Improving Generic Attacks Using Exceptional Functions

Xavier Bonnetain¹ Rachelle Heim Boissier² Gaëtan Leurent³ André Schrottenloher⁴

¹Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

²Université Paris-Saclay, UVSQ., CNRS, Laboratoire de mathématiques de Versailles, Versailles, France

³Inria, Paris, France

⁴Univ Rennes, Inria, CNRS, IRISA, Rennes, France

CRYPTO 2024

Generic attacks in symmetric cryptography

Security evaluation: classical approach

- Security proofs for modes of operation and constructions
 - Model primitives as ideal: PRF, Random Oracle
- Cryptanalysis of primitives
 - Evaluates whether concrete primitives behave like ideal model

- Generic attacks target the mode without using properties of the primitives
 - Complementary to security proofs: gap between attacks and proofs
- ► Typical situation: birthday bound security
 - Security proof up to $2^{n/2}$ operations, with *n* the state size
 - ► Simple matching attack for simple security properties (e.g. collisions)
 - No matching attack for some more complex properties (e.g. preimage, state-recovery)

Generic attacks in symmetric cryptography

Security evaluation: classical approach

- Security proofs for modes of operation and constructions
 - Model primitives as ideal: PRF, Random Oracle
- Cryptanalysis of primitives
 - Evaluates whether concrete primitives behave like ideal model

Cryptanalysis of modes of operation and constructions

- Generic attacks target the mode without using properties of the primitives
 - Complementary to security proofs: gap between attacks and proofs
- Typical situation: birthday bound security
 - ▶ Security proof up to $2^{n/2}$ operations, with n the state size
 - ► Simple matching attack for simple security properties (e.g. collisions)
 - No matching attack for some more complex properties (e.g. preimage, state-recovery)

Simple example: Pollard rho

Pollard's rho

- ▶ Given a public *n*-bit function $h: \{0,1\}^n \rightarrow \{0,1\}^n$
- Find x, y with h(x) = h(y)
- 1 Iterate $h: x_i = h(x_{i-1})$
- 2 Eventually, sequence cycles
- 3 Detect cycle, locate collision (Floyd, Brent)

Complexity evaluation

- Assume average properties of random functions
 - ▶ Time to reach cycle (tail length) $\mathcal{O}(2^{n/2})$
 - ightharpoonup Cycle length $\mathcal{O}(2^{n/2})$

Average properties of random functions

► Graph of a random function: trees connected to cycles

Expected properties of a random mapping over 2ⁿ points

[Flajolet & Odlyzko, EC'89]

- # Components: n log(2)/2
- \blacktriangleright # Cyclic nodes: $\sqrt{\pi/2} \cdot 2^{n/2}$
- ► Tail length: $\sqrt{\pi/8} \cdot 2^{n/2}$
- ► Cycle length: $\sqrt{\pi/8} \cdot 2^{n/2}$
- ► Largest tree: 0.48 · 2ⁿ
- ► Largest component: 0.76 · 2ⁿ

Attacks using the giant tree

Random functions have a giant component and a giant tree

Expected properties of a random mapping over 2ⁿ points

[Flajolet & Odlyzko, EC'89]

▶ Largest tree: 0.48 · 2ⁿ

► Largest component: 0.76 · 2ⁿ

- Assume iteration of fixed public function, with secret state
- ▶ With constant probability, a random point is in the giant tree
- In particular, the first cyclic point is the root of the giant tree
 - Used in attacks against HMAC

[L, Peyrin & Wang, Asiacrypt'13]

Exceptional properties of random functions

With some probability, giant tree is connected to small cycle

Exceptional properties of a random mapping over 2ⁿ points

[DeLaurentis, Crypto'87]

- ► Giant component has a cycle of length $\leq 2^{\mu}$ with probability $\Theta(2^{\mu-n/2})$
- ▶ Assume iteration of public function, with chosen parameter $h_{ii}: \{0,1\}^n \to \{0,1\}^n$
- Find parameter β such that h_{β} has giant component with cycle length $\leq 2^{\mu}$
 - ► Complexity 2^{n-μ} [Gilbert, Heim Boissier, Khati & Rotella, EC'23]
- \blacktriangleright With constant probability, a random point reaches the small cycle of $h_{\mathcal{B}}$

- ► Encryption XORs message inside state, extracts ciphertext
- Decryption replaces state with ciphertext
- ► Tag verification iterates public function with parameter
 - \triangleright With a fixed ciphertext β, iteration of a fixed function

$$\begin{split} h_{\beta}: \{0,1\}^n &\rightarrow \{0,1\}^n \\ x_i &\mapsto x_{i+1} = P(\beta \parallel x_i) \end{split}$$

