Gaëtan Leurent

Inria, France

SAC 2015

Confidentiality and authenticity

- Cryptography has two main objectives:
 Confidentiality keeping the message secret
 Authenticity making sure the message is authentic
- Authenticity is often more important than confidentiality
 - Email signature
 - Software update
 - Credit cards

- Sensor networks
- ► Remote control (e.g. garage door, car)
- Remote access (e.g. password authentication)
- Authenticity achieved with signatures (asymmetric), or MACs (symmetric)

Introduction

- Alice sends a message to Bob
- ▶ Bob wants to authenticate the message.
- Alice uses a key k to compute a tag:
- ▶ Bob verifies the tag with the same key *k*:

$$t = MAC_{k}(M)$$

 $t \stackrel{?}{=} MAC_{k}(M)$

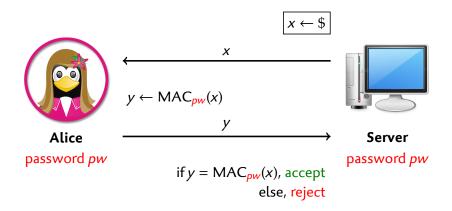
Introduction

0000000000000

Example use: Authenticated NTP

- NTP: Network Time Protocol
 - Synchronize clocks up to a few ms
 - NTP client connect to several servers, and evaluate transmission time
- Correct time is critical for security applications
 - Time used as nonce
 - Use time to detect replay
 - Use time to check certificate validity
- ► Timing message not secret, but must be authentic
 - Public key crypto two slow (would affect time precision)
- NIST runs a public Authenticated NTP server

Example use: challenge-response authentication



CRAM-MD5 authentication in SASL, POP3, IMAP, SMTP, ...

MAC Constructions

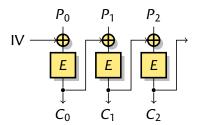
Dedicated designs

- Pelican-MAC, SQUASH, SipHash, Chaskey
- From block ciphers
 - CBC-MAC, OMAC, PMAC
- From hash functions
 - HMAC, Sandwich-MAC, Envelope-MAC
- From universal hash functions (randomized MACs)
 - UMAC, VMAC, GMAC, Poly1305

Security notions

- Key-recovery: given access to a MAC oracle, extract the key
- Forgery: given access to a MAC oracle, forge a valid pair
 - For a message chosen by the adversary: existential forgery
 - For a challenge given to the adversary: universal forgery
- Distinguishing games:
 - ▶ Distinguish $MAC_k^{\mathcal{H}}$ from a PRF: distinguishing-R e.g. distinguish HMAC from a PRF
 - ▶ Distinguish MAC $_k^{\mathcal{H}}$ from MAC $_k^{\mathsf{PRF}}$: distinguishing-H e.g. distinguish HMAC-SHA1 from HMAC-PRF

CBC-MAC

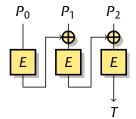


One of the first MAC.

Introduction 000000000000000

[NIST, ANSI, ISO, '85?]

- Designed by practitioners, to be used with DES
- Based on CBC encryption mode
- Keep the last cipher-text block as a MAC



One of the first MAC.

Introduction 000000000000000

[NIST, ANSI, ISO, '85?]

- Designed by practitioners, to be used with DES
- Based on CBC encryption mode
- Keep the last cipher-text block as a MAC

Security of modes of operations

- Initially, security of CBC-MAC-DES was an assumption
- To reduce the number of assumptions, study the block cipher and the mode independently
- Security proof for the mode

- Assume that the block cipher is good, prove that the MAC is good
- Lower