
	7A5	<mark>322</mark>	700	DE3	BA8	7DD	998	040	A8D	9A2	05A	EE5	330	9EC
	9BE	78D	350	AF5	327	311	F5B	252	77A	C45	49E	2ED	20C	030
$2^{n/2-t/2}$	289	597	BED	540	A60	7AF	F96	511	AF2	41F	278	D25	400	4EB
Ciphertexts	031	ED8	EEB	6CC	B5A	440	067	154	AB5	CEE	015	70A	1ED	1B7
	38E	018	41A	DEB	970	2D3	97A	FOE	45C	94B	251	218	5FB	82A
	417	FF4	81D	00D	49D	D9A	841	737	416	BA8	452	ACO	335	793
	21B	B07	A20	4F4	C1D	B07	2DF	410	340	6AB	0D2	96B	CE9	4C9
	536	BDA	A93	B85	351	831	763	FAO	E95	E5F	1EE		7D5	8C0
	5F5	935	574	21D	EE0	1BF	338	6DB	DDC	F67		7F6	8EC	A8D

CBC Security

SHA-1 Chosen-prefix Collisions

Conclusio

BEAST collision attack

		H						- 2 ^t -						
Plaintex	t	GET	⊔/i	nde	x.h	tml	⊔HT	TP/	1.1	Coo	kie	:⊔C	=??	???
T	178	4E5	71A	A39	68A	399	7D8	8F0	FEA	902	932	204	85A	969
	E57	1AA	396	8A3	997	D88	FOF	EA9	029	322	048	5A9	6E0	EA4
	1D6	645	EA2	050	FAE	D74	A72	E5C	913	447	3B4	BAA	321	784
	7A5	<mark>322</mark>	700	DE3	BA8	7DD	998	040	A8D	9A2	05A	EE5	330	9EC
	9BE	78D	350	AF5	327	311	F5B	252	77A	C45	49E	2ED	20C	030
2 ^{n/2-t/}	² 289	597	BED	540	A60	7AF	F96	511	AF2	41F	278	D25	400	4EB
Ciphertext	s 031	ED8	EEB	6CC	B5A	440	067	154	AB5	CEE	015	70A	1ED	1B7
	38E	018	41A	DEB	970	2D3	97A	FOE	45C	94B	251	218	5FB	82A
	417	FF4	81D	00D	49D	D9A	841	737	416	BA8	452	ACO	335	793
	21B	B07	A20	4F4	C1D	B07	2DF	410	340	6AB	0D2	96B	CE9	4C9
	536	BDA	A93	B85	351	831	763	FAO	E95	E5F	1EE		7D5	8C0
	5F5	935	574	21D	EE0	1BF	338	6DB	DDC	F67		7F6	8EC	A8D

CBC Security

SHA-1 Chosen-prefix Collisions

Conclusion

BEAST collision attack

		├ ──						- 2 ^t -						
Plaintext		GET	⊔/i	nde	x.h	tml	$_{\sqcup}$ HT	TP/	1.1	Coo	kie	:⊔C	=??	???
T	178	4E5	71A	A39	68A	399	7D8	8F0	FEA	902	932	204	85A	969
	E57	1AA	396	8A3	997	D88	FOF	EA9	029	322	048	5A9	6E0	EA4
	1D6	645	EA2	050	FAE	D74	A72	E5C	913	447	3B4	BAA	321	784
	7A5	<mark>322</mark>	700	DE3	BA8	7DD	998	040	A8D	9A2	05A	EE5	330	9EC
	9BE	78D	350	AF5	327	311	F5B	252	77A	C45	49E	2ED	20C	030
$2^{n/2-t/2}$	289	597	BED	540	A60	7AF	F96	511	AF2	41F	278	D25	400	4EB
Ciphertexts	031	ED8	EEB	6CC	B5A	440	067	154	AB5	CEE	015	70A	1ED	1B7
	38E	018	41A	DEB	970	2D3	97A	FOE	45C	94B	251	218	5FB	82A
	417	FF4	81D	00D	49D	D9A	841	737	416	BA8	452	ACO	335	793
	21B	B07	A20	4F4	C1D	B07	2DF	410	340	6AB	0D2	96B	CE9	4C9
	536	BDA	A93	B85	351	831	763	FAO	E95	E5F	1EE		7D5	8C0
	5F5	935	574	21D	EE0	1BF	338	6DB	DDC	F67		7F6	8EC	A8D

CBC Security

SHA-1 Chosen-prefix Collisions

Conclusio

BEAST collision attack

		H						– 2 ^t –						
Plaintext		GET	⊔/i	nde	x.h	tml	⊔HT	TP/	1.1	Coo	kie	:C	=??	???
T	178	4E5	71A	A39	68A	399	7D8	8F0	FEA	902	932	204	85A	969
	E57	1AA	396	8A3	997	D88	FOF	EA9	029	322	048	5A9	6E0	EA4
	1D6	645	EA2	050	FAE	D74	A72	E5C	913	447	3B4	BAA	321	784
	7A5	322	700	DE3	BA8	7DD	998	040	A8D	9A2	05A	EE5	330	9EC
	9BE	78D	350	AF5	327	311	F5B	252	77A	C45	49E	2ED	20C	030
$2^{n/2-t/2}$	289	597	BED	540	A60	7AF	F96	511	AF2	41F	278	D25	400	4EB
Ciphertexts	031	ED8	EEB	6CC	B5A	440	067	154	AB5	CEE	015	70A	1ED	1B7
	38E	018	41A	DEB	970	2D3	97A	FOE	45C	94B	251	218	5FB	82A
	417	FF4	81D	00D	49D	D9A	841	737	416	BA8	452	ACO	335	793
	21B	B07	A20	4F4	C1D	B07	2DF	410	340	6AB	0D2	96B	CE9	4C9
	536	BDA	A93	B85	351	831	763	FAO	E95	E5F	1EE		7D5	8C0
	5F5	935	574	21D	EE0	1BF	338	6DB	DDC	F67		7F6	8EC	A8D

CBC Security

SHA-1 Chosen-prefix Collisions

Conclusion

BEAST collision attack

		 						- 2 ^t -						
Plaintex	ĸt	GET	⊔/i	nde	x.h	tml	⊔HT	TP/	1.1	Coo	kie	:C	=??	???
T	178	4E5	71A	A39	68A	399	7D8	8F0	FEA	902	932	204	85A	969
	E57	1AA	396	8A3	997	D88	FOF	EA9	029	322	048	5A9	6E0	EA4
	1D6	645	EA2	050	FAE	D74	A72	E5C	913	447	3B4	BAA	321	784
	7A5	<mark>322</mark>	700	DE3	BA8	7DD	998	040	A8D	9A2	05A	EE5	330	9EC
	9BE	78D	350	AF5	327	311	F5B	252	77A	C45	49E	2ED	20C	030
2 ^{n/2-t/}	^{/2} 289	597	BED	540	A60	7AF	F96	511	AF2	41F	278	D25	400	4EB
Ciphertext	ts 031	ED8	EEB	6CC	B5A	440	067	154	AB5	CEE	015	70A	1ED	1B7
	38E	018	41A	DEB	970	2D3	97A	FOE	45C	94B	251	218	5FB	82A
	417	FF4	81D	00D	49D	D9A	841	737	416	BA8	452	ACO	335	793
	21B	B07	A20	4F4	C1D	B07	2DF	410	340	6AB	0D2	96B	CE9	4C9
	536	BDA	A93	B85	351	831	763	FAO	E95	E5F	1EE	986	7D5	8C0
	5F5	935	574	21D	EE0	1BF	338	6DB	DDC	F67		7F6	8EC	A8D

