Attacks on Hash Functions based on Generalized Feistel Application to Lesamnta and SHAvite-3512

Charles Bouillaguet, Orr Dunkelman, Pierre-Alain Fouque, Gaëtan Leurent

SAC 2010 - University of Waterloo

Hash Functions

- A public function with no structural properties.
- Cryptographic strength without keys!
- $F:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$

0x1d66ca77ab361c6f

Hash Functions

- A public function with no structural properties.
- Cryptographic strength without keys!
- $F:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$

The SHA-3 Competition

- Similar to the AES competition
- Organized by NIST
- Submission dead-line was October 2008: 64 candidiates
- 51 valid submissions
- 14 in the second round (July 2009)
- 5 finalists in September 2010?
- Winner in 2012?

Hash Function Design

- Hash function from a block cipher
- Davies-Meyer, MMO, ...
- Block cipher from a fixed function
- Feistel scheme
- Pick your favorite fived function
- AES?
- If the fixed function is too small, use a generalized Feistel:

Lesamnta structure

SHAvite-3512 structure

Hash Function Design

- Hash function from a block cipher
- Davies-Meyer, MMO, ...
- Block cipher from a fixed function
- Feistel scheme
- Pick your favorite fixed function
- If the fixed function is too small, use a generalized Feistel:

Lesamnta structure

SHAvite-3512 structure

Hash Function Design

- Hash function from a block cipher
- Davies-Meyer, MMO, ...
- Block cipher from a fixed function
- Feistel scheme
- Pick your favorite fixed function
- AES?
- If the fixed function is too small, use a generalized Feistel:

Hash Function Design

- Hash function from a block cipher
- Davies-Meyer, MMO, ...
- Block cipher from a fixed function
- Feistel scheme
- Pick your favorite fixed function
- AES?
- If the fixed function is too small, use a generalized Feistel:

Lesamnta structure

SHAvite-3512 structure

Feistel Design

- Ideal: each F_{i} is an independent ideal function/permutation \Rightarrow In practice: $F_{i}(x)=F\left(k_{i} \oplus x\right)$ with a fixed F

- $c_{i j}=k_{i} \oplus k_{j}$

Feistel Design

- Ideal: each F_{i} is an independent ideal function/permutation
- In practice: $F_{i}(x)=F\left(k_{i} \oplus x\right)$ with a fixed F

Feistel Design

- Ideal: each F_{i} is an independent ideal function/permutation
- In practice: $F_{i}(x)=F\left(k_{i} \oplus x\right)$ with a fixed F

Properties of $F_{i}(x)=F\left(k_{i} \oplus x\right)$
(i) $\exists c_{i, j}: \forall x, F_{i}\left(x \oplus c_{i, j}\right)=F_{j}(x)$.
(ii) $\forall \alpha, \#\left\{x: F_{i}(x) \oplus F_{j}(x)=\alpha\right\}$ is even
(iii) $\oplus_{x} F_{k}\left(F_{i}(x) \oplus F_{j}(x)\right)=0$

Feistel Design

- Ideal: each F_{i} is an independent ideal function/permutation
- In practice: $F_{i}(x)=F\left(k_{i} \oplus x\right)$ with a fixed F

Properties of $F_{i}(x)=F\left(k_{i} \oplus x\right)$
(i) $\exists c_{i, j}: \forall x, F_{i}\left(x \oplus c_{i, j}\right)=F_{j}(x)$.
(ii) $\forall \alpha, \#\left\{x: F_{i}(x) \oplus F_{j}(x)=\alpha\right\}$ is even
(iii) $\oplus_{x} F_{k}\left(F_{i}(x) \oplus F_{j}(x)\right)=0$

- $c_{i j}=k_{i} \oplus k_{j}$

Cancellation Cryptanalysis

Main idea

Cancel the effect of the non-linear components Using twice the same input pairs

- Generalized Feistel with slow diffusion
- $F_{i}(x)=F\left(k_{i} \oplus x\right)$
- Can sometimes deal with more keys (see SHAvite-3512)
- Hash function setting
- Some results apply to block ciphers.

Cancellation Cryptanalysis

Main idea

Cancel the effect of the non-linear components Using twice the same input pairs

- Generalized Feistel with slow diffusion
- $F_{i}(x)=F\left(k_{i} \oplus x\right)$
- Can sometimes deal with more keys (see SHAvite-3512)
- Hash function setting
- Some results apply to block ciphers.

Cancellation Cryptanalysis

Main idea

Cancel the effect of the non-linear components Using twice the same input pairs

- Generalized Feistel with slow diffusion
- $F_{i}(x)=F\left(k_{i} \oplus x\right)$
- Can sometimes deal with more keys (see SHAvite-3512)
- Hash function setting
- Some results apply to block ciphers.

The Cancellation Property

- Full diffusion after 9 rounds
- If $y_{1}=y_{2}=y_{1}$ the differences cancel out
- Use constraints on the state

i	S_{i}	T_{i}	U_{i}	V_{i}	
0	x	-	-	-	
1	-	x	-	-	
2	-	-	x	-	
3	y_{1}	-	-	x	$x \rightarrow y_{1}$
4	x	y_{1}	-	-	
5	-	x	y_{1}	-	
6	z	-	x	y_{1}	$y_{1} \rightarrow z$
7	y^{\prime}	z	-	x	$x \rightarrow y_{2}, y^{\prime}=y_{1} \oplus y_{2}$
8	x	y^{\prime}	z	-	
9	w	x	y^{\prime}	z	$z \rightarrow w$

The Cancellation Property

- Full diffusion after 9 rounds
- If $y_{1}=y_{2}=y_{1}$ the differences cancel out
- Use constraints
on the state

The Cancellation Property

- Full diffusion after 9 rounds
- If $y_{1}=y_{2}=y_{1}$ the differences cancel out
- Use constraints
on the state

i	S_{i}	T_{i}	U_{i}	V_{i}	
0	x	-	-	-	
1	-	x	-	-	
2	-	-	x	-	
3	y	-	-	x	$x \rightarrow y$
4	x	y	-	-	
5	-	x	y	-	
6	z	-	x	y	$y_{1} \rightarrow z$
7	-	z	-	x	$x \rightarrow y$
8	x	-	z	-	
9	w	x	-	z	$z \rightarrow w$

The Cancellation Property

- Full diffusion after 9 rounds
- If $y_{1}=y_{2}=y_{\text {, }}$ the differences cancel out
- Use constraints on the state

The Cancellation Property: Looking at the Values

We study values, starting at round 2 :

i	S_{i}	T_{i}	U_{i}	V_{i}
2	a	b	c	d
3	$F_{2}(c) \oplus d$	a	b	c
4	$F_{3}(b) \oplus c$	$F_{2}(c) \oplus d$	a	b
5	$F_{4}(a) \oplus b$	$F_{3}(b) \oplus c$	$F_{2}(c) \oplus d$	a
6	$F_{5}\left(F_{2}(c) \oplus d\right) \oplus a$	$F_{4}(a) \oplus b$	$F_{3}(b) \oplus c$	$F_{2}(c) \oplus d$
7	$F_{6}\left(F_{3}(b) \oplus \underline{c} \oplus F_{2}(c) \oplus d\right.$	$F_{5}\left(F_{2}(c) \oplus d\right) \oplus a$	$F_{4}(a) \oplus b$	$F_{3}(b) \oplus c$

Round 7: $F_{6}\left(F_{3}(b) \oplus \underline{c}\right) \oplus F_{2}(c)$. They cancel if:
$F_{3}(b)=c_{2,6}=K_{2} \oplus K_{6}$
i.e. $b=F_{3}^{-1}\left(K_{2} \oplus K_{6}\right)$

Attack Overview

- Partial preimage: Choose one part of the output
- Gives preimage and collision attacks.
- Mostly generic in the round function.
- Hash function setting: no keys.

Result Overview

- Attacks on reduced Lesamnta

- 24 rounds out of 32: collision and preimage
- previous attacks: 16 rounds
- Attacks on reduced SHAvite-3512

- 9 rounds out of 14: preimage
- previous attacks: 8 rounds

Lesamnta

- Merkle-Damgård with an MMO compression function
- Generalized Feistel
- Round function is AES-based
(Shoichi Hirose, Hidenori Kuwakado, Hirotaka Yoshida SHA-3 Proposal: Lesamnta Submission to the NIST SHA-3 competition

Lesamnta (cont.)

$$
\begin{aligned}
X_{i+4} & =X_{i} \oplus F\left(X_{i+1} \oplus K_{i+3}\right) \\
K_{i+4} & =K_{i} \oplus G\left(K_{i+1} \oplus R_{i+3}\right)
\end{aligned}
$$

- Chaining value loaded to $K_{-3}, K_{-2}, K_{-1}, K_{0}$
- Message loaded to $X_{-3}, X_{-2}, X_{-1}, X_{0}$
- F and G AES-based

Lesamnta: Truncated Differential

i	S_{i}	T_{i}	U_{i}	V_{i}
0	x	-	-	-
1	-	x	-	-
2	-	-	x	-
\vdots		$\left(x \rightarrow x_{1}\right)$		
19	x_{1}	$?$	$?$	r
20	$?$	x_{1}	$?$	$?$
21	$?$	$?$	x_{1}	$?$
22	$?$	$?$	$?$	x_{1}
FF	$?$	$?$	$?$	x_{1}

i	S_{i}	T_{i}	U_{i}	V_{i}	
2	-	-	x	-	
3	y	-	-	x	$x \rightarrow y$
4	x	y	-	-	
5	-	x	y	-	
6	z	-	x	y	$y \rightarrow z$
7	-	z	-	x	$x \rightarrow y$
8	x	-	z	-	
9	w	x	-	z	$z \rightarrow w$
10	z	w	x	-	
11	x_{1}	z	w	x	$x \rightarrow x 1$
12	r	x_{1}	z	w	$w \rightarrow x \oplus r$
13	-	r	x_{1}	z	$z \rightarrow w$
14	$?$	-	r	x_{1}	
15	$x_{1}+t$	$?$	-	r	$r \rightarrow t$
16	r	$x_{1}+t$	$?$	-	
17	$?$	r	$x_{1}+t$	$?$	
18	$?$	$?$	r	$x_{1}+t$	
19	x_{1}	$?$	$?$	r	$r \rightarrow t$

Lesamnta: Truncated Differential

i	S_{i}	T_{i}	U_{i}	V_{i}
0	x	-	-	-
1	-	x	-	-
2	-	-	x	-
\vdots		$\left(x \rightarrow x_{1}\right)$		
19	x_{1}	$?$	$?$	r
20	$?$	x_{1}	$?$	$?$
21	$?$	$?$	x_{1}	$?$
22	$?$	$?$	$?$	x_{1}
FF	$?$	$?$	$?$	x_{1}

- Using conditions on the state, probability 1.
- The transition $x \rightarrow x_{1}$ is known.
- Start with a random message
- x_{1} is the difference between
the output and the target value
- Compute x from x_{1}
- Use $M+(x 000)$

Lesamnta: Truncated Differential

Properties

- Using conditions on the state, probability 1.
- The transition $x \rightarrow x_{1}$ is known.

How to use it

- Start with a random message
- x_{1} is the difference between the output and the target value
- Compute x from x_{1}
- Use $M+(x, 0,0,0)$

Lesamnta: Values

i	$X_{i}\left(=S_{i}\right)$
-1	d
0	c
1	b
2	a
3	$F_{2}(c) \oplus d$
4	$F_{3}(b) \oplus c$
5	$F_{4}(a) \oplus b$
6	$F_{5}\left(F_{2}(c) \oplus d\right) \oplus a$
7	$\underline{F_{6}\left(F_{3}(b) \oplus c\right) \oplus F_{2}(c) \oplus d}$
8	$F_{7}\left(F_{4}(a) \oplus b\right) \oplus F_{3}(b) \oplus c$
9	$F_{8}\left(F_{5}\left(F_{2}(c) \oplus d\right) \oplus a\right) \oplus F_{4}(a) \oplus b$
10	$F_{9}(d) \oplus F_{5}\left(F_{2}(c) \oplus d\right) \oplus a$
11	$F_{10}\left(F_{7}\left(F_{4}(a) \oplus b\right) \oplus F_{3}(b) \oplus c\right) \oplus d$
12	$F_{11}\left(F_{8}\left(F_{5}\left(F_{2}(c) \oplus d\right) \oplus a\right) \oplus F_{4}(a) \oplus b\right) \oplus F_{7}\left(F_{4}(a) \oplus b\right) \oplus F_{3}(b) \oplus c$
13	$F_{12}\left(F_{9}(d) \oplus \underline{\left.F_{5}\left(F_{2}(c) \oplus d\right) \oplus a\right) \oplus F_{8}\left(F_{5}\left(F_{2}(c) \oplus d\right) \oplus a\right) \oplus F_{4}(a) \oplus b}\right.$
15	$F_{14}\left(X_{12}\right) \oplus F_{10}\left(F_{7}\left(F_{4}(a) \oplus b\right) \oplus F_{3}(b) \oplus c\right) \oplus d$
16	$F_{15}\left(F_{4}(a) \oplus b\right) \oplus X_{12}$
19	$\underline{F_{18}\left(F_{15}\left(F_{4}(a) \oplus b\right) \oplus X_{12}\right) \oplus F_{14}\left(X_{12}\right) \oplus F_{10}\left(F_{7}\left(F_{4}(a) \oplus b\right) \oplus F_{3}(b) \oplus c\right) \oplus d}$

Lesamnta Cancellation Conditions

Round 7: $F_{6}\left(F_{3}(b) \oplus \underline{c}\right) \oplus F_{2}(c)$.
They cancel if: $F_{3}(b)=c_{2,6}=K_{2} \oplus K_{6}$ i.e. $b=F_{3}^{-1}\left(K_{2} \oplus K_{6}\right)$

Round 13: $F_{12}\left(F_{9}(d) \oplus F_{5}\left(F_{2}(c) \oplus d\right) \oplus \mathbf{a}\right) \oplus F_{8}\left(F_{5}\left(F_{2}(c) \oplus d\right) \oplus \mathbf{a}\right)$.
They cancel if: $F_{9}(d)=c_{8,12}=K_{8} \oplus K_{12}$
i.e. $d=F_{9}^{-1}\left(K_{8} \oplus K_{12}\right)$

Round 19: $F_{18}\left(F_{15}\left(F_{4}(a) \oplus b\right) \oplus X_{12}\right) \oplus F_{14}\left(X_{12}\right)$.
They cancel if: $F_{15}\left(F_{4}(a) \oplus b\right)=c_{14,18}=K_{14} \oplus K_{18}$ i.e. $a=F_{4}^{-1}\left(F_{15}^{-1}\left(K_{14} \oplus K_{18}\right) \oplus b\right)$

22-round Attacks

- Compute $\mathrm{a}, \mathrm{b}, \mathrm{d}$, to satisfy the cancellation conditions.
- Set the state at round 2 to (a, b, c, d).
- Express the output as a function of c
- $V_{0}=\eta$
- $V_{22}=F(c \oplus \alpha) \oplus \beta$
- $\alpha=K_{11} \oplus F_{8}\left(F_{5}(a) \oplus b\right) \oplus F_{4}(b)$
- $\beta=d$
- For a target value \bar{H}, set $c=F^{-1}(\bar{H} \oplus \eta \oplus \beta) \oplus \alpha$
- This gives $V_{0} \oplus V_{22}=\bar{H}$

22-round Attacks

- Compute $\mathrm{a}, \mathrm{b}, \mathrm{d}$, to satisfy the cancellation conditions.
- Set the state at round 2 to (a, b, c, d).
- Express the output as a function of c
- $V_{0}=\eta$
- $\eta=b \oplus F_{0}\left(a \oplus F_{3}(d)\right)$
- $V_{22}=F(c \oplus \alpha) \oplus \beta$
- $\alpha=K_{11} \oplus F_{8}\left(F_{5}(a) \oplus b\right) \oplus F_{4}(b)$
- $\beta=d$
- This gives $V_{0} \oplus V_{22}=\bar{H}$

22-round Attacks

- Compute $\mathrm{a}, \mathrm{b}, \mathrm{d}$, to satisfy the cancellation conditions.
- Set the state at round 2 to (a, b, c, d).
- Express the output as a function of c
- $V_{0}=\eta$
- $\eta=b \oplus F_{0}\left(a \oplus F_{3}(d)\right)$
- $V_{22}=F(c \oplus \alpha) \oplus \beta$
- $\alpha=K_{11} \oplus F_{8}\left(F_{5}(a) \oplus b\right) \oplus F_{4}(b)$
- $\beta=d$
- For a target value \bar{H}, set $c=F^{-1}(\bar{H} \oplus \eta \oplus \beta) \oplus \alpha$
- This gives $V_{0} \oplus V_{22}=\bar{H}$

24-round Attacks

- Compute $\mathrm{a}, \mathrm{b}, \mathrm{d}$, to satisfy the cancellation conditions.
- Set the state at round 4 to (a, b, c, d).
- $V_{0}=F(c \oplus \gamma) \oplus \lambda$
- $V_{24}=F(c \oplus \alpha) \oplus \beta$
- $\alpha=K_{13} \oplus F_{10}\left(F_{7}(a) \oplus b\right) \oplus F_{6}(b)$
- The output is $H=F(c \oplus \gamma) \oplus F(c \oplus \alpha)$.
- To reach a target \bar{H}, we need a pair of values for F with - input difference $\alpha \oplus \gamma$ - output difference \bar{H}
- We can store them in a table.

24-round Attacks

- Compute a, b, d, to satisfy the cancellation conditions.
- Set the state at round 4 to (a, b, c, d).
- $V_{0}=F(c \oplus \gamma) \oplus \lambda$
- $\gamma=F_{1}\left(b \oplus F_{2}\left(a \oplus F_{3}(d)\right)\right)$
- $\lambda=d$
- $V_{24}=F(c \oplus \alpha) \oplus \beta$
- $\alpha=K_{13} \oplus F_{10}\left(F_{7}(a) \oplus b\right) \oplus F_{6}(b)$
- $\beta=d$
- The output is $H=F(c \oplus \gamma) \oplus F(c \oplus \alpha)$.
- To reach a target \bar{H}, we need a pair of values for F with - input difference $\alpha \oplus \gamma$ - output difference \bar{H}
- We can store them in a table.

24-round Attacks

- Compute a, b, d, to satisfy the cancellation conditions.
- Set the state at round 4 to (a, b, c, d).
- $V_{0}=F(c \oplus \gamma) \oplus \lambda$
- $\gamma=F_{1}\left(b \oplus F_{2}\left(a \oplus F_{3}(d)\right)\right)$
- $\lambda=d$
- $V_{24}=F(c \oplus \alpha) \oplus \beta$
- $\alpha=K_{13} \oplus F_{10}\left(F_{7}(a) \oplus b\right) \oplus F_{6}(b)$
- $\beta=d$
- The output is $H=F(c \oplus \gamma) \oplus F(c \oplus \alpha)$.
- To reach a target \bar{H}, we need a pair of values for F with
- input difference $\alpha \oplus \gamma$
- output difference \bar{H}
- We can store them in a table.

Improved 24-round Attack

- The output is $H=F(c \oplus \gamma) \oplus F(c \oplus \alpha)$.
- F is AES-based.
- Use the symmetry property of AES:
- If x is symmetric, then $F(x)$ is symmetric
- Try random keys until $\alpha \oplus \gamma$ is symmetric
- For all symmetric $u, c=\alpha \oplus u$ gives a symmetric output
- One output word symmetric for an amortized cost of 1
- $\approx n / 8$ bits set to zero

Results: SHAvite-3512

	Attack	Rounds	Lesamnta-256		Lesamnta-512	
			Time	Memory	Time	Memory
Generic	Collision	22	2^{96}	-	2^{192}	-
	$2^{\text {nd }}$ Preimage	22	2^{192}	-	2^{384}	-
	Collision	24	2^{96}	2^{64}	2^{192}	2^{128}
	$2^{\text {nd }}$ Preimage	24	2^{192}	2^{64}	2^{384}	2^{128}
Specific	Collision	24	2^{112}	-	2^{224}	-
	$2^{\text {nd }}$ Preimage	24	2^{240}	-		N/A

SHAvite-3512

- Merkle-Damgård with a Davies-Meyer compression function
- Generalized Feistel
- Round function is AES-based

Eli Biham and Orr Dunkelman
 The SHAvite-3 Hash Function Submission to the NIST SHA-3 competition

SHAvite-3512 (cont.)

- 14 rounds
- Davies-Meyer (message is the key)
- $F_{i}(x)=\operatorname{AES}\left(A E S\left(A E S\left(A E S\left(x \oplus k_{i}^{0}\right) \oplus k_{i}^{1}\right) \oplus k_{i}^{2}\right) \oplus k_{i}^{3}\right)$
- F is one AES round.
- Key schedule mixes linear operations and AES rounds.

SHAvite-3 512: $^{\text {: Truncated Differential }}$

i	S_{i}	T_{i}	U_{i}	V_{i}
0	$?$	x_{2}	$?$	x
7	x	-	x_{2}	x_{1}
2	x_{1}	x	-	-
3	-	-	x	-
4	-	-	-	x
5	x	-	-	y
6	y	x	-	z
7	z	-	x	w
8	w	z	-	$?$
9	$?$	-	z	$?$
FF	$?$	x_{2}	$?$	$?$

Properties

- Using conditions on the state, probability 1.
- The transitions $x \rightarrow x_{1}$ and $x_{1} \rightarrow x_{2}$ are known.
- Same attack as earlier.

SHAvite-3 512: $^{\text {: Truncated Differential }}$

i	S_{i}	T_{i}	U_{i}	V_{i}
0	$?$	x_{2}	$?$	x
7	x	-	x_{2}	x_{1}
2	x_{1}	x	-	-
3	-	-	x	-
4	-	-	-	x
5	x	-	-	y
6	y	x	-	z
7	z	-	x	w
8	w	z	-	$?$
9	$?$	-	z	$?$
FF	$?$	x_{2}	$?$	$?$

Properties

- Using conditions on the state, probability 1.
- The transitions $x \rightarrow x_{1}$ and $x_{1} \rightarrow x_{2}$ are known.
- Same attack as earlier.

Problem

- Fhas many keys

SHAvite-3512: Values

Message Conditions: SHAvite-3512

$$
\begin{aligned}
\text { Round } 7 & F_{4}^{\prime}(d) \oplus F_{6}\left(d \oplus F_{5}\left(a \oplus F_{4}(b)\right)\right) . \\
& \text { They cancel if: } F_{5}\left(a \oplus F_{4}(b)\right)=k_{1,4}^{0} \oplus k_{0,6}^{0} \\
& \text { and }\left(k_{1,4}^{1}, k_{1,4}^{2}, k_{1,4}^{3}\right)=\left(k_{0,6}^{1}, k_{0,6}^{2}, k_{0,6}^{3}\right) . \\
\text { Round } 9 & F_{6}^{\prime}\left(b \oplus F_{5}^{\prime}\left(c \oplus F_{4}^{\prime}(d)\right)\right) \oplus F_{8}\left(b \oplus F_{5}^{\prime}\left(c \oplus F_{4}^{\prime}(d)\right) \oplus F_{7}(c)\right) . \\
& \text { They cancel if: } F_{7}(c)=k_{1,6}^{0} \oplus k_{0,8}^{0} \\
& \text { and }\left(k_{1,6}^{1}, k_{1,6}^{2}, k_{1,6}^{3}\right)=\left(k_{0,8}^{1}, k_{0,8}^{2}, k_{0,8}^{3}\right) .
\end{aligned}
$$

Message Conditions: SHAvite-3512

```
Round \(7 F_{4}^{\prime} \underline{(d)} \oplus F_{6}\left(\underline{d} \oplus F_{5}\left(a \oplus F_{4}(b)\right)\right)\).
    They cancel if: \(F_{5}\left(a \oplus F_{4}(b)\right)=k_{1,4}^{0} \oplus k_{0,6}^{0}\)
    and \(\left(k_{1,4}^{1}, k_{1,4}^{2}, k_{1,4}^{3}\right)=\left(k_{0,6}^{1}, k_{0,6}^{2}, k_{0,6}^{3}\right)\).
Round \(9 F_{6}^{\prime} \underline{\left(b \oplus F_{5}^{\prime}\left(c \oplus F_{4}^{\prime}(d)\right)\right) \oplus F_{8}\left(b \oplus F_{5}^{\prime}\left(c \oplus F_{4}^{\prime}(d)\right) \oplus F_{7}(c)\right) \text {. } . . .8 F_{7}(c)}\)
They cancel if: \(F_{7}(c)=k_{1,6}^{0} \oplus k_{0,8}^{0}\)
and \(\left(k_{1,6}^{1}, k_{1,6}^{2}, k_{1,6}^{3}\right)=\left(k_{0,8}^{1}, k_{0,8}^{2}, k_{0,8}^{3}\right)\).
```


Message Expansion

$r k[128 \ldots 131,132 \ldots 135,136 \ldots 139,140 \ldots 143,144 \ldots 147,148 \ldots 151,152 \ldots 155,156 \ldots 159]$

AES AES AES AES AES AES (AES AES

$t k[128 \ldots 131,132 \ldots 135,136 \ldots 139,140 \ldots 143,144 \ldots 147,148 \ldots 151,152 \ldots 155,156 \ldots 159]$
$c \longrightarrow$ LFSR1: $r k[i]=t k[i-32] \oplus r k[i-4]$
$r k[160 \ldots 163,164 \ldots 167,168 \ldots 171,172 \ldots 175,176 \ldots 179,180 \ldots 183,184 \ldots 187,188 \ldots 191]$
LFSR2. $r k[i]=r k[i-32] \oplus r k[i-7]$
$r k[192 \ldots 195,196 \ldots 199,200 \ldots 203,204 \ldots 207,208 \ldots 211,212 \ldots 215,216 \ldots 219,220 \ldots 223]$

$t k[192 \ldots 195,196 \ldots 199,200 \ldots 203,204 \ldots 207,208 \ldots 211,212 \ldots 215,216 \ldots 219,220 \ldots 223]$
LFSR1: $r k[i]=t k[i-32] \oplus r k[i-4]$
$r k[224 \ldots 227,228 \ldots 231,232 \ldots 235,236 \ldots 239,240 \ldots 243,244 \ldots 247,248 \ldots 251,252 \ldots 255]$
LFSR2. $r k[i]=r k[i-32] \oplus r k[i-7]$
$r k[256 \ldots 259,260 \ldots 263,264 \ldots 267,268 \ldots 271,272 \ldots 275,276 \ldots 279,280 \ldots 283,284 \ldots 287]$
1 Propagate constraints

Message Expansion

$r k[128 \ldots 131,132 \ldots 135,136 \ldots 139,140 \ldots 143,144 \ldots 147,148 \ldots 151,152 \ldots 155,156 \ldots 159]$

AES AES AES AES AES AES (AES AES

$t k[128 \ldots 131,132 \ldots 135,136 \ldots 139,140 \ldots 143,144 \ldots 147,148 \ldots 151,152 \ldots 155,156 \ldots 159]$
$c \longrightarrow \operatorname{LFSR} 1: r k[i]=t k[i-32] \oplus r k[i-4]$
$r k[160 \ldots 163,164 \ldots 167,168 \ldots 171,172 \ldots 175,176 \ldots 179,180 \ldots 183,184 \ldots 187,188 \ldots 191]$
LFSR2. $r k[i]=r k[i-32] \oplus r k[i-7]$
$r k[192 \ldots 195,196 \ldots 199,200 \ldots 203,204 \ldots 207,208 \ldots 211,212 \ldots 215,216 \ldots 219,220 \ldots 223]$

$t k[192 \ldots 195,196 \ldots 199,200 \ldots 203,204 \ldots 207,208 \ldots 211,212 \ldots 215,216 \ldots 219,220 \ldots 223]$
LFSR7. $r k[i]=t k[i-32] \oplus r k[i-4]$
$r k[224 \ldots 227,228 \ldots 231,232 \ldots 235,236 \ldots 239,240 \ldots 243,244 \ldots 247,248 \ldots 251,252 \ldots 255]$
LFSR2. $r k[i]=r k[i-32] \oplus r k[i-7]$
$r k[256 \ldots 259,260 \ldots 263,264 \ldots 267,268 \ldots 271,272 \ldots 275,276 \ldots 279,280 \ldots 283,284 \ldots 287]$
1 Propagate constraints

Message Expansion

$r k[128 \ldots 131,132 \ldots 135,136 \ldots 139,140 \ldots 143,144 \ldots 147,148 \ldots 151,152 \ldots 155,156 \ldots 159]$

AES AES AES AES AES AES (AES AES

$t k[128 \ldots 131,132 \ldots 135,136 \ldots 139,140 \ldots 143,144 \ldots 147,148 \ldots 151,152 \ldots 155,156 \ldots 159]$
$c \longrightarrow \operatorname{LFSR} 1: r k[i]=t k[i-32] \oplus r k[i-4]$
$r k[160 \ldots 163,164 \ldots 167,168 \ldots 171,172 \ldots 175,176 \ldots 179,180 \ldots 183,184 \ldots 187,188 \ldots 191]$
LFSR2. $r k[i]=r k[i-32] \oplus r k[i-7]$
$r k[192 \ldots 195,196 \ldots 199,200 \ldots 203,204 \ldots 207,208 \ldots 211,212 \ldots 215,216 \ldots 219,220 \ldots 223]$

$t k[192 \ldots 195,196 \ldots 199,200 \ldots 203,204 \ldots 207,208 \ldots 211,212 \ldots 215,216 \ldots 219,220 \ldots 223]$
LFSR7. $r k[i]=t k[i-32] \oplus r k[i-4]$
$r k[224 \ldots 227,228 \ldots 231,232 \ldots 235,236 \ldots 239,240 \ldots 243,244 \ldots 247,248 \ldots 251,252 \ldots 255]$
LFSR2. $r k[i]=r k[i-32] \oplus r k[i-7]$
$r k[256 \ldots 259,260 \ldots 263,264 \ldots 267,268 \ldots 271,272 \ldots 275,276 \ldots 279,280 \ldots 283,284 \ldots 287]$
1 Propagate constraints

Message Expansion

$r k[128 \ldots 131,132 \ldots 135,136 \ldots 139,140 \ldots 143,144 \ldots 147,148 \ldots 151,152 \ldots 155,156 \ldots 159]$

AES AES AES AES AES AES (AES AES

$t k[128 \ldots 131,132 \ldots 135,136 \ldots 139,140 \ldots 143,144 \ldots 147,148 \ldots 151,152 \ldots 155,156 \ldots 159]$
$c \longrightarrow$ LFSR1: $r k[i]=t k[i-32] \oplus r k[i-4]$
$r k[160 \ldots 163,164 \ldots 167,168 \ldots 171,172 \ldots 175,176 \ldots 179,180 \ldots 183,184 \ldots 187,188 \ldots 191]$
LFSR2. $r k[i]=r k[i-32] \oplus r k[i-7]$
$r k[192 \ldots 195,196 \ldots 199,[200 \ldots 203,[204 \ldots 207,208 \ldots 211,212 \ldots 2[15,27] 6 \ldots 219,220 \ldots 223]$ AES AES AES AES AES AES AES AES
$t k[192 \ldots 195,196 \ldots 199,200 \ldots 203,204 \ldots 207,208 \ldots 211,212 \ldots 215,216 \ldots 219,220 \ldots 223]$
LFSR7. $r k[i]=t k[i-32] \oplus r k[i-4]$
$r k[224 \ldots 227,228 \ldots 231,232 \ldots 235,236 \ldots 239,240 \ldots 243,244 \ldots 247,248 \ldots 251,252 \ldots 255$
LFSR2. $r k[i]=r k[i-32] \oplus r k[i-7]$
$r k[256 \ldots 259,260 \ldots 263,264 \ldots 267,268 \ldots 271,272 \ldots 275,276 \ldots 279,280 \ldots 283,284 \ldots 287]$
2 Guess values

Message Expansion

$r k[128 \ldots 131,132 \ldots 135,136 \ldots 139,140 \ldots 143,144 \ldots 147,148 \ldots 151,152 \ldots 155,156 \ldots 159]$

AES AES AES AES AES AES (AES AES

$t k[128 \ldots 131,132 \ldots 135,136 \ldots 139,140 \ldots 143,144 \ldots 147,148 \ldots 151,152 \ldots 155,156 \ldots 159]$
$c \longrightarrow \operatorname{LFSR} 1: r k[i]=t k[i-32] \oplus r k[i-4]$
$r k[160 \ldots 163,164 \ldots 167,168 \ldots 171,172 \ldots 175,176 \ldots 179,180 \ldots 183,184 \ldots 187,188 \ldots 191]$
LFSR2. $r k[i]=r k[i-32] \oplus r k[i-7]$
$r k[192 \ldots 195,196 \ldots 199,200 \ldots 203,204 \ldots 207,208 \ldots 211,212 \ldots 215,216 \ldots 219,220 \ldots 223]$ AES AES AES AES AES AES AES AES
$t k[192 \ldots 195,196 \ldots 199,200 \ldots 203,204 \ldots 207,208 \ldots 211,212 \ldots 215,216 \ldots 219,220 \ldots 223]$
\square
$r k[224 \ldots 227,228 \ldots 231,232 \ldots 235,236 \ldots 239,240 \ldots 243,244 \ldots 247,248 \ldots 251,252 \ldots 255]$
LFSR2. $r k[i]=r k[i-32] \oplus r k[i-7]$
$r k[256 \ldots 259,260 \ldots 263,264 \ldots 267,268 \ldots 271,272 \ldots 275,276 \ldots 279,280 \ldots 283,284 \ldots 287]$
3 Compute the missing values; check coherence

Solving the Conditions

- We can build a chaining value satisfying the 6 conditions with cost 2^{96}.
- Each chaining value can be used 2^{128} times to fix 128 bits of the output.
- Cost of finding a good message is amortized.
- Attacks on 9-round SHAvite-3512:
- Free-start preimage with complexity 2^{384}
- Second-Preimage with complexity 2^{448}.

Later Improvements

- 10-round attack using both degrees of freedom
- Pseudo-attacks on the full 14 rounds (chosen salts)

Praveen Gauravaram, Gaëtan Leurent, Florian Mendel, María Naya-Plasencia, Thomas Peyrin, Christian Rechberger, and Martin Schläffer
Cryptanalysis of the 10-Round Hash and Full Compression Function of SHAvite-3512
Africacrypt 2010

Results: SHAvite-3512

${ }^{1}$ Chosen salt attacks

Conclusion

- Shows the difference an ideal Feistel with independent round functions and a practical construction.
- Full version: ePrint report 2009/634.
- Includes some block cipher results
- Any questions?

