
Practical Key Recovery Attack
against Secret-IV Edon-R

Gaëtan Leurent

École Normale Supérieure – Département d’Informatique,
45 rue d’Ulm, 75230 Paris Cedex 05, France

Gaetan.Leurent@ens.fr

Abstract. The SHA-3 competition has been organized by NIST to se-
lect a new hashing standard. Edon-R was one of the fastest candidates
in the first round of the competition. In this paper we study the security
of Edon-R, and we show that using Edon-R as a MAC with the secret-
IV or secret-prefix construction is unsafe. We present a practical attack
in the case of Edon-R256, which requires 32 queries, 230 computations,
negligible memory, and a precomputation of 252. The main part of our
attack can also be adapted to the tweaked Edon-R in the same settings:
it does not yield a key-recovery attack, but it allows a selective forgery
attack.
This does not directly contradict the security claims of Edon-R or the
NIST requirements for SHA-3, since the recommended mode to build a
MAC is HMAC. However, we believe that it shows a major weakness in
the design.
Key words: Hash functions, SHA-3, Edon-R, MAC, secret IV, secret
prefix, key recovery.

1 Introduction

In 2005, a team of researchers led by X. Wang produced breakthrough attacks
against many widely used hash functions, including MD5 [12] and SHA-1 [11].
This has led NIST to call for a new hash function design, and to launch the
SHA-3 competition [7]. This competition has focused the attention of many
cryptographers, and NIST received 64 submissions. 51 designs were accepted to
the first round.

Edon-R was one of the fastest candidates in the first round of the competi-
tion. It has received some attention from the cryptographic community, resulting
in various attacks on the compression function. There is also a preimage attack
on the full hash function, but it requires of huge amount of memory making it
debatable.

In this paper we show a new attack on Edon-R, when used in the secret-IV
or secret-prefix MAC construction. This mode of operation is not claimed to be
secure by the designers, but our attack has no memory requirement, and is even
practical attack, while previous attacks are largely theoretical. Our approach
is similar to the one followed by Wang et al. who studied a similar MAC used

1



with SHA-1 [10]: we use a non-standard MAC to show weaknesses of the hash
function. Note that attacks on hash-based MACs are usually harder to build
than attacks on the hash function itself because part of the state is unknown.

Our attack was devised during the first round of the competition and it has
been made public before the selection of the second round candidates. Since then,
NIST selected 14 candidates for the second round of the competition, based on
the cryptanalytic results available at that time. Edon-R was not selected for
the second round.

1.1 MAC Constructions

A Message Authentication Code (MAC) is a symmetric signature algorithm.
The sender and the receiver share a secret key k, and each message M is sent
together with a short tag MACk(M). The receiver recomputes the tag on his
end, and checks whether the tag is correct. It should be hard for an adversary
to forge a message with a valid tag without knowing the secret key k. In this
paper we consider chosen message attacks, where the adversary has access to a
MAC oracle and can ask for the MAC of any message of his choice. He must
then produce a forge for a new message. We consider the following attacks, from
the strongest to the weakest:

Key recovery: After some interactions with the MAC oracle, the adversary
outputs the key k.

Universal forgery: After some interactions with the MAC oracle, the adver-
sary obtains enough information to compute the MAC of any message. This
is usually achieved by recovering an equivalent key which allow to compute
MACs as efficiently as the original key.

Selective forgery: The adversary is given a challenge message M∗ (possibly
in some prescribed set), and after some interaction with the MAC oracle, he
has to produce the MAC of M∗. Of course, the adversary is not allowed to
query the MAC of M∗.

Exitential forgery: After some interactions with the MAC oracle, the adver-
sary produce a forge of a new message of his choice.

We expect a good MAC algorithm to be secure against all these attacks, even
existential forgery. Complexity of generic attack against iterated MAC algorithm
are given in Table 1.

In this paper, we study MAC algorithms based on Edon-R. We consider two
MAC constructions, the secret-IV construction and the secret-prefix construc-
tion:

IV-MACk(M) = Edon-Rk(M)
SP-MACk(M) = Edon-R(k‖M)

The secret-IV method uses the key as the initial value in the iterative construc-
tion of Edon-R, while the secret-prefix method prepends the key to the message
to be authenticated. Both constructions are quite similar, and the basic idea is

2



Table 1. Complexity of generic attacks against iterated MAC. The key-length
n is assumed to be equal to the tag length, while m is the size of the inner state.

Attack Complexity

Key recovery 2n

Universal forgery 2n

Selective forgery 2n

Existential forgery min(2m/2, 2n) [9]

to randomize the state of the hash function with the key before mixing the
message into the state. The secret-IV construction is easier to analyse, but the
secret prefix construction is more practical because it does not require a modifi-
cation of the hash function; it can be used with any implementation of Edon-R.
For efficiency purpose, it is advisable to pad the key to a full block when using
SP-MAC.

This kind of construction is used in some old protocols, like RFC2069 [2]
(RFC2069 uses SP-MAC without padding the key to a full block). It is well
known that those constructions are weak, because length extension attacks can
be used for forgeries, but the key is not expected to leak. Moreover, Edon-R is
a wide-pipe design, so the length extension issue does not apply. In fact, if the
hash function is wide-pipe and the compression function is modeled as a random
oracle, those constructions are provably secure [1]. Therefore, breaking Edon-R
in this setting is expected be as hard a the generic complexities given in Table 1.

1.2 Road Map

Section 2 will describe Edon-R and discuss previous analysis. In Section 3, we
show how to use a pair a related queries to gather information on both the input
and the output of the compression function. The idea is similar to the length
extension attack against Merkle-Damgård hash functions. This reduces the key-
recovery problem to solving a small equation. In Section 4, we show how to solve
this equation. We use simple linear algebra techniques to identify truncated
differentials in the main operations of Edon-R, and this leads to an attack with
complexity 25n/8 using only two queries to the MAC oracle. In Section 5 we use
more queries to the MAC oracle to build more equations, and solve the equations
using a guess-and-determine technique. This gives a very efficient attack, which
is even practical in the case of Edon-R224/256. Finally, in Appendix A, we show
how to extend these results to attack against the secret-prefix construction, and
attacks against MACs based on the tweaked version of Edon-R.

2 Description of Edon-R

Edon-R is a wide-pipe iterative design, based on a compression function R,
with a final truncation T . The Edon-R family is based on two main designs:

3



Edon-R256 uses 32-bits words, while Edon-R512 uses 64-bit words. Let w
denote the size of the words, and n denote the output size (n = 8w). We give a
description of Edon-R where the variables are elements of (Fw

2 )8, i.e., 8-tuples
of w-bit words. The compression function is based on a quasi-group operation
∗, which take two inputs X and Y in (Fw

2 )8 and compute one output in (Fw
2 )8.

The quasi-group operation is just the sum of two permutations, and we will use
a permutation based description of Edon-R in this paper:

X ∗ Y = µ(X) + ν(Y )
= Q0(R0(P0(X))) +Q1(R1(P1(Y )))

where
– + is a component-wise addition modulo 2w (w is the word size);
– µ and ν are the permutations defining ∗; we rewrite then with Qi, Ri, Pi;
– P0 and P1 are linear over Z8

2w , each output word is the sum of five inputs;
– R0 and R1 are component-wise rotations of w-bit words;
– Q0 and Q1 are linear over (Fw

2 )8, each output word is the xor of three inputs;
– We identify Z8

2w and (Fw
2 )8 with the natural mapping between them;

– We also define µ̄(X [0], X [1], ...X [7]) = µ(X [7], X [6], ...X [0]).

Note that the quasi-group operation is very easy to invert: givenX andX∗Y ,
we can compute Y as ν−1(X ∗ Y − µ(X)).

The compression function takes as input 16 message (Mi,0 and Mi,1) words
and 16 words of chaining value (Hi,0 and Hi,1) and produces 16 words of new
chaining value (Hi+1,0 and Hi+1,1). The full compression function is described
in Figure 1. For more details, see [4].

2.1 Previous analysis of Edon-R
Previous work [5,6] has shown various weaknesses of the compression function:
– given Mi,0, Mi,1, Hi+1,0 and Hi+1,1, it is easy to compute Hi,0 and Hi,1;
– given Hi,0, Hi,1, Mi,0, and Hi+1,0, it is easy to compute Mi,1, and Hi+1,1;
– given Hi+1,1, Hi,0 and Mi,0, we can find a value of Hi,1, Hi+1,0, and Mi,1

with 2n/2 operations.

These results can be used to mount various attacks on the hash function:
– We can apply generic attacks against narrow-pipe hash functions: multi-

collisions, second preimages on long message, fixed points, ...
– There is a preimage attack with complexity 22n/3 and 22n/3 memory.

The preimage attack requires less computations than a generic attack, but due
to the large memory requirements, the machine to carry out this attack might be
more expensive than a machine to perform a parallel brute force, so it is unclear
whether this should be considered as an attack.

However, these results show that the compression function of Edon-R is
quite weak, and the security of Edon-R cannot be based on a security proof of
the Merkle-Damgård mode.

More recently, a work by Novotney and Ferguson [8] showed detectable biases
in the output of the compression function.

4



Mi,0 Mi,1

ν

�

X
(1)
0

ν

µ̄

�

ν X
(1)
1

µ

�Hi,1

X
(2)
0

ν

µ

�

µ X
(2)
1

µ

�Hi,0

X
(3)
0

µ

ν

�

ν X
(3)
1

ν

�

Hi+1,0 ν

µ̄

�

Hi+1,0 Hi+1,1

µ

Fig. 1. Edon-R compression function.

2.2 Our Results

We present a new attack on the compression which allow to recover the full
chaining value when half of the input chaining value and half of the output
chaining value are known:

– given Mi,0, Mi,1, Hi,1 and Hi+1,1, we can compute Hi,0 and Hi+1,0.

5



In this paper we will describe two attacks: one that requires only two queries
and a lot of computations, and a second with more queries and a practical
complexity:

Queries Time Memory Precomputation

Edon-R224/256 2 2160 - -
Edon-R224/256 32 ' 230 - 252

Edon-R384/512 2 2320 - -
Edon-R384/512 32 ' 232 - 2100

The attack on the compression function can be used to mount the following
attacks on MAC constructions, with the same complexities as the attack on the
compression function:

– A key-recovery attack against secret-IV Edon-R;
– A universal forgery attack against secret-prefix Edon-R when the key is

padded to full block;
– A selective forgery attack against secret-prefix Edon-R if the key is not

padded to a full block (we can attack any message such that k‖M takes
more than one block after the padding);

– A selective forgery attack against the secret-prefix and secret-IV construc-
tions when used with the tweaked Edon-R (we can attack any message that
include a valid padding).

Our attacks only needs a few queries and negligible memory. They can easily
be parallelized. Those attacks are the first attacks on the full Edon-R to clearly
beat parallel generic attacks.

3 IV Recovery Using Related Queries

The first step of the IV-recovery attack is to gather information about the chain-
ing values. We will make two calls to the MAC oracle, with two related messages,
such that after the padding step, the first message is a prefix of the second one.
The first message M is chosen arbitrarily such that after the padding it fits in
one block pad(M). The second message M ′ has pad(M) as its first block, and
has to fit in two blocks after the padding. This is similar to the length exten-
sion attack on narrow-pipe hash function. Applied to a wide-pipe design such as
Edon-R, this gives us some information on the input and output of the second
compression function (see Fig 2):

– M1,0 and M1,1 are known;
– H1,1 is known;
– H2,1 is known.

We will show how to recover H1,0. Then H0,0 and H0,1 can be recovered from
H1,0, H1,1 and M0,0,M0,1 because the compression function of Edon-R is easy
to invert [5]. Since there are 8 unknown words in the input of the compression

6



H0,1

H0,0

M0,1

M0,0

R
H1,1

H1,0
T

H1,1

H0,1

H0,0

M0,1

M0,0

R
H1,1

H1,0

M1,1

M1,0

R
H2,1

H2,0
T

H2,1

Fig. 2. The first message pad(M) = M0,0M0,1 allow to recover H1,1 while the
second message pad(M ′) = M0,0M0,1M1,0M1,1 allows to recover H2,1.

function (H1,0) and we know 8 words of the output of the compression function
(H2,1), we expect one solution on average. In this setting, a preimage attack will
be able to recover the value of H1,0 and not merely a value that gives the same
output.

If we look at the description of the compression function [4], we have:

H2,1 = H2,0 ∗X(3)
1

= (M1,0 ∗X(3)
0 ) ∗ (X(2)

1 ∗X(3)
0 )

= (µ̄(M1,0) + ν(X(3)
0 )) ∗ (µ(X(2)

1 ) + ν(X(3)
0 ))

= (U + C0) ∗ (U + C1)

where U = ν(X(3)
0 ) is unknown, and C0 = µ̄(M1,0), C1 = µ(X(2)

1 ) are known
constants.

If we are able to solve the equation H = (U + C0) ∗ (U + C1) where U
is the unknown, then we can recover X(3)

0 = ν−1(U), and this will give us
H1,0 = ν−1(X(3)

0 − µ(X(2)
0 )).

4 Solving the equation H = (U + C0) ∗ (U + C1)

The main step of the attack is to solve the equation

H = (U + C0) ∗ (U + C1)
= Q0(R0(P0(U + C0))) +Q1(R1(P1(U + C1)))

All the variables are 8-tuples of w bit words, and U is the unknown. To solve
this equation, we will express U over a basis of Z8

2w such that some of the basis

7



vectors do not affect some words of (U +C0) ∗ (U +C1). Then we can solve the
equation more efficiently than by brute force because we do not need to explore
the full space.