CBC Security

SHA-1 Chosen-prefix Collisions

Conclusio

BEAST collision attack

		—						– 2 ^t –					-	
Plaintext		GET	⊔/i	nde	x.h	tml	$_{\sqcup}HT$	TP/	1.1	Coo	kie	:⊔C	=??	???
T	178	4E5	71A	A39	68A	399	7D8	8F0	FEA	902	932	204	85A	969
	E57	1AA	396	8A3	997	D88	FOF	EA9	029	322	048	5A9	6E0	EA4
	1D6	645	EA2	050	FAE	D74	A72	E5C	913	447	3B4	BAA	321	784
	7A5	322	700	DE3	BA8	7DD	998	040	A8D	9A2	05A	EE5	330	9EC
	9BE	78D	350	AF5	327	311	F5B	252	77A	C 45	49E	2ED	20C	030
2 ^{n/2-t/2}	289	597	BED	540	A60	7AF	F96	511	AF2	41F	278	D25	400	4EB
Ciphertexts	031	ED8	EEB	6CC	B5A	440	067	154	AB5	CEE	015	70A	1ED	1B7
	38E	018	41A	DEB	970	2D3	97A	FOE	45C	94B	251	218	5FB	82A
	417	FF4	81D	00D	49D	D9A	841	737	416	BA8	452	ACQ	335	793
	21B	B07	A20	4F4	C1D	B07	2DF	410	340	6AB	0D2	96B	CE9	4C9
	536	BDA	A93	B85	351	831	763	FAO	E95	E5F	1EE	986	7D5	8C0
	5F5	935	574	21D	EEO	1BF	338	6DB	DDC	F67	090	7F6	8EC	A8D

CBC Security

SHA-1 Chosen-prefix Collisions

GSM security

Conclusion

BEAST collision attack

Assume user logged-in to secure website	!	worker.js
Javascript generates queries to HTTPS we	ebsite	
Including high value secretAnd known content	a few blocks 2 ^t blocks	<pre>var url = "https://target"; var xhr = new XMLHttpRequest;</pre>
 Each collision reveals the xor of two plain Eventually a collision will reveal the secr 	ntext blocks et	<pre>while(true) { xhr.open("HEAD", url, false); xhr.withCredentials = true; xhr.send(); xhr.abort();</pre>
 Success after roughly 2^t collisions 2^{n/2-t/2} quories 2^{n/2+t/2} blocks 		}
 Tradeoff between # queries and total ar 	ount of data	

If rekeying after 2^{n/2} blocks, attack still possible
 2^{n/2} queries, 2^{n/2+t} blocks

CBC Security

BEAST collision attack

- Assume user logged-in to secure website worker.js Javascript generates queries to HTTPS website Including high value secret a few blocks var url = "https://target"; And known content 2^t blocks var xhr = new XMLHttpRequest; while(true) { Each collision reveals the xor of two plaintext blocks xhr.withCredentials = true; Eventually a collision will reveal the secret xhr.send(); xhr.abort(); Success after roughly 2^t collisions } \blacktriangleright 2^{n/2-t/2} queries, 2^{n/2+t/2} blocks Tradeoff between # queries and total amount of data
 - ▶ If rekeying after 2^{n/2} blocks, attack still possible
 - 2^{n/2} queries, 2^{n/2+t} blocks

```
xhr.open("HEAD", url, false);
```

 CBC Security
 SHA

 00000000000
 000

IA-1 Chosen-prefix Collisions

GSM security

GEA

Conclusion

Proof-of-concept Attack Demo

- Demo with Firefox (Linux), and IIS 6.0 (Windows Server 2003)
 - Default configuration of IIS 6.0 does not support AES
- Each HTTP request encrypted in TLS record, with fixed key
- Generate traffic with malicious JavaScript
- 2 Capture on the network with tcpdump
- Remove header, extract ciphertext at fixed position
- 4 Sort ciphertext (stdxx1), look for collisions
- Expected time: 38 hours for 785 GB (tradeoff query size / # query).
- In practice: 30.5 hours for 610 GB.

Another target

OpenVPN used **Blowfish-CBC** by default

0000000000000000

CBC Summary

Block size does matter

CBC Security

- Birthday attack against CBC with 2^{n/2} data
- Protocols from the 90's still use 64-bit ciphers
- Attacks with 2³² data are practical
- Sweet32 attack disclosed in August 2016
- OpenVPN 2.4 has cipher negotiation defaulting to AES
- Mozilla has implemented data limits (1M records) in Firefox 51 (January 2017)
- OpenSSL moved 3DES to LOW category
- ▶ NIST limits 3DES to 2²⁰ blocks per key
- Firefox and Chrome disabled 3DES in 2021

BC Security 00000000000000 SHA-1 Chosen-prefix Collisions

GSM security

Conclusion

SHA-1 Chosen-prefix Collisions Record Computation PGP/GPG Impersonation

G. L., T. Peyrin

From Collisions to Chosen-Prefix Collisions — Application to Full SHA-1 Eurocrypt 2019

G. L., T. Peyrin SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust USENIX Security 2020

Gaëtan Leurent (Inria)

(Symmetric) Cryptanalysis in Practice

BC Security

SHA-1 Chosen-prefix Collisions

GSM security

Conclusion

Hash functions

- ▶ Hash function: public function $\{0,1\}^* \rightarrow \{0,1\}^n$
 - Maps arbitrary-length message to fixed-length hash
- Hash function should behave like a random function
 - Hard to find collisions, preimages
 - Hash can be used as fingerprint, identifier
 - Used to instantiate the Random Oracle Model
- Used in many different contexts
 - Signature: hash-and-sign
 - MAC: hash-and-PRF, HMAC
 - Commitments, proof-of-work, ...

	<i>CBC Security</i> 00000000000000	SHA-1 Chosen-prefix Collisions	GSM security 000000000000000000	<i>GEA</i> 00000000000000000000	Conclusion 0					
		Concrete see	curity goals							
Preimage	attack									
Given F a	and \overline{H} , find M s.t.	$F(M) = \overline{H}.$		Ideal secur	rity: 2 ⁿ .					
Second-pr	reimage attack									
Given F and M_1 , find $M_2 \neq M_1$ s.t. $F(M_1) = F(M_2)$. Ideal security										
Collision	attack									
Given F, t	find $M_1 \neq M_2$ s.1	$F(M_1) = F(M_2).$		Ideal securit	y: 2 ^{n/2} .					
Collision :	search in practice									
 Sort data to avoid quadratic complexity Pollard's rho (memoryless) Parallel collision search by van Oorschot and Wiener 										

BC Security

SHA-1 Chosen-prefix Collisions

Conclusion

SHA-1

- Designed by NSA: SHA-0 [1993], then SHA-1 [1995]
- Standardized by NIST, ISO, IETF, ...
- Widely used untill 2015
- Iterative structure: Merkle-Damgård construction (n = 160)
- Block cipher-based compression function: Davies-Meyer

Security 0000000000 SHA-1 Chosen-prefix Collisions

GEA

Conclusion

SHA-1

- Designed by NSA: SHA-0 [1993], then SHA-1 [1995]
- Standardized by NIST, ISO, IETF, ...
- Widely used untill 2015
- Iterative structure: Merkle-Damgård construction (n = 160)

Block cipher-based compression function: Davies-Meyer

curity SF

SHA-1 Chosen-prefix Collisions

GEA

Conclusion

SHA-1

- Designed by NSA: SHA-0 [1993], then SHA-1 [1995]
- Standardized by NIST, ISO, IETF, ...
- Widely used untill 2015
- Iterative structure: Merkle-Damgård construction (n = 160)
- Block cipher-based compression function: Davies-Meyer

SHA-1 Chosen-prefix Collisions

[Wang & al., Crypto'05]

SHA-1 Cryptanalysis

2005-02 Theoretical collision with 2⁶⁹ op.

- ... Several unpublished collision attacks in the range $2^{51} 2^{63}$
- 2010-11 Theoretical collision with 2⁶¹ op.

[Stevens, EC'13] 2015-10 Practical freestart collision (on GPU) [Stevens, Karpman & Peyrin, Eurocrypt'16] 2017-02 Practical collision with 2^{64.7} op. (GPU) [Stevens & al., Crypto'17]

BC Security 00000000000000 SHA-1 Chosen-prefix Collisions

GSM security

EA

Conclusion

SHA-1 Deprecation

2006-03 NIST Policy on Hash Functions

Federal agencies should stop using SHA-1 for digital signatures, digital time stamping and other applications that require collision resistance as soon as practical, and must use the SHA-2 family of hash functions for these applications after 2010.

2011-11 CA/Browser Forum:

"SHA-1 MAY be used until SHA-256 is supported widely by browsers"

2014-09 CA/Browser Forum depreciation plan

- Stop issuing SHA-1 certificates on 2016-01-01
- Do not trust SHA-1 certificates after 2017-01-01
- 2015-10 Browsers consider moving deadline to 2016-07

2017-0x Modern browsers reject SHA-1 certificates

C Security 00000000000 SHA-1 Chosen-prefix Collisions

GSM security

Conclusion

SHA-1 Usage in 2020

- SHA-1 certificates (X.509) still exists
 - CAs sell legacy SHA-1 certificates for legacy clients
 - Accepted by some non-web modern clients
- PGP signatures with SHA-1 still trusted
 - Default hash for key certification in GnuPGv1 (legacy branch)
 - 1% of public certifications (Web-of-Trust) in 2019 used SHA-1
- SHA-1 still allowed for in-protocol signatures in TLS, SSH
 - Used by 3% of Alexa top 1M servers
- DNSSEC supports and use SHA-1 signatures
 - 18% of TLDs used SHA-1 in 2020
- ▶ HMAC-SHA-1 ciphersuites (TLS) are still used by 8% of Alexa top 1M servers
- Probably a lot of more obscure protocols...
 - EMV credit cards use weird SHA-1 signatures

SHA-1 Chosen-prefix Collisions

SSM security

FEA

Conclusion

Chosen-Prefix Collisions

[Stevens, Lenstra & de Weger, EC'07]

Collisions are hard to exploit: garbage collision blocks C_i

Identical-prefix collision

Given IV, find $M_1 \neq M_2$ s. t. $H(M_1) = H(M_2)$

- Arbitrary common prefix/suffix, random collision blocks
- Breaks integrity verification
- Colliding PDFs (breaks signature?)

Chosen-prefix collision

• Given P_1, P_2 , find $M_1 \neq M_2$ s. t. $H(P_1 || M_1) = H(P_2 || M_2)$

Breaks certificates
 Rogue CA [Stevens & al, Crypto'09]

Breaks TLS, SSH SLOTH [Bhargavan & L, NDSS'16]

SHA-1 Chosen-prefix Collisions

SM security

Conclusion

Chosen-Prefix Collisions

[Stevens, Lenstra & de Weger, EC'07]

Collisions are hard to exploit: garbage collision blocks C_i

Identical-prefix collision

Given IV, find $M_1 \neq M_2$ s. t. $H(M_1) = H(M_2)$

- Arbitrary common prefix/suffix, random collision blocks
- Breaks integrity verification
- Colliding PDFs (breaks signature?)

Chosen-prefix collision

• Given P_1, P_2 , find $M_1 \neq M_2$ s. t. $H(P_1 || M_1) = H(P_2 || M_2)$

- Breaks certificates Rogue CA [Stevens & al, Crypto'09]
- Breaks TLS, SSH SLOTH [Bhargavan & L, NDSS'16]

C Security 000000000000 *GSM security*

EA 0000000000000000000000000 Conclusion

Our results

Chosen-prefix collision attack on SHA-1

Theoretical attack at Eurocrypt 2019

Practical attack at USENIX 2020

 Complexity improvements (factor 8 ~ 10) identical-prefix collision from 2^{64.7} to 2^{61.2} chosen-prefix collision from 2^{67.1} to 2^{63.4}

2 Record computation

- Implementation of the full CPC attack
- 2 months using 900 GPU (GTX 1060)
- 3 PGP Web-of-Trust impersonation
 - 2 keys with different IDs and colliding certificates
 - Certification signature can be copied to the second key

Complexity 2^{63.4}

Complexity 2^{67.1}

(11 kUS\$ in GPU rental) (45 kUS\$ in GPU rental)

 uction
 CBC Security
 SHA-1 Chosen-prefix Collisions
 GSM security
 GEA

 Chosen-prefix collision attack on SHA-1
 [L. & P., EC'19]

1 Setup: Find a set of "nice" chaining value differences S

- 2 Birthday phase: Find m_1, m'_1 such that $H(P_1 \parallel m_1) H(P_2 \parallel m'_1) \in S$
- **3** Near-collision phase: Erase the state difference, using near-collision blocks
- Expected complexity $\approx 2^{64}$

[EC'19, USENIX'20]

GEA

Conclusion O

Running a 2⁶⁴ *computation on a budget*

- Running the attack on Amazon/Google cloud GPU estimated to cost 160 kUS\$ (spot/preemptible instances)
- After cryptocurrency crash in 2018, cheap GPU farms to rent!
 - 3-4 times cheaper
 45 kUS\$ with public prices on gpuserversrental.com (early 2020)
 - Gaming or mining-grade GTX cards (rather than Tesla)
 - 👎 Low-end CPUs
 - 👎 Slow internet link
 - No cluster management
 - 👎 Pay by month, not on-demand

Pricing fluctuates together with cryptocurrencies prices

3C Security 2000000000000 SHA-1 Chosen-prefix Collisions

SSM security

Conclusion

Running a 2⁶⁴ computation on a budget

Bitcoin price history

Pricing fluctuates together with cryptocurrencies prices

Gaëtan Leurent (Inria)

(Symmetric) Cryptanalysis in Practice

Conclusion

Birthday phase

Find m_1, m_2 such that $H(P_1 \parallel m_1) - H(P_2 \parallel m_2) \in S$

- ▶ Set S of 2³⁸ "nice" chaining value differences
- Birthday paradox: complexity about $\sqrt{2^{n+1}/|S|} = 2^{61.5}$
- Chains of iterations to reduce the memory
 - Fruncate SHA-1 to 96 bits, partial collision likely to be in ${\cal S}$
 - About 500GB of storage
 - Easy to parallelize on GPU
 - Expected complexity $\approx 2^{62}$, ($2^{26.4}$ truncated collisions)

Success after one month

- 2^{62.9} computations (2^{27.7} truncated collisions)
- ▶ Bad luck! 😣

Gaëtan Leurent (Inria)

[van Oorschot & Wiener, CCS'94]

3C Security 0000000000000

GEA

Conclusion

Near-collision phase

Erase the state difference, using near-collision blocks

- Very technical part of the attack: each block similar to a collision attack
 - Find the useful output differences for the next block by exploring ${\cal S}$
 - Build a differential trail with specific input/output conditions
 - Build GPU code dedicated to the trail: neutral bits, boomerangs, ...
- For simplicity, we use variants of the trail of Stevens for all blocks
 - Reuse most neutral bits / boomerang analysis
 - Reuse most GPU code [Stevens, Bursztein, Karpman, Albertini & Markov, C'17]
- Aim for 10 blocks, expected complexity: 2^{62.8}
 - Last block: 2^{61.6} (equivalent to collision attack)
 - ▶ Intermediate blocks: 2^{62.1} in total (each block is cheap)

Success after one month

- ▶ 2⁶² computations (time lost when preparing the trails and GPU code)
- ► Good luck! ☺

BC Security 0000000000000 SHA-1 Chosen-prefix Collisions

GSM security

GEA 000000000000000000000000 Conclusion

The First SHA-1 Chosen-prefix Collision

416-bit prefix

96 birthday bits

9 near-collision blocks

Message A	Message B
99040d047fe81780012000ff4b65792069732070617274206f66206120636f6c	99030d047fe81780011800ff50726163746963616c205348412d312063686f73
6c6973696f6e2120497427732061207472617021 <mark>79c61af0afcc054515d9274e</mark>	656e2d70726566697820636f6c6c6973696f6e21 <mark>1d276c6ba661e1040e1f7d76</mark>
7307624b1dc7fb23988bb8de8b575dba7b9eab31c1674b6d974378a827732ff5	7f076249ddc7fb332c8bb8c2b7575dbec79eab2be1674b7db34378b4cb732fe1
851c76a2e60772b5a47ce1eac40bb993c12d8c70e24a4f8d5fcdedc1b32c9cf1	891c76a0260772a5107ce1f6e80bb9977d2d8c68524a4f9d5fcdedcd0b2c9ce1
9e31af2429759d42e4dfdb31719f587623ee552939b6dcdc459fca53553b70f8	9231af26e9759d5250dfdb2d4d9f58729fee553319b6dccc619fca4fb93b70ec
7ede30a247ea3af6c759a2f20b320d760db64ff479084fd3ccb3cdd48362d96a	72de30a087ea3ae67359a2ee27320d72b1b64fecc9084fc3ccb3cdd83b62d97a
9c430617caff6c36c637e53fde28417f626fec54ed7943a46e5f5730f2bb38fb	904306150aff6c267237e523e228417bde6fec4ecd7943b44a5f572c1ebb38ef
1df6e0090010d00e24ad78bf92641993608e8d158a789f34c46fe1e6027f35a4	11f6e00bc010d01e90ad78a3be641997dc8e8d0d3a789f24c46fe1eaba7f35b4
cbfb827076c50eca0e8b7cca69bb2c2b790259f9bf9570dd8d4437a3115faff7	c7fb8272b6c50edaba8b7cd655bb2c2fc50259e39f9570cda94437bffd5fafe3
c3cac09ad25266055c27104755178eaeff825a2caa2acfb5de64ce7641dc59a5	cfcac09812526615e827105b79178eaa43825a341a2acfa5de64ce7af9dc59b5
41a9fc9c756756e2e23dc713c8c24c9790aa6b0e38a7f55f14452a1ca2850ddd	4da9fc9eb56756f2563dc70ff4c24c932caa6b1418a7f54f30452a004e850dc9
9562fd9a18ad42496aa97008f74672f68ef461eb88b09933d626b4f918749cc0	9962fd98d8ad4259dea97014db4672f232f461f338b09923d626b4f5a0749cd0
27fddd6c425fc4216835d0134d15285bab2cb784a4f7cbb4fb514d4bf0f6237c	2bfddd6e825fc431dc35d00f7115285f172cb79e84f7cba4df514d571cf62368
f00a9e9f132b9a066e6fd17f6c42987478586ff651af96747fb426b9872b9a88	fc0a9e9dd32b9a16da6fd16340429870c4586feee1af96647fb426b53f2b9a98
e4063f59bb334cc00650f83a80c42751b71974d300fc2819a2e8f1e32c1b51cb	e8063f5b7b334cd0b250f826bcc427550b1974c920fc280986e8f1ffc01b51df
18e6bfc4db9baef675d4aaf5b1574a047f8f6dd2ec153a93412293974d928f88	14e6bfc61b9baee6c1d4aae99d574a00c38f6dca5c153a834122939bf5928f98
ced9363cfef97ce2e742bf34c96b8ef3875676fea5cca8e5f7dea0bab2413d4d	c2d9363e3ef97cf25342bf28f56b8ef73b5676e485cca8f5d3dea0a65e413d59
e00ee71ee01f162bdb6d1eafd925e6aebaae6a354ef17cf205a404fbdb12fc45	ec0ee71c201f163b6f6d1eb3f525e6aa06ae6a2dfef17ce205a404f76312fc55
4d41fdd95cf2459664a2ad032d1da60a73264075d7f1e0d6c1403ae7a0d861df	4141fddb9cf24586d0a2ad1f111da60ecf26406ff7f1e0c6e5403afb4cd861cb
3fe5707188dd5e07d1589b9f8b6630553f8fc352b3e0c27da80bddba4c64020d	33e5707348dd5e1765589b83a7663051838fc34a03e0c26da80bddb6f464021d

SHA-1 Chosen-prefix Collisions

GEA

Conclusion

Attacking key certification

[Stevens, Lenstra & de Weger, EC'07]

Gaëtan Leurent (Inria)

(Symmetric) Cryptanalysis in Practice

Cyber in NancyJuly 5, 2022 33 / 71

Gaëtan Leurent (Inria)

(Symmetric) Cryptanalysis in Practice

Cyber in NancyJuly 5, 2022 33 / 71

Gaëtan Leurent (Inria)

(Symmetric) Cryptanalysis in Practice

Cyber in NancyJuly 5, 2022 33 / 71

Gaëtan Leurent (Inria)

(Symmetric) Cryptanalysis in Practice

CBC Security

SHA-1 Chosen-prefix Collisions

GSM security

GEA

Conclusion

PGP identity certificates

PGP identity certificate has public key first, UserID next

- Each blob prefixed by length
- Cannot just use the ID a prefix as with X.509 certificates
- Quite rigid format (weird extensions not signed)

Use keys of different length, fields misaligned

PGP format supports for JPEG picture in key, and picture can be signed

- JPEG readers ignore garbage after End of Image marker
- Certificate A has RSA-8192 public key, with victim ID
- Certificate B has RSA-6144 public key, and attacker's picture
 - Stuff JPEG in key A, and ID B in JPEG
 - Need very small JPEG: example 181-byte JPEG (almost compliant)

CBC Security

SHA-1 Chosen-prefix Collisions

GSM security

FEA

Conclusion

PGP identity certificates

PGP identity certificate has public key first, UserID next

- Each blob prefixed by length
- Cannot just use the ID a prefix as with X.509 certificates
- Quite rigid format (weird extensions not signed)
- Use keys of different length, fields misaligned
- PGP format supports for JPEG picture in key, and picture can be signed
 - JPEG readers ignore garbage after End of Image marker
- Certificate A has RSA-8192 public key, with victim ID
- Certificate B has RSA-6144 public key, and attacker's picture
 - Stuff JPEG in key A, and ID B in JPEG
 - Need very small JPEG: example 181-byte JPEG (almost compliant)

C Security 00000000000 SHA-1 Chosen-prefix Collisions

Conclusio

Certificate structure

Gaëtan Leurent (Inria)

Security Security

SHA-1 Chosen-prefix Collisions

GSM security

JEA

Conclusion

Impersonation attack

1 Build CP collision with prefixes "99040d04*012000"/"99030d04*011800"

- 2 Choose JPEG image to include in B, UserID to include in A
- 3 Select "!!" bytes to make RSA modulus.
- 4 Ask for a signature of key B.
- **5** Copy the signature to key A.
- Single chosen-prefix collision can be used to target many victims
- Example keys on https://sha-mbles.github.io
 - Key creation date of our CPC in 2038 to avoid malicious usage
- GnuPGv1 (legacy branch) used SHA-1 signatures by default
- Reported in May 2019, GnuPG stopped trusting SHA-1 signatures (CVE-2019-14855)

Gaëtan Leurent (Inria)

C Security 000000000000 SHA-1 Chosen-prefix Collisions

GSM security

GEA

Conclusion

SHA-1 Summary

SHA-1 signatures can now be abused in practice

- SHA-1 must be deprecated (same attacks as on MD5 in 2007)
 - As long as SHA-1 is supported, downgrade attacks are possible
 - Urgent for SHA-1 signatures
 - SLOTH attack as long as SHA-1 is supported in TLS, SSH
 - Rogue CA using SHA-1 X.509 certificates

[Bhargavan & L., NDSS'16] [Stevens & al., C'09]

- GnuPGv2 stopped trusting SHA-1 signatures (2019-11)
- Microsoft discontinued SHA-1 code signing support (2020-08)
- OpenSSH has disabled RSA-SHA1 signatures by default (2021-09)
- SHA-1 deprecated for TLS in-protocol signatures (RFC9155 2021-12)
- Side result: breaking 64-bit crypto now costs less than 100 kUS\$

Gaëtan Leurent (Inria)

3C Security 0000000000000 5HA-1 Chosen-prefix Collisions

GSM security

Conclusion

GSM security A5/1 Cryptanalysis A5/2 Cryptanalysis

CBC Security

SHA-1 Chosen-prefix Collisions

GSM security

Conclusion

GSM Cell Phones

GSM (2G) telephony first deployed in 1991

- GPRS is the data protocol of 2G telephony (sometimes called 2.5G)
 - Improved GPRS: EDGE (sometimes called 2.75G)
 - Designed by ETSI SAGE in 1998
- Widely used in the early 2000s
 - The first iPhone didn't support 3G (2008)
- 3G deployment: 2001-2010-ish
 - 2G has been sunset in some countries, but still used in France
 - Fallback when 3G/4G/5G not available
 - Used by some payment terminals

rity SHA 00000000 000

A-1 Chosen-prefix Collisions

GSM security

Conclusion

2G security

- Encryption of packets between the phone and the antenna
- Algorithms designed in secret in the 1980s and 1990s, not published

Voice: A5

- A5/0 No encryption
- A5/1 64-bit key, 64-bit state
 - Partial leak in 1994, Reverse engineered in 1999

A5/2 64-bit key, 81-bit state

- Reverse engineered in 1999
- "export version"
- Deprecated in 2007
- A5/3 KASUMI with 64-bit key
- A5/4 KASUMI with 128-bit key
 - Designed in 2002, public

Data: GEA (GPRS Encryption Algorithms)

```
GEA-0 No encryption
```

GEA-1 64-bit key, 96-bit state

Partial leak in 2011

```
[Nohl & Melette]
```

Deprecated in 2013

```
GEA-2 64-bit, 125-bit state
```

GEA-3 KASUMI with 64-bit key GEA-4 KASUMI with 128-bit key ► Designed in 2002, public

C Security 000000000000 5HA-1 Chosen-prefix Collisions

GSM security

Conclusion

Stream ciphers

Encrypt a message with a secret key k
 Keystream z(k) = (z⁽⁰⁾, z⁽¹⁾, z⁽²⁾, ...)
 c = E_k(m) = m ⊕ z

Stream cipher

- ▶ Internal state $S \in S$
- State update function $S \rightarrow S$
- Extraction function $f: S \rightarrow \{0, 1\}$

 $S^{(0)} = Init(k)$

• Initialization k, $IV \rightarrow S$

$$S^{(i+1)} = Update(S^{(i)})$$

 $k, IV \xrightarrow{Init} S \xrightarrow{f} z$

 $z^{(i)} = f(S^{(i)})$

Gaëtan Leurent (Inria)

Security S

5HA-1 Chosen-prefix Collisions

GSM security

Conclusion

Linear Feedback Shift Register (LFSR)

- State S: n bits (s₀, s₁, ..., s_{n-1})
- Linear update: $S^{(t+1)} = M \cdot S^{(t)}$
- Polynomial representation: $Q = X^n + \sum_{i \in A} X^i$
 - If Q is primitive, update corresponds to multiplication by a primitive element
 - Maximal period if $S \neq 0$

Fibonacci configuration

• Update depending on taps \mathcal{A} : $s_0^{(t+1)} = \sum_{i \in \mathcal{A}} s_i^{(t)}$, $s_{i+1}^{(t+1)} = s_i^{(t)}$

ecurity Si 000000000 0

Linear Feedback Shift Register (LFSR)

- State S: n bits (s₀, s₁, ..., s_{n-1})
- Linear update: $S^{(t+1)} = M \cdot S^{(t)}$
- Polynomial representation: $Q = X^n + \sum_{i \in A} X^i$
 - If Q is primitive, update corresponds to multiplication by a primitive element
 - Maximal period if $S \neq 0$

Galois configuration

• Update depending on taps
$$A$$
: $s_i^{(t+1)} = \begin{cases} s_{i+1}^{(t)} \oplus s_0^{(t)} & \text{if } i \in A \\ s_{i+1}^{(t)} & \text{else} \end{cases}$

BC Security

5HA-1 Chosen-prefix Collisions

GSM security

GEA

Conclusion

LFSR based stream ciphers

Need to break linearity

- Irregular clocking
- Filter function of the state
- Non-linear feedback

Filter generator

Filter function to extract keystream from internal state (balanced, non-linear)

Construction used in A5/1, A5/2, Bluetooth E0

Gaëtan Leurent (Inria)

C Security 000000000000 HA-1 Chosen-prefix Collisions

GSM security

Conclusion

A5/1

- Reverse engineered in 1999
- 3 LFSRs
 - A (19 bits)
 - B (22 bits)
 - C (23 bits)
- Irregular clocking:
 - $m = MAJ(a_8, b_{10}, c_{10})$
 - Clock A iff a₈ = m
 - Clock B iff b₁₀ = m
 - Clock C iff c₁₀ = m
- The keystream is $z^{(i)} = a_{18}^{(i)} \oplus b_{21}^{(i)} \oplus c_{22}^{(i)}$
- Linear function of the state

BC Security 0000000000000 SHA-1 Chosen-prefix Collisions

GSM security

GEA

Conclusion

A5/1 initialization

Initialize the three LFSRs from 64-bit key and 22-bit frame number

- 1 Set A, B, C to zero
- 2 Clock them 64 + 22 times, xoring input bit into the feedback function
 Clock registers always
- 3 Clock the register 100 times
 - Normal clocking dependant on registers content

CBC Security

5HA-1 Chosen-prefix Collisions

GSM security

Conclusion

Security of A5/1

 Security: it should be hard to recover initial state from keystream

BC Security

SHA-1 Chosen-prefix Collisions

GSM security

Conclusion

Security of A5/1

 Security: it should be hard to recover initial state from keystream

Main weakness

State is too small (64 bits)

Time-memory tradeoff

- With known keystream z, invert public function $\phi : S \mapsto z^{(0)}, z^{(1)}, ..., z^{(63)}$
- With precomputation: store ($\phi(S)$, S) indexed by $\phi(S)$
- Hellman tables: tradeoff with smaller storage size
 - Precomputation: N
 - Online: TM² = N²

1 Precompute iteration chain

In practice: precomputation too expensive

2⁴² storage is 32 TB

(Time T, Storage M, Domain size N)

2 Store (x_i, y_i)

3 Online: compute chain and restart

Babbage-Golic time-memory tradeoff [Babbage, 1995] [Golic, 1997]

- With known keystream z, invert public function $\phi : S \mapsto z^{(0)}, z^{(1)}, ..., z^{(63)}$
- Target one state out of many
 - S⁽⁰⁾ produces keystream z⁽⁰⁾, z⁽¹⁾, z⁽²⁾, ..., z⁽ⁿ⁻¹⁾
 - S⁽¹⁾ produces keystream z⁽¹⁾, z⁽²⁾, z⁽³⁾, ..., z⁽ⁿ⁾
 - S⁽²⁾ produces keystream z⁽²⁾, z⁽³⁾, z⁽⁴⁾, ..., z⁽ⁿ⁺¹⁾

Meet-in-the-Middle attack / collision search

O Capture frames with known plaintext, recover z

- **1** For 2^{32} random S, compute $\phi(S)$ and store in a hash table
- 2 For 2³² keystream prefixes z, look up z in the table
- In practice: 2³² keystreams takes too long to capture
 - Only 2²² keystreams in a two-minute call
 - ▶ $\rightarrow 2^{42}$ storage, or 2^{42} online time

GSM security

GEA

[Biryukov & Shamir, Asiacrypt'00]

Conclusion

Time-Memory-Data tradeoff

- Combine Hellman tables with Babbage-Golic time-memory tradeoff
 - Target one state out of many, precompute chains
- Better tradeoff than Hellman, because no need to cover full space
- Implemented in practice
 - Computed on GPU, ≈ 2TB storage
- There are known frames in GSM