- Encryption XORs message inside state, extracts ciphertext
- Decryption replaces state with ciphertext
- Tag verification iterates public function with parameter
 - With a fixed ciphertext β , iteration of a fixed function

$$\begin{split} h_{\beta} : \{0,1\}^n &\rightarrow \{0,1\}^n \\ x_i &\mapsto x_{i+1} = P(\beta \parallel x_i) \end{split}$$

- Encryption XORs message inside state, extracts ciphertext
- Decryption replaces state with ciphertext
- ► Tag verification iterates public function with parameter
 - With a fixed ciphertext β , iteration of a fixed function

$$\begin{split} h_{\beta}: \{0,1\}^n &\rightarrow \{0,1\}^n \\ x_i &\mapsto x_{i+1} = P(\beta \parallel x_i) \end{split}$$

- Encryption XORs message inside state, extracts ciphertext
- Decryption replaces state with ciphertext
- ► Tag verification iterates public function with parameter
 - With a fixed ciphertext β , iteration of a fixed function

$$\begin{split} h_{\beta}: \{0,1\}^n &\rightarrow \{0,1\}^n \\ x_i &\mapsto x_{i+1} = P(\beta \parallel x_i) \end{split}$$

Offline

Online

Forgery attack

[Gilbert, Heim Boissier, Khati & Rotella, EC'23]

- $\overline{0}$ Find cycle \mathcal{C} of h_{β} , cycle length 2^{μ}
 - ► Compute $T = P(\beta \parallel x^*)$ with arbitrary $x^* \in C$
- 1 Make forgery attempt (β^L, T) , with $L \ge 2^{n/2}$
 - ightharpoonup With high probability, final state in cycle ${\cal C}$
 - With probability $\approx 2^{-\mu}$, final state matches x^* and tag is valid

Using arbitrary **\beta**

- ▶ Precomputation cost $2^{n/2}$
- ► Cycle length $2^{\mu} \approx 2^{n/2}$
- ► Complexity $2^{n/2+\mu} = 2^n$

Using small cycle ($\mu \ll n/2$)

- Precomputation cost $2^{n-\mu}$
- ▶ Balance $2^{n-\mu}$ and $2^{n/2+\mu}$
- ► Complexity 2^{3n/4}

 $(\mu = n/4)$

Our results

We extend the use of exceptional functions for cryptanalysis

- 1 New technique nesting exceptional functions
 - Improved attack on duplex AEAD
 - Alternative attacks on hash combiners
- Revisit attack based on average properties of random functions, improve them using exceptional properties of random functions
 - Improved attack on hash combiners (XOR, zipper, hash-twice)

Outline

▶ We extend the use of exceptional functions for cryptanalysis

- 1 New technique nesting exceptional functions
 - ► Improved attack on duplex AEAD
 - ► Alternative attacks on hash combiners
- Revisit attack based on average properties of random functions, improve them using exceptional properties of random functions
 - Improved attack on hash combiners (XOR, zipper, hash-twice)

- Find β such that h_{β} has small main cycle
- ▶ Build function from the cycle to the cycle: $g_{\beta,\gamma}: x \mapsto h_{\beta}^{L}(h_{\gamma}(x))$, with $L \ge 2^{n/2}$
 - $\blacktriangleright h_{v}$ randomizes state
 - Iteration of h_B reaches main cycle with high probability

 x_{3} x_{4} x_{5} x_{1} x_{1} x_{1}

Graph of g_{β,}ν

Find y such that $g_{\beta,y'}$ has small main cycle

- ightharpoonup Find eta such that h_{eta} has small main cycle
- ▶ Build function from the cycle to the cycle: $g_{\beta,\gamma}: x \mapsto h_{\beta}^{L}(h_{\gamma}(x))$, with $L \ge 2^{n/2}$
 - $\blacktriangleright h_{v}$ randomizes state
 - Iteration of h_{β} reaches main cycle with high probability

 x_3 x_4 x_5 x_6

Graph of $g_{\beta, \mathbf{v}}$

Find γ such that $g_{\beta,\gamma'}$ has small main cycle

- Find β such that h_{β} has small main cycle
- ▶ Build function from the cycle to the cycle: $g_{\beta,v}: x \mapsto h_{\beta}^{L}(h_{v}(x))$, with $L \ge 2^{n/2}$
 - h_{v} randomizes state
 - lteration of h_{β} reaches main cycle with high probability