More precisely, P0, P1 are defined by the following matrices over Z2w (i.e.,
the sums are modular additions):

P0 =

266666666666666664

1 1 1 0 1 0 0 1
1 1 0 1 1 0 0 1
1 1 0 0 1 0 1 1
0 0 1 1 0 1 1 1
0 1 1 1 0 1 1 0
1 0 1 1 1 1 0 0
1 1 0 0 0 1 1 1
0 0 1 1 1 1 1 0

377777777777777775
P1 =

266666666666666664

1 1 1 0 0 1 0 1
1 1 0 1 1 0 1 0
1 1 1 1 0 1 0 0
0 0 1 1 1 0 1 1
1 1 0 1 1 1 0 0
0 0 1 0 1 1 1 1
0 1 1 0 0 1 1 1
1 0 0 1 1 0 1 1

377777777777777775
We will use three vectors U0, U1, U2 in the kernels of some sub-matrices of P0

and P1:

U0 =
[

0 0 0 0 0 0 1 −1
]T

U1 =
[

2 2 2 2 231 − 3 231 − 3 0 231 − 1
]T

U2 =
[

1 0 0 0 231 − 1 231 0 231
]T

Then we have (the question marks represent values for which we do not have
any useful information):

P0 · U0 =
[
? ? 0 0 ? 0 0 ?

]T
P1 · U0 =

[
? ? 0 0 0 0 0 0

]T (1)

P0 · U1 =
[
? ? 0 0 ? 0 0 ?

]T
P1 · U1 =

[
? ? ? 0 0 ? 0 0

]T (2)

P0 · U2 =
[
0 0 0 0 ? 0 ? ?

]T
P1 · U2 =

[
? ? ? ? 0 ? 0 0

]T (3)

Q0, Q1 are defined by the following matrices over Fw
2 (i.e., the sums are

exclusive or):

Q0 =

266666666666666664

1 1 0 0 1 0 0 0
1 0 0 0 1 0 0 1
0 1 0 0 0 0 1 1
0 0 1 1 1 0 0 0
1 1 0 0 0 0 0 1
0 0 0 1 0 1 1 0
0 0 1 0 0 1 1 0
0 0 1 1 0 1 0 0

377777777777777775
Q1 =

266666666666666664

1 1 0 0 0 1 0 0
0 0 1 0 0 0 1 1
1 1 0 1 0 0 0 0
1 0 0 1 1 0 0 0
0 1 1 0 0 1 0 0
0 0 0 1 1 0 1 0
0 0 1 0 0 1 0 1
0 0 0 0 1 0 1 1

377777777777777775
Due to the positions of the zeros in Pi · Uj , we have, for all α, β ∈ Z2w :

Q0(R0(P0(X + αU0)))⊕Q0(R0(P0(X))) =
[
? ? ? ? ? 0 0 0

]T (4)

Q0(R0(P0(X + αU1)))⊕Q0(R0(P0(X))) =
[
? ? ? ? ? 0 0 0

]T (5)

Q0(R0(P0(X + αU2)))⊕Q0(R0(P0(X))) =
[
? ? ? ? ? ? ? 0

]T (6)

8



Q1(R1(P1(Y + βU0)))⊕Q1(R1(P1(Y ))) =
[
? ? ? ? ? 0 0 0

]T (7)

Q1(R1(P1(Y + βU1)))⊕Q1(R1(P1(Y ))) =
[
? ? ? ? ? 0 ? 0

]T (8)

Q1(R1(P1(Y + βU2)))⊕Q1(R1(P1(Y ))) =
[
? ? ? ? ? ? ? 0

]T (9)

This proves that the vectors U0, U1, U2 do not affect some of the output words.
This property can be seen as a truncated differential for the ∗ operation:

(X + αU0) ∗ (Y + βU0)⊕X ∗ Y =
[
? ? ? ? ? 0 0 0

]T (10)

(X + αU1) ∗ (Y + βU1)⊕X ∗ Y =
[
? ? ? ? ? 0 ? 0

]T (11)

(X + αU2) ∗ (Y + βU2)⊕X ∗ Y =
[
? ? ? ? ? ? ? 0

]T (12)

This is a very important part of the attack, so let us explain in more detail
what equation (12) means. Using notations similar to the ones from [4], the last
output word of X ∗ Y is computed as:

(X ∗ Y )[7] = (T [2]
X ⊕ T

[3]
X ⊕ T

[5]
X ) + (T [4]

Y ⊕ T
[6]
Y ⊕ T

[7]
Y )

where

T
[2]
X = (X [0] +X [1] +X [4] +X [6] +X [7])≪ 8

T
[3]
X = (X [2] +X [3] +X [5] +X [6] +X [7])≪ 13

T
[5]
X = (X [0] +X [2] +X [3] +X [4] +X [5])≪ 22

T
[4]
Y = (Y [0] + Y [1] + Y [3] + Y [4] + Y [5])≪ 15

T
[6]
Y = (Y [1] + Y [2] + Y [5] + Y [6] + Y [7])≪ 25

T
[7]
Y = (Y [0] + Y [3] + Y [4] + Y [6] + Y [7])≪ 27

We now consider X ′ = X + αU2 and Y ′ = Y + βU2:

(X ′ ∗ Y ′)[7] = (T ′[2]X ⊕ T ′
[3]
X ⊕ T ′

[5]
X ) + (T ′[4]Y ⊕ T ′

[6]
Y ⊕ T ′

[7]
Y )

where

T ′
[2]
X = (X [0] + α+X [1] +X [4] + α(231 − 1) +X [6] +X [7] + α231)≪ 8

T ′
[3]
X = (X [2] +X [3] +X [5] + α231 +X [6] +X [7] + α231)≪ 13

T ′
[5]
X = (X [0] + α+X [2] +X [3] +X [4] + α(231 − 1) +X [5] + α231)≪ 22

T ′
[4]
Y = (Y [0] + β + Y [1] + Y [3] + Y [4] + β(231 − 1) + Y [5] + β231)≪ 15

T ′
[6]
Y = (Y [1] + Y [2] + Y [5] + β231 + Y [6] + Y [7] + β231)≪ 25

T ′
[7]
Y = (Y [0] + β + Y [3] + Y [4] + β(231 − 1) + Y [6] + Y [7] + β231)≪ 27

9



We see that the α and β terms cancels out:

T
[2]
X = T ′

[2]
X T

[3]
X = T ′

[3]
X T

[5]
X = T ′

[5]
X

T
[4]
Y = T ′

[4]
Y T

[6]
Y = T ′

[6]
Y T

[7]
Y = T ′

[7]
Y

and as a consequence (X ′∗Y ′)[7] = (X ∗Y )[7]. This works because U2 was chosen
in the kernel of the linear forms that define T [2]

X , T [3]
X , T [5]

X , T [4]
Y , T [6]

Y , and T [7]
Y .

Similarly, U1 is in the kernel of the linear forms involved in the computation of
(X∗Y )[5,7] and U0 is in the kernel of the linear forms involved in the computation
of (X ∗ Y )[5,6,7].

Thanks to this property, we can do an exhaustive search with early abort.
We extend U0, U1, U2 into a basis U0, U1, ...U7

1 of Z8
2w , and we will represent U

in this basis: U =
∑7

i=0 αiUi. We define V = (U + C0) ∗ (U + C1). Due to the
properties of U0, U1, U2, we know that:

– α0 has no effect on V [5], V [6] and V [7];
– α1 has no effect on V [5] and V [7];
– α2 has no effect on V [7].

The full algorithm is given by Algorithm 1 and is quite simple. We first iterate
over α3, α4, ...α7 and we filter the elements such that V = (U + C0) ∗ (U + C1)
matchesH on the last coordinates. If it does not match, we do not need to iterate
over α0, α1, α2 because this will not modify V [7], so we can abort this branch.
For the choices that match, we iterate over α2 and check V [5]. If it matches H [5],
we iterate over α1 and check V [6]. If it matches H [6], we can then iterate over
α0.

The time complexity is 25w = 25n/8:

– the first loop is executed 25w times;
– each matching reduces the number of candidates to 24w;
– each subsequent loop raises the number of candidates to 25w.

The memory requirements are negligible because we do not need to store a list of
candidate. We just perform a breath-first search and we prune the bad branches
to reduce the size of the tree.

Once we have recovered U = ν(X(3)
0 ), it is easy to invert the permutations

and recover X(3)
0 . From that we find H1,0 by inverting a quasi-group operation,

and we have all the variables of the compression function. We can then recover
the key H0,0, H0,1 by inverting the first compression function (it is easy when
the output and the message are known).
1 For instance, we can use:

U3 = [0, 0, 1, 0, 0, 0, 0, 0]T U5 = [0, 0, 0, 0, 1, 0, 0, 0]T U7 = [0, 0, 0, 0, 0, 0, 0, 1]T

U4 = [0, 0, 0, 1, 0, 0, 0, 0]T U6 = [0, 0, 0, 0, 0, 1, 0, 0]T

10



Algorithm 1 Solving H = (U + C0) ∗ (U + C1)
Input: C0, C1, H
Output: U
1: for all α3, α4, ...α7 ∈ Z2w do
2: U ←

P7
i=3 αiUi

3: V ← (U + C0) ∗ (U + C1)
4: if V [7] = H [7] then
5: for all α2 ∈ Z2w do
6: U ←

P7
i=2 αiUi

7: V ← (U + C0) ∗ (U + C1)
8: if V [5] = H [5] then
9: for all α1 ∈ Z2w do
10: U ←

P7
i=1 αiUi

11: V ← (U + C0) ∗ (U + C1)
12: if V [6] = H [6] then
13: for all α0 ∈ Z2w do
14: U ←

P7
i=0 αiUi

15: V ← (U + C0) ∗ (U + C1)
16: if V = H then
17: U is a solution

5 Using more queries

In this section, we improve this attack using more queries to the MAC oracle.
We gather more equations of the form H = (U+C0)∗ (U+C1), and this enables
us to mount a very efficient attack. In the case of Edon-R256, it requires about
32 queries and can recover the secret key with about 230 computations after a
precomputation of about 252 operations, which makes it a practical attack.

5.1 Building the queries

To get new equations, we will query the MAC oracle with new messages M (i)

so that pad(M) is a prefix of all the M (i)’s. Each query will give some equation
involving the same H1,0, and we will deduce an equation of the form H(i) =
(U + C

(i)
0 ) ∗ (U + C

(i)
1 ) as in the previous section. Remember that we have

U = ν(X(3)
0 ) = ν(ν(H1,0) + µ(X(2)

0 )). We will build our messages so that the
value of X(2)

0 is the same for all the M (i)’s, or equivalently, X(1)
0 is the same for

all the M (i)’s. This means that all the equations will involve the same U , and
recovering this U will allow to recover H1,0.

Let us assume that we have two such equations, and let us further assume
that C(i)

0 = C
(j)
0 . Then:

H(i) = Q0(R0(P0(U + C
(i)
0 ))) +Q1(R1(P1(U + C

(i)
1 )))

H(j) = Q0(R0(P0(U + C
(j)
0 ))) +Q1(R1(P1(U + C

(j)
1 )))

H(i) −H(j) = Q1(R1(P1(U + C
(i)
1 )))−Q1(R1(P1(U + C

(j)
1 )))

11



since P1 is linear over Z8
2w , we can consider Ũ = P1 · U and C̃(i)

1 = P1 · C(i)
1

H(i,j) = H(i) −H(j) = Q1(R1(Ũ + C̃
(i)
1 ))−Q1(R1(Ũ + C̃

(j)
1 )) (13)

If we consider Ũ = P1 ·U to be the unknown, this gives a simpler equation than
in the previous section, where H(i,j), C̃(i)

1 and C̃(j)
1 are known constants.

However, if we have a pair of messages M (i),M (j) where C(i)
0 = C

(j)
0 and

X
(1)
0 is constant, then we have M (i) = M (j) and we can only build a trivial

equation. Instead, we use messages such that only some words of C(i)
0 and C(j)

0

are equal. Namely, if we have

(P0 · C(i)
0 )[2,3,5] = (P0 · C(j)

0 )[2,3,5] (14)

then

H(i,j)[7] =
(
µ(U + C

(i)
0 ) + ν(U + C

(i)
1 )
)[7]

−
(
µ(U + C

(j)
0 ) + ν(U + C

(j)
1 )
)[7]

=
(
ν(U + C

(i)
1 )− ν(U + C

(j)
1 )
)[7]

+
(
µ(U + C

(i)
0 )− µ(U + C

(j)
0 )
)[7]

=
(
ν(U + C

(i)
1 )− ν(U + C

(j)
1 )
)[7]

+
(
P0(U + C

(i)
0 )[2] ≫ 8⊕ P0(U + C

(i)
0 )[3] ≫ 13⊕ P0(U + C

(i)
0 )[5] ≫ 22

)
−
(
P0(U + C

(j)
0 )[2] ≫ 8⊕ P0(U + C

(j)
0 )[3] ≫ 13⊕ P0(U + C

(j)
0 )[5] ≫ 22

)
H(i,j)[7] = Q1(R1(Ũ + C̃

(i)
1 ))[7] −Q1(R1(Ũ + C̃

(j)
1 ))[7] (15)

The two gray terms cancel out by linearity of P0 over Z8
2w . We can see (15) as a

weaker version of (13): we only have an equation on one word, instead of eight.
We can build similar equations restricted to any word by choosing appropriate
relations between C(i)

0 and C(j)
0 : if we want an equation restricted to word k we

just need to have an equality between P0 ·C(i)
0 and P0 ·C(j)

0 on the three words
used in the computation of Q[k]

0 .

5.2 Dealing with the padding

Another problem that we face to gather these equations is the padding. Edon-R
uses a padding with Merkle-Damgård strengthening, so there are 65 bits inM1,1

that must be kept untouched (129 bits in Edon-R384/512).
To find proper messages, we use a preprocessing step. First, we fix some

arbitrary value for X(1)
0 . Then we take a set of random M1,1 satisfying the

padding, we compute the correspondingM1,0 and we look for a collision in three
words of P0 · C(i)

0 according to (14). Each collision costs 248 computations on
average (296 for Edon-R384/512), and gives one equation. Note that this is
independent of the key we are attacking. It can be done as a preprocessing step,

12



and we only need to store a the message pairs that will be used to extract the
equations. Since we need 16 collisions, the time complexity of this preprocessing
step will be 16× 248 for Edon-R256 and 16× 296 for Edon-R512.

5.3 Solving

To recover the value of U , we gather several equation of the type of (15). We
can rewrite them as:(

(Ũ [4] + C̃
(i)[4]
1 )≫ 17⊕ (Ũ [6] + C̃

(i)[6]
1 )≫ 7⊕ (Ũ [7] + C̃

(i)[7]
1 )≫ 5

)
−(

(Ũ [4] + C̃
(j)[4]
1 )≫ 17⊕ (Ũ [6] + C̃

(j)[6]
1 )≫ 7⊕ (Ũ [7] + C̃

(j)[7]
1 )≫ 5

)
= H(i,j)[7]

(16)

We will solve these equations using a guess-and-determine approach. First
we guess the 18 lower bits of Ũ [4], the 8 lower bits of Ũ [6], and the 6 lower bits
of Ũ [7]. This allows us to compute the least significant bit of the left hand side
of (16), and we check this bit against the right hand side. If we have enough
equations, we can filter out many bad candidates. Then we guess one more bit
of Ũ [4], Ũ [6], and Ũ [7]. We can now compute one more bit of (16), and again
reduce the number of candidates. We repeat this step until all the bits of Ũ [4],
Ũ [6], and Ũ [7] have been guessed. Each time we guess some bits, the number of
candidates grows, but it will shrink when we check the new bit of (16). The cost
of this step is at least 232 because we have to guess 32 bits in the beginning. If
we have enough equations and they give an independent filtering, we expect the
complexity to be about 232. We did some experiments with random constants to
check our assumptions. Experiments shows that with only 10 equations we can
solve (16) for Edon-R256 by exploring slightly more than 232 nodes. This take
a few minutes on a desktop PC. For Edon-R512, we have to guess 56 bits, and
we expect a complexity of 256.

Another way to solve this system is to guess the carries instead of guessing
the low order bits. In this case, we only use 4 equations, because we have to
guess the carries in each equations. We have only 24 carry bits to guess, but
the 4 equations have many solutions, so we use extra equations to check each of
these solutions until a single solution is left. According to our experiments, this
takes about one minute on a desktop PC, and we have about 216 solutions when
using 4 equations (the search goes through 230 nodes). Note that the complexity
of this technique is independent of the rotation amounts, so it can be applied
with any output word, not necessarily the seventh as in (15). More importantly,
it is about as efficient on Edon-R512: it take about 20 minutes to explore 233

nodes, and gives about 220 solutions.
This first step gives us Ũ [4], Ũ [6], and Ũ [7]. Next, we use an equation similar

to (15), but involving the fifth word instead of the seventh:(
(Ũ [3] + C̃

(i)[3]
1 )≫ 21⊕ (Ũ [4] + C̃

(i)[4]
1 )≫ 17⊕ (Ũ [6] + C̃

(i)[6]
1 )≫ 7

)
−(

(Ũ [3] + C̃
(j)[3]
1 )≫ 21⊕ (Ũ [4] + C̃

(j)[4]
1 )≫ 17⊕ (Ũ [6] + C̃

(j)[6]
1 )≫ 7

)
= H(i,j)[5]

(17)

13



Since this equation only involves one unknown word Ũ [3], it is quite easy to solve.
We use the same technique as previously: we guess the carry bits. We only have
2 carry bits to guess so this step is negligible. We will repeat this using different
equations involving different words of Ũ , so as to recover the words of Ũ one by
one. Then, we can recover U = P−1

1 · Ũ , and finally H1,0.
The number of queries needed for the attack is 30: 2 × 10 to recover three

words in the first step and 2 for each subsequent word.

Conclusion

We have shown a practical key-recovery attack against secret-IV Edon-R and
various forgery attacks on secret-prefix Edon-R. Moreover, we show that a se-
lective forgery attack can still be done against the tweaked Edon-R. While those
constructions are not required to be secure by NIST, it is a natural construc-
tion that is used in some protocols. We believe that a strong cryptographic hash
function should not leak the key when used in this setting.

Acknowledgement

Part of this work is supported by the Commission of the European Communities
through the IST program under contract IST-2002-507932 ECRYPT, by the
French government through the Saphir RNRT project, and by the French DGA.

References

1. Chang, D., Nandi, M.: Improved Indifferentiability Security Analysis of chopMD
Hash Function. In Nyberg, K., ed.: FSE. Volume 5086 of Lecture Notes in Com-
puter Science., Springer (2008) 429–443

2. Franks, J. and Hallam-Baker, P. and Hostetler, J. and Leach, P. and Luotonen,
A. and Sink, E. and Stewart, L.: RFC2069: An extension to HTTP: Digest access
authentication. Internet RFCs (1997)

3. Gligoroski, D., Klima, V.: Official Comment: Edon-R. SHA-3 forum (May 2009)
4. Gligoroski, D., Ødegård, R.S., Mihova, M., Knapskog, S.J., Kocarev, L., Drápal,

A., Klima, V.: Cryptographic Hash Function EDON-R. Submission to NIST (2008)
5. Khovratovich, D., Nikolić, I., Weinmann, R.P.: Cryptanalysis of Edon-R. Available

online (2008)
6. Klima, V.: Multicollisions of EDON-R hash function and other observations. Avail-

able online (2008)
7. National Institute of Standards and Technology: Cryptographic Hash Algorithm

Competition. http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
8. Novotney, P., Ferguson, N.: Detectable correlations in edon-r. Cryptology ePrint

Archive, Report 2009/378 (2009) http://eprint.iacr.org/.
9. Preneel, B., van Oorschot, P.C.: On the Security of Iterated Message Authentica-

tion Codes. IEEE Transactions on Information Theory 45(1) (1999) 188–199
10. Wang, X., Wang, W., Jia, K., Wang, M.: New Distinguishing Attack on MAC using

Secret-Prefix Method. In Dunkelman, O., ed.: FSE. Lecture Notes in Computer
Science, Springer (2009)

14

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://eprint.iacr.org/


11. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In Shoup,
V., ed.: CRYPTO. Volume 3621 of Lecture Notes in Computer Science., Springer
(2005) 17–36

12. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In Cramer, R.,
ed.: EUROCRYPT. Volume 3494 of Lecture Notes in Computer Science., Springer
(2005) 19–35

A Extension to other settings

The IV-recovery attack can be use to break the secret-prefix construction when
used with Edon-R, and the secret-IV and secret-prefix construction when used
with the tweaked version of Edon-R. If this section we describe the attacks with
only two queries, but the attacks with 32 queries can be adapted in the same
way.

A.1 Secret-prefix Edon-R

If the key is padded to a full block, we can recover the chaining value H1 after
processing the key. This chaining value will allow an attacker to compute the
MAC of any message:

k M pad
H0 H1 H2 H3= =

k M ′ padM ′
pad(k‖M) is a prefix of k‖M ′.

We apply the attack on the third compression function. We can recover H2, and
compute H1 by inverting the second compression function.

If the key is not padded to a full block, we have a selective forgery attack.
Given a message M∗ such that pad(k‖M∗) has at least two blocks, we use a
message M such that the first block of pad(k‖M) is equal to the first block of
pad(k‖M∗).

k M∗ M∗pad
H0 H1 6== 6=

k M M pad
H0 H1 H2 H3= =

k M ′ M ′ padM ′
pad(k‖M) is a prefix of k‖M ′.

The first block is the same.

We apply the attack on the third compression function. Again, we can recover
H2, and compute H1 by inverting the second compression function. Then, we
can forge the MAC of M∗.

15



A.2 The tweaked version of Edon-R

In [3], Gligoroski and Klima proposed a tweak to address the attacks found
against Edon-R. The tweak is described as:

Instead of the old compression function R(oldPipe,M), now the com-
pression function have the following feedback: R(oldPipe,M)⊕oldPipe⊕
M ′, where M is represented in two parts i.e. M = (M0,M1), and
M ′ = (M1,M0).

It is easy to see that our attack on the compression function can still be
applied: if we know the right half of oldPipe, the right half of the output of
the compression function, and the message block, we can compute the right
half of R(oldPipe,M) from the right half of R(oldPipe,M) ⊕ oldPipe ⊕ M ′.
However, we can no longer invert the compression function. Therefore, in the
IV-recovery attack from Section 3, we can recover (H1,0, H1,1) using the attack
on the compression function, but we can not recover the key (H0,0, H0,0).

Still, we have a selective forgery attack on the secret-prefix and secret-IV
constructions. Let us describe the attack on the secret-prefix construction. The
forgery will work for messages M∗ such that some prefix of k‖M∗ is a valid
padded message. For instance, we can fix 65 bits (129 in the case of Edon-R512)
at the end of the second block. A random message of 2` blocks can be attacked
with probability 2`−65 (2`−129 for Edon-R512). Given such a message, we use a
message M such that pad(k‖M) is a prefix of k‖M∗:

k M∗ M∗ M∗pad
H0 H1 H2

6=

= =

6=k M M pad
H0 H1 H2 H3= =

k M ′ M ′ padM ′
pad(k‖M) is a prefix of k‖M ′.

pad(k‖M) is a prefix of k‖M∗.

We apply the attack on the following block and we recover the inner state af-
ter processing pad(k‖M). Since pad(k‖M) is a prefix of M∗, we can use this
information to forge the MAC of M∗.

16


	Practical Key Recovery Attack against Secret-IV 
	Introduction
	Description of 
	IV Recovery Using Related Queries
	Solving the equation H = (U + C0) (U + C1)
	Using more queries
	Extension to other settings