Application to A5/1

- One frame gives 204 keystream prefixes
- Pre-computation $2^{64}/204 \approx 2^{57}$
- ► Storage 2³⁷ (≈ 1TB)
- Online cost: 2³³

[Paget & Nohl, 2011]

C Security

HA-1 Chosen-prefix Collisions

GSM security

Conclusion

- Reverse engineered in 1999
- 4 LFSRs
 - A (19 bits)
 - B (22 bits)
 - C (23 bits)
 - D (17 bits)
- Clocking defined by D:
 - $m = MAJ(d_{10}, d_3, d_7)$
 - Clock A iff d₁₀ = m
 - Clock B iff d₃ = m
 - Clock C iff d₇ = m

Non-linear function of the state, degree 2 $z^{(i)} = a_{18}^{(i)} \oplus b_{21}^{(i)} \oplus c_{22}^{(i)} \oplus MAJ(a_{15}^{(i)}, \bar{a}_{14}^{(i)}, a_{12}^{(i)}) \oplus MAJ(\bar{b}_{20}^{(i)}, b_{13}^{(i)}, b_{9}^{(i)}) \oplus MAJ(c_{22}^{(i)}, c_{20}^{(i)}, \bar{c}_{13}^{(i)})$

Gaëtan Leurent (Inria)

BC Security 0000000000000 5HA-1 Chosen-prefix Collisions

GSM security

3EA

Conclusior

A5/2 initialization

Initialize the three LFSRs from 64-bit key and 22-bit frame number

- 1 Set A, B, C, D to zero
- Clock them 64 + 22 times, xoring input bit into the feedback function
 Clock registers always
- **3** Set $a_{15} \leftarrow 1$, $b_{16} \leftarrow 1$, $c_{18} \leftarrow 1$, $d_{10} \leftarrow 1$
- 4 Clock the register 99 times
 - Normal clocking dependant on registers content

Gaëtan Leurent (Inria)

BC Security

5HA-1 Chosen-prefix Collisions

GSM security

Conclusion

Security of A5/2

 Security: it should be hard to recover initial state from keystream

BC Security

SHA-1 Chosen-prefix Collisions

GSM security

Conclusion

Security of A5/2

 Security: it should be hard to recover initial state from keystream

 Guessing D (16 bits) make clocking deterministic

SHA-1 Chosen-prefix Collision

GSM security

Conclusion

Cryptanalysis of A5/2

[Goldberg, Wagner & Green, '99]

- Consider two frames with distance 2¹¹
 - ▶ Difference in D absorbed by $d_{10} \leftarrow 1$
 - Known difference in A, B, C
- 2 Guess initial state of D
 - All clocking become known
 - State differences known at all clocks by linearity
- 3 Keystream difference is a linear function of initial state
 - $A \mapsto f(A) \oplus f(A \oplus \delta)$ is a derivative of f
 - Since f has the degree two, the derivative is linear
- Complexity: 2¹⁶ dot-products (linear functions)

Semi-active downgrade attack

[Barkan, Biham & Keller, C'03]

- Passive: Record frames encrypted with strong cipher (A5/1, A5/3, ...)
- Active: force phone to use A5/2 with same key, recover key

C Security 000000000000 HA-1 Chosen-prefix Collisions

GSM security

GEA 00000000000000000000000 Conclusion

A5/1 and A5/2 Summary

- A5/1 broken in practice because state is too small (64 bits)
 - Practical (low data) with large precomputation (2⁵⁶)
- A5/2 much weaker
 - Using a separate register for clocking weakens the cipher

Export ciphers

- A5/2 was designed to use GSM in countries with export regulations of crypto
- First implementations of GSM used only 56-bit session keys
- Other examples of "export" ciphersuites in TLS
- A5/2 design document states: [ETR 278] "The algorithm must be such that export controls in force in a number of CEPT member countries permit its use in accordance with the GSM MoU policy reproduced in annex A"

3C Security 0000000000000 SHA-1 Chosen-prefix Collisions

GEA

Conclusion

Outline

GPRS Encryption GEA-1 Cryptanalysis GEA-2 Cryptanalysis

C. Beierle, P. Derbez, G. Leander, G. L., H. Raddum, Y. Rotella, D. Rupprecht, L. Stennes Cryptanalysis of the GPRS Encryption Algorithms GEA-1 and GEA-2 Eurocrypt 2020

Gaëtan Leurent (Inria)

(Symmetric) Cryptanalysis in Practice

Cyber in NancyJuly 5, 2022 53 / 71

SC Security

HA-1 Chosen-prefix Collisions

GSM security

GEA

Conclusion

GEA-1 design

- Received specification from anonymous source
- Three filter generators
 - A (31 bits)
 - $\hookrightarrow \operatorname{Gen}_A(A)$
 - B (32 bits)
 - $\hookrightarrow \operatorname{Gen}_B(B)$
 - C (33 bits)
 - $\hookrightarrow \operatorname{Gen}_C(C)$
- Non-linear filtering
 - degree-4 function f

• The keystream is $z = \text{Gen}_A(A) \oplus \text{Gen}_B(B) \oplus \text{Gen}_C(C)$

Security

HA-1 Chosen-prefix Collisions

GSM security

Conclusion

GEA-1 initialization

- Generate a 64-bit value S from the key and IV
 - Using a NLFSR (non linear)
- 2 Initialize the three LFSRs from S
 - Set A, B, C to zero
 - Clock them 64 times, xor s_i into the feedback function
 - A uses s₀, s₁, ..., s₆₄
 - B uses s₁₆, s₁₇, ..., s₁₅ (shifted by 16 positions)
 - C uses s₃₂, s₃₃, ..., s₃₁ (shifted by 32 positions)
 - If register is zero, set to one (ignored in our analysis).

Initialization of A, B, C from S is linear

- S \mapsto A: 64 bit \rightarrow 31 bits, rank 31
- S \mapsto B: 64 bit \rightarrow 32 bits, rank 32
- S \mapsto C: 64 bit \rightarrow 33 bits, rank 33

S \mapsto (A, B, C): 64 bit \rightarrow 96 bits, rank 64

S \mapsto (A, C) : 64 bit \rightarrow 64 bits, rank 40

Gaëtan Leurent (Inria)

BC Security

SHA-1 Chosen-prefix Collisions

GEA

Conclusion

GEA-1 initialization

Initialization of A, B, C from S is linear

- S \mapsto A: 64 bit \rightarrow 31 bits, rank 31
- S \mapsto B: 64 bit \rightarrow 32 bits, rank 32
- S \mapsto C: 64 bit \rightarrow 33 bits, rank 33

S \mapsto (A, B, C): 64 bit \rightarrow 96 bits, rank 64

S \mapsto (A, C) : 64 bit \rightarrow 64 bits, rank 40

Gaëtan Leurent (Inria)

BC Security

SHA-1 Chosen-prefix Collisions

GEA

Conclusion

GEA-1 initialization

Initialization of A, B, C from S is linear

- S \mapsto A: 64 bit \rightarrow 31 bits, rank 31
- S \mapsto B: 64 bit \rightarrow 32 bits, rank 32
- S \mapsto C: 64 bit \rightarrow 33 bits, rank 33

S \mapsto (A, B, C): 64 bit \rightarrow 96 bits, rank 64

• $S \mapsto (A, C)$: 64 bit \rightarrow 64 bits, rank 40

Gaëtan Leurent (Inria)

C Security 00000000000 HA-1 Chosen-prefix Collisions

GEA

Conclusior

Meet-in-the-Middle attack

- There are 2⁴⁰ possible initial states for (A, C)
- There are 2³² possible initial states for B
- The keystream is $z = \text{Gen}_A(A) \oplus \text{Gen}_B(B) \oplus \text{Gen}_C(C)$
 - Split in two independent parts: $Gen_B(B) = z \oplus Gen_A(A) \oplus Gen_C(C)$

Meet-in-the-Middle attack / collision search

O Capture frame with known plaintext, recover z

- **1** For all 2³² B, compute Gen_B(B) and store in a hash table
- **2** For all 2^{40} (A, C), compute $z \oplus \text{Gen}_A(A) \oplus \text{Gen}_C(C)$ and look up in the table
- Recover the key from the initial state (A, B, C)
- Complexity
 - 64 bits of known keystream
 - 2⁴⁰ Time
 - 2³² Memory

Gaëtan Leurent (Inria)

C Security

SHA-1 Chosen-prefix Collisions

GSM security

GEA

Conclusion

Reducing memory

Memory usage can be reduced significantly

[Amzaleg & Dinur, EC'22]

- Reduce memory usage from 2³² to 2²⁴
 - (A, C) and (B) are not independent
 - Start by guessing 8 common bits of information

▶ Further reduce to 2¹⁹ (4MB) using techniques from 3-XOR cryptanalysis

Introduction	CBC Security 00000000000000	SHA-1 Chosen-prefix Collisions	GSM security 000000000000000000
		Dackdoou?	

GEA

Conclusion

Backdoor?

GEA-1 was likely weakened deliberately

- Mapping $S \mapsto A, C$ from 64 bits to 64 bits
 - Having rank 40 is very unlikely
- Experiments with initialization of the same type
 - With 1 million experiments, lowest rank found is 55
 - Follow-up work to build LFSRs and shift with low rank

[Beierle, Felke & Leander, 2021]

- In the 1990's, cryptography was subjected to export regulation
 - In France, 40-bit security cryptography can be exported after 1998
- The design document states:

"the algorithm should be generally exportable taking into account current export restrictions" "the strength should be optimized taking into account the above requirement"

Other examples of "export" ciphersuites: TLS, A5/2 in GSM

Gaëtan Leurent (Inria)

GSM security

 Conclusion

GEA-2 design

HA-1 Chosen-prefix Collisions

GEA

Conclusion

GEA-2 design

BC Security

SHA-1 Chosen-prefix Collisions

GSM security

 Conclusion

Meet-in-the-Middle attack

• The keystream is $z = \text{Gen}_A(A) \oplus \text{Gen}_B(B) \oplus \text{Gen}_C(C) \oplus \text{Gen}_D(D)$

Register sizes: 31 (A), 32 (B), 33(C), 29 (D)

Standard MitM: Gen_A(A) ⊕ Gen_B(B) = z ⊕ Gen_C(C) ⊕ Gen_D(D)
 Complexity ≈ 2⁶³ ((A, B) is 63 bits, (C, D) is 62 bits)

No unexpected rank loss

BC Security 0000000000000 HA-1 Chosen-prefix Collisions

GSM security

 Conclusion

Algebraic attack: linearisation

Writing $z^{(i)} = \operatorname{Gen}_{A}^{(i)}(A) \oplus \operatorname{Gen}_{B}^{(i)}(B) \oplus \operatorname{Gen}_{C}^{(i)}(C) \oplus \operatorname{Gen}_{D}^{(i)}(D)$ as a polynomial

- 31 + 32 + 33 + 29 = 125 variables
- Each keystream bit z⁽ⁱ⁾ gives an equation
- Small number of possible monomials
 - LFSR update is linear
 - The filtering function f has algebraic degree 4
 - $\sum_{i=1}^{4} {\binom{31}{i}} + {\binom{32}{i}} + {\binom{33}{i}} + {\binom{29}{i}} = 152682$ monomials

Linearisation attack:

- Consider each monomial as an independent variable
- Solve the linear system
- Complexity 152682³ ≈ 2⁵²
- Requires about 152682 bits of keystream z
- Problem: GPRS frame is at most 12800 bits

Toy example

CBC Security

HA-1 Chosen-prefix Collisions

GSM security

GEA

Conclusion

Partial guessing

We can reduce the number of monomial below 12800 by guessing some state bits

For instance: guess 15 bits of A, 15 bits of B, 16 bits of C, 13 bits of D

- Remaining variables: 16 (A) + 17 (B) + 17 (C) + 16 (D)
- ► $\sum_{i=1}^{4} {\binom{16}{i}} + {\binom{17}{i}} + {\binom{17}{i}} + {\binom{16}{i}} = 11468$ monomials (< 12800)
- Solve the remaining system with linear algebra
 - Complexity $\approx 2^{59} \times 12800^3$
BC Security

SHA-1 Chosen-prefix Collisions

GSM security

GEA

Conclusion

Hybrid Meet-in-the-Middle

Strategy

- **1** Guess parts of A and D
- 2 Find relations that depend only on B, C: $\phi(B) \oplus \psi(C) = \xi(z)$
- Guess 11 bits of A and 9 bits of D
- Write $w^{(i)} = \text{Gen}_A^{(i)}(A) \oplus \text{Gen}_D^{(i)}(D)$ as a polynomial in the remaining variables (20+20)
- ▶ Look for masks m (length 12800) such that m · w₀ ... w₁₂₇₉₉ is constant
 - $\sum_{i=1}^{4} \binom{20}{i} + \binom{20}{i} = 12390$ non-constant monomials
 - Using linearisation, space of good masks of dimension 12800 12390 = 410
- Build linear function L from 64 independent masks:
 - ► $z = \text{Gen}_D(D) \oplus \text{Gen}_A(A) \oplus \text{Gen}_B(B) \oplus \text{Gen}_C(C)$
 - ► $L(z) = L(Gen_D(D)) \oplus L(Gen_A(A)) \oplus L(Gen_B(B)) \oplus L(Gen_C(C))$

known constant $\phi(B)$ $\psi(C)$

BC Security 00000000000000 SHA-1 Chosen-prefix Collisions

GSM security 000000000000000000 Conclusion

Linearization: toy example

	1	a ₀	a ₁	a ₂	a ₀ a ₁	a_0a_2	$a_1 a_2$	b ₀	b_1	b_0b_1
$w_0 =$	1⊕	$a_0\oplus$						b_0		
w ₁ =			$a_1\oplus$			$a_0a_2\oplus$			$b_1\oplus$	b_0b_1
w ₂ =	1⊕	$a_0\oplus$		$a_2\oplus$	$a_0a_1\oplus$					b_0b_1
w ₃ =	1⊕	$a_0\oplus$	$a_1\oplus$		$a_0a_1\oplus$		$a_1a_2\oplus$	$b_0 \oplus$	b_1	
w ₄ =				$a_2\oplus$		$a_0a_2\oplus$		$b_0 \oplus$		b_0b_1
w ₅ =		$a_0\oplus$		$a_2\oplus$			$a_1a_2\oplus$		$b_1\oplus$	b_0b_1
$w_6 =$			$a_1\oplus$		$a_0a_1\oplus$	$a_0a_2\oplus$		b_0		
w ₇ =	1⊕	$a_0\oplus$	$a_1\oplus$		$a_0a_1\oplus$		$a_1a_2\oplus$			b_0b_1
w ₈ =	1⊕	$a_0\oplus$		$a_2\oplus$			$a_1a_2\oplus$		$b_1\oplus$	b_0b_1
w ₉ =			$a_1\oplus$	$a_2\oplus$		$a_0a_2\oplus$		$b_0 \oplus$	$b_1\oplus$	b_0b_1
w ₁₀ =			$a_1\oplus$		$a_0a_1\oplus$	$a_0a_2\oplus$			b_1	
w ₁₁ =		$a_0\oplus$	$a_1\oplus$						$b_1\oplus$	$b_0b_1\\$
$w_0 \oplus w_2 \oplus w_9 \oplus w_{10} =$	1									

 $w_2 \oplus w_5 \oplus w_7 \oplus w_{11} = 0$

 $w_5 \oplus w_8 = 1$

Gaëtan Leurent (Inria)

BC Security 0000000000000 SHA-1 Chosen-prefix Collisions

GEA

Conclusion

Hybrid Meet-in-the-Middle

Precomputation

- For each 2²⁰ (a, d) (partial guess of A and D)
 - 1 Compute linear combinations of w independent of remaining (A, D)
 - 2 Deduce functions $\phi_{a,d}$, $\psi_{a,d}$, $\xi_{a,d}$ such that $\phi_{a,d}(B) = \psi_{a,d}(C) \oplus \xi_{a,d}(z)$
- Complexity: $2^{20} \times 12800^3/64 \approx 2^{54.9}$ 64-bit operations

Meet-in-the-Middle attack / collision search

- For each 2²⁰ (a, d) (partial guess of A and D)
 I For all 2³² B, compute φ_{a,d}(B) and store in a hash table
 For all 2³³ C, compute ξ_{a,d}(z) ⊕ ψ_{a,d}(C) and look up in the table
 If there is match, recover key candidate from a, B, C, d
- Evaluation of φ_{a,d}, ψ_{a,d} as polynomials with amortized cost 4 [BCCCNSY, CHES'10]
 Complexity: 2⁵² + 2⁵³ ≈ 2^{53.6} memory access; 2⁵⁴ + 2⁵⁵ ≈ 2^{55.6} 64-bit operations

Gaëtan Leurent (Inria)

(Symmetric) Cryptanalysis in Practice

Conclusion

Improvement: Time-Data Tradeoff

- Classical technique: target one state out of many [Babbage, 1995] [Golic, 1997]
- We target the first 753 states; 753 keystreams of length 12047
 - (A⁽⁰⁾, B⁽⁰⁾, C⁽⁰⁾, D⁽⁰⁾) produces keystream z⁽⁰⁾z⁽¹⁾z⁽²⁾...
 - (A⁽¹⁾, B⁽¹⁾, C⁽¹⁾, D⁽¹⁾) produces keystream z⁽¹⁾z⁽²⁾z⁽³⁾ ...
 - (A⁽²⁾, B⁽²⁾, C⁽²⁾, D⁽²⁾) produces keystream z⁽²⁾z⁽³⁾z⁽⁴⁾ ...
- Guess 11 bits of A and 10 bits of D
 - Write $w^{(i)} = \text{Gen}^{(i)}_A(A) \oplus \text{Gen}^{(i)}_D(D)$ as a polynomial in the remaining variables (19+20)
- ▶ Look for masks m (length 12047) such that $m \cdot w^{(0)} \dots w^{(12046)}$ is constant
 - ► $\sum_{i=1}^{4} {19 \choose i} + {20 \choose i} = 11230$ non-constant monomials
 - Using linearisation, space of good masks of dimension 12047 11230 = 817

► Filter masks such that m · z⁽⁰⁾ ... z⁽¹²⁰⁴⁶⁾ = m · z⁽¹⁾ ... z⁽¹²⁰⁴⁷⁾ = m · z⁽²⁾ ... z⁽¹²⁰⁴⁸⁾ = ···

Space of good masks of dimension 817 – 752 = 65 (752 constraints)

 $\phi(\mathsf{B}^{(s)})$

Build linear function L from 64 independent masks:

►
$$z^{(s)}z^{(s+1)} \dots = \operatorname{Gen}_{D}(D^{(s)}) \oplus \operatorname{Gen}_{A}(A^{(s)}) \oplus \operatorname{Gen}_{B}(B^{(s)}) \oplus \operatorname{Gen}_{C}(C^{(s)})$$

► $L(z^{(s)}z^{(s+1)}...) = L(Gen_D(D^{(s)})) \oplus L(Gen_A(A^{(s)})) \oplus L(Gen_B(B^{(s)})) \oplus L(Gen_C(C^{(s)}))$

independent of s constant

 $\psi(\mathbf{C}^{(s)})$

SHA-1 Chose

GSM security 000000000000000000 GEA

Conclusion

Hybrid Meet-in-the-Middle with Time-Data Tradeoff

Meet-in-the-Middle attack / collision search

For each 2²¹ (a, d) (partial guess of A and D)
 0 Build functions φ_{a,d}, ψ_{a,d}, ξ_{a,d} such that φ_{a,d}(B) ⊕ ψ_{a,d}(C) = ξ_{a,d}(z_sz_{s+1} ...)
 1 For all 2³² B, compute φ_{a,d}(B) and store in a hash table
 2 For all 2³³ C, compute ξ_{a,d}(z) ⊕ ψ_{a,d}(C) and look up in table
 If there is match, recover key candidate from a, B, C, d

- On average, only $2^{21}/753 \approx 2^{11.4}$ guesses until it matches one of the 753 targets
- Complexity: $2^{11.4} \times 2^{33.6} \approx 2^{45}$ memory access; $4 \times 2^{45} \approx 2^{47}$ 64-bit operations

CBC Security

SHA-1 Chosen-prefix Collisions

GSM security

GEA

Conclusion

Time-data tradeoff

- Complexity 2⁴⁵ with full frame (12800 bits)
- Tradeoff with fewer data (blue line)
- Better tradeoff with different attack: 4XOR (stars)
 [Amzaleg & Dinur, EC'22]

Gaëtan Leurent (Inria)

3C Security 0000000000000 HA-1 Chosen-prefix Collisions

GSM security

GEA

Conclusion

Usage and deprecation

- In 2011, large usage of GEA-1 and GEA-2
- GEA-1 deprecated in 2013
- ▶ In 2021, large usage of GEA-3 (also GEA-0 🕏)
 - Some operators use GEA-2 as main algorithm
 - One operator seen using GEA-1 sometimes

GEA-1 still implemented in recent phones!

- (iPhone 8, Galaxy S9, ...)
- We contacted GSMA and ETSI for responsible disclosure
 - New test-case to verify non-implementation of GEA-1
 - Plans to deprecate GEA-2

[Nohl & Melette]

[umlaut report]

HA-1 Chosen-prefix Collisions

 Conclusion

GEA-1 and GEA-2 Summary

- GEA-1 attack completely practical
 - Only 64 bits of known keystream, 2⁴⁰ operations
 - 2.5 hours on a laptop today, practical in the 2000's
- GEA-2 attack borderline practical
 - Full frame known (12800 bits), 2⁴⁵ operations
 - 4 months on a server

In the early 2000's, internet traffic was mostly in the clear (low TLS use)

Today, breaking GEA gives some metadata

Semi-active downgrade attack

[Barkan, Biham & Keller, C'03]

- Passive: Record frames encrypted with GEA-3
- Active: force phone to use GEA-1 with same key, recover key

HA-1 Chosen-prefix Collisions

GSM security

 Conclusion

GEA-1 and GEA-2 Summary

- GEA-1 attack completely practical
 - Only 64 bits of known keystream, 2⁴⁰ operations
 - 2.5 hours on a laptop today, practical in the 2000's
- GEA-2 attack borderline practical
 - Full frame known (12800 bits), 2⁴⁵ operations
 - 4 months on a server
- ▶ In the early 2000's, internet traffic was mostly in the clear (low TLS use)
- Today, breaking GEA gives some metadata
- Semi-active downgrade attack
 - Passive: Record frames encrypted with GEA-3
 - Active: force phone to use GEA-1 with same key, recover key

[Barkan, Biham & Keller, C'03]

Conclusion

- Cryptography is usually a strong basis for security, but we need public cryptanalysis to assess primitives
- Security by obscurity does not work
 - A5/1 GEA-1 Mifare A5/2 ► GEA-2 Keelog
- Broken ciphers must be deprecated as soon as possible
 - RC4 MD5 SHA-1
- **Demonstration** of practical attacks helps
- Mismatch between security assumption and primitive choice
 - Security models, data limits, ...
- Backdoors affect the security of everybody
 - GEA-1 used outside "export" countries
 - Downgrade attack as long as weak algorithm are implemented
 - Other example: Logjam, exploiting TLS "export" ciphersuites

DVDCSS

Cyber in NancyJuly 5, 2022

71 / 71

Conclusion