Find γ such that $g_{\beta,\gamma'}$ has small main cycle

- Find β such that h_{β} has small main cycle
- ▶ Build function from the cycle to the cycle: $g_{\beta,\gamma}: x \mapsto h_{\beta}^{L}(h_{\gamma}(x))$, with $L \ge 2^{n/2}$
 - $\blacktriangleright h_{v}$ randomizes state
 - Iteration of h_{β} reaches main cycle with high probability

Graph of h_{β}

Find γ such that $g_{\beta \gamma'}$ has small main cycle

Graph of $g_{\beta,\gamma}$

- ightharpoonup Find eta such that h_{eta} has small main cycle
- ▶ Build function from the cycle to the cycle: $g_{\beta,\gamma}: x \mapsto h_{\beta}^{L}(h_{\gamma}(x))$, with $L \ge 2^{n/2}$
 - $\blacktriangleright h_{v}$ randomizes state
 - Iteration of h_{β} reaches main cycle with high probability

Graph of h_{β}

Find γ such that $g_{\beta,\gamma'}$ has small main cycle

Graph of g_{β,γ}

Improved forgery attack

▶ Build ciphertext $(y \parallel \beta^L)^{\Lambda}$, with $L \ge 2^{n/2}$, $\Lambda > 2^{\mu/2}$

- Find β such that h_{β} has cycle \mathcal{C} of length 2^{μ} Find γ such that $g_{\beta,\gamma}$ has cycle \mathcal{C}' of length 2^{ν}
 - Compute $T = P(\beta \parallel x^*)$ with arbitrary $x^* \in C'$
- 1 Make forgery attempt $(y \parallel \beta^L)^{\Lambda}$, with $L \ge 2^{n/2}$, $\Lambda > 2^{\mu/2}$
 - ▶ With high probability, final state in cycle *C'*
 - With probability $\approx 2^{-\mu}$, final state matches x^* and tag is valid
- ► Balance $2^{n-\mu}$, $2^{n/2} \times 2^{\mu-\nu}$, $2^{n/2+\mu/2} \times 2^{\nu}$
- Optimal complexity: $2^{5n/7} \approx 2^{0.71n}$

 $2^{n-\mu}$

 $2^{n/2} \times 2^{\mu-\nu}$

2n/2+μ/2

Z.. 1 = 1.1.

× 2 V

= 2n/7, v = n/14

Improved forgery attack

▶ Build ciphertext $(\gamma \parallel \beta^L)^{\Lambda}$, with $L \ge 2^{n/2}$, $\Lambda > 2^{\mu/2}$

- Find β such that $h_β$ has cycle C of length $2^μ$ Find γ such that $g_{β,γ}$ has cycle C' of length $2^ν$
 - ► Compute $T = P(\beta \parallel x^*)$ with arbitrary $x^* \in \mathcal{C}'$
- **1** Make forgery attempt $(y || β^L)^\Lambda$, with $L ≥ 2^{n/2}$, $Λ > 2^{\mu/2}$
 - ▶ With high probability, final state in cycle *C'*
 - With probability $\approx 2^{-\mu}$, final state matches x^* and tag is valid
- ► Balance $2^{n-\mu}$, $2^{n/2} \times 2^{\mu-\nu}$, $2^{n/2+\mu/2} \times 2^{\nu}$
- Optimal complexity: $2^{5n/7} \approx 2^{0.71n}$

 $2^{n-\mu}$

 $2^{n/2} \times 2^{\mu-\nu}$

 $2^{n/2+\mu/2}$

 $\mu = 2n/7, v = n/14$

×2^v

More precomputation

[Peyrin&Wang, EC'14]

- - Precompute and store 2^t points in the graph of h_β
 A chain β^L can be evaluated with only 2^{n-t} operations

Find γ such that $g_{\beta,\gamma}$ has cycle C' of length 2^{ν}

- ► Compute $T = P(\beta \parallel x^*)$ with arbitrary $x^* \in \mathcal{C}'$
- 1 Make forgery attempt $(y \parallel \beta^L)^{\Lambda}$, with $L \ge 2^{n/2}$, $\Lambda > 2^{\mu/2}$
 - With high probability, final state in cycle C'
 - ▶ With probability $\approx 2^{-\mu}$, final state matches x^* and tag is valid
- Balance 2^t , $2^{n-\mu}$, $2^{n-t} \times 2^{\mu-\nu}$, $2^{n/2+\mu/2} \times 2^{\nu}$
- Optimal complexity: $2^{2n/3} \approx 2^{0.67n}$

 $2^{n-t} \times 2^{\mu-\nu}$

 $2n/2+\mu/2$

 $\times 2^{\nu}$

t = 2n/3, $\mu = n/3$, $\nu = 0$

Nesting exceptional functions: summary

- ▶ Assume iteration of public function, with chosen parameter $h_{ij}: \{0,1\}^n \to \{0,1\}^n$
- ▶ With $2^{2n/3}$ operations, construct sequence of $2^{2n/3}$ parameters such that final state is a known fixed value with high probability (v = 0)

Applications

- Forgery attack against duplex AEAD with complexity $2^{2n/3}$ (previously $2^{3n/4}$)
 - Does not violate security proof, but some proposals had wrong parameters
- ▶ Provides alternative attacks on HMAC, zipper hash, hash twice, ...
 - Less efficient than best known attacks

(improved attacks in next section)

Outline

▶ We extend the use of exceptional functions for cryptanalysis

- New technique nesting exceptional functions
 - Improved attack on duplex AEAD
 - Alternative attacks on hash combiners
- Revisit attack based on average properties of random functions, improve them using exceptional properties of random functions
 - ► Improved attack on hash combiners (XOR, zipper, hash-twice)

Preimage attack against Xor combiner

[L & Wang, EC'15]

$$H(M) = H_1(M) \oplus H_2(M)$$

trategy:

- 1 Structure to control H_1 and H_2 independently:
 - ► Sets of states $A = \{A_i\}$, $B = \{B_k\}$
 - ► Set of messages {M_{ik}} with

$$h_1^*(\mathbf{M}_{jk}) = A_j$$
$$h_2^*(\mathbf{M}_{ik}) = B_k$$

- 2 Preimage search for \overline{H} :
 - For random blocks w, match $\{h_1(A_i, w)\}$ and $\{h_2(B_i, w) \oplus H\}$
 - If there is a match (j, k): Get \mathbf{M}_{ik} , preimage is $M = \mathbf{M}_{ik} \parallel w$
 - Complexity $\mathcal{O}(2^n / \min\{|\mathcal{A}|, |\mathcal{B}|\})$

Preimage attack against Xor combiner

[L & Wang, EC'15]

$$H(M) = H_1(M) \oplus H_2(M)$$

$$\begin{array}{c} H_2 \\ IV_2 & \Leftrightarrow B_3 \\ & \Rightarrow B_1 \\ & \Rightarrow B_0 \end{array}$$

Strategy:

- **I** Structure to control H_1 and H_2 independently:
 - Sets of states $\mathcal{A} = \{A_i\}, \mathcal{B} = \{B_k\}$
 - ► Set of messages $\{\mathbf{M}_{ik}\}$ with

$$h_1^*(\mathbf{M}_{jk}) = A_j$$
$$h_2^*(\mathbf{M}_{ik}) = B_k$$

- 2 Preimage search for \overline{H} :
 - For random blocks w, match $\{h_1(A_i, w)\}$ and $\{h_2(B_i, w) \oplus H\}$
 - If there is a match (j, k): Get \mathbf{M}_{ik} , preimage is $M = \mathbf{M}_{ik} \parallel w$
 - ► Complexity $\mathcal{O}(2^n / \min\{|\mathcal{A}|, |\mathcal{B}|\})$

Preimage attack against Xor combiner

[L & Wang, EC'15]

Strategy:

- 1 Structure to control H_1 and H_2 independently:
 - ► Sets of states $A = \{A_i\}$, $B = \{B_k\}$
 - ► Set of messages $\{\mathbf{M}_{ik}\}$ with

$$h_1^*(\mathbf{M}_{jk}) = A_j$$
$$h_2^*(\mathbf{M}_{ik}) = B_k$$

- 2 Preimage search for \overline{H} :
 - For random blocks w, match $\{h_1(A_i, w)\}$ and $\{h_2(B_k, w) \in \overline{H}\}$
 - If there is a match (j, k): Get $\mathbf{M}_{ik'}$ preimage is $M = \mathbf{M}_{ik} \parallel w$
 - ► Complexity $\mathcal{O}(2^n / \min\{|\mathcal{A}|, |\mathcal{B}|\})$

Cycle-based attack

- ▶ Hard part: build structure to control H_1 and H_2 independently
- Several techniques have been proposed (interchange, deep iterates, multicycles, ...)
- ▶ In this talk: alternative presentation of "multicycles"

[Bao, Wang, Guo, Gu, C'17]

• Using a long message repeating a fixed block $M = \beta^{\lambda}$, we iterate fixed functions:

$$\phi: x \mapsto h_1(x, \beta)$$

$$\psi: x \mapsto h_2(x, \beta)$$

Cycle-based attack

- Use cyclic nodes as end-point:

 - A = H₁ cycle, length 2^{μ₁}
 B = H₂ cycle, length 2^{μ₂}
- ightharpoonup With suitable naming, for λ large enough:

$$h_1^\star(\beta^\lambda) = A_{\lambda \bmod 2^{\mu_1}} \quad h_2^\star(\beta^\lambda) = B_{\lambda \bmod 2^{\mu_2}}$$

To reach (A_i, B_k) , use Chinese Remainder Theorem

$$\begin{cases} h_1^*(\beta^{\lambda}) = A_j \\ h_2^*(\beta^{\lambda}) = B_k \end{cases} \iff \begin{cases} \lambda \mod 2^{\mu_1} = i \\ \lambda \mod 2^{\mu_2} = j \end{cases}$$

- Note: μ_1 , μ_2 are not integers
- \triangleright λ uniformly distributed in range of size $2^{\mu_1 + \mu_2}$

Complexity 2^{μ} Proba $2^{\mu_1 + \mu_2 - n}$

Complexity analysis

Preimage search, with maximal length 2^l

- For random w, match $\{h_1(A_i, w)\}$ and $\{h_2(B_k, w)\} \oplus \overline{H}\}$
- If there is a match (j, k), Find λ such that $h_1^*(\beta^{\lambda}) = A_{j'}, h_2^*(\beta^{\lambda}) = B_k$ using CRT
- ► If $\lambda < 2^{\ell}$, return $\beta^{\lambda} \parallel w$

Proba 2^{*l*-*µ*₁-*µ*₂}

 $ightharpoonup 2^{n-\ell}$ iterations, total complexity $2^{n-\ell+\mu}$

Using arbitrary B

- ► Cycle length $\mu_1 \approx \mu_2 \approx n/2$
- ► Balance $2^{n-\ell+\mu}$ and 2^{ℓ}
- ▶ Optimal tradeoff $\ell = 3n/4$
- Complexity $2^{3n/4} = 2^{0.75n}$

Using small cycles $\mu \ll n/2$

- ► Precomputation cost 2^{3n/2-2µ}
- ► Balance $2^{3n/2-2\mu}$, $2^{n-\ell+\mu}$ and 2^{ℓ}
- ▶ Optimal tradeoff $\ell = 7n/10$, $\mu = 2n/5$
- Complexity $2^{7n/10} = 2^{0.7n}$

Complexity 2^{μ} Proba $2^{\mu_1 + \mu_2 - n}$

Proba $2^{\ell-\mu_1-\mu_2}$

Complexity analysis

Preimage search, with maximal length 2^l

- For random w, match $\{h_1(A_i, w)\}$ and $\{h_2(B_k, w)\} \oplus \overline{H}\}$
- If there is a match (j, k), Find λ such that $h_1^*(\beta^{\lambda}) = A_i$, $h_2^*(\beta^{\lambda}) = B_k$ using CRT
- ► If $\lambda < 2^{\ell}$, return $\beta^{\lambda} \parallel w$
- ► $2^{n-\ell}$ iterations, total complexity $2^{n-\ell+\mu}$

Using arbitrary β

- ► Cycle length $\mu_1 \approx \mu_2 \approx n/2$
- ▶ Balance $2^{n-\ell+\mu}$ and 2^{ℓ}
- ▶ Optimal tradeoff $\ell = 3n/4$
- Complexity $2^{3n/4} = 2^{0.75n}$

Using small cycles $\mu \ll n/2$

- ► Precomputation cost 2^{3n/2-2µ}
- ► Balance $2^{3n/2-2\mu}$, $2^{n-\ell+\mu}$ and 2^{ℓ}
- ► Optimal tradeoff $\ell = 7n/10$, $\mu = 2n/5$
- Complexity $2^{7n/10} = 2^{0.7n}$

Hash combiners: summary

Exceptional functions with small main cycle improve the "multicycles" technique

Techniques	Complexity	Ref
Preimage on XOR combiner Interchange + Multicycles Interchange + Multicycles + Small cycles	$2^{11n/18} \approx 2^{0.611n}$ $2^{3n/5} = 2^{0.6n}$	[JC:BDGLW20] New
Second-preimage on zipper hash Multicollisions + Multicycles Multicollisions + Multicycles + Small cycles	$2^{3n/5} = 2^{0.6n}$ $2^{7n/12} = 2^{0.583n}$	[C:BWGG17] New
Second-preimage on hash-twice Interchange + Multicycles Interchange + Multicycles + Small cycles	$2^{13n/22} = 2^{0.591n}$ $2^{15n/26} = 2^{0.577n}$	[JC:BDGLW20] New
All Lower bound (security proof)	$2^{n/2} = 2^{0.5n}$	

▶ Bonus result: quantum 2nd-preimage on hash-twice (not using exceptional functions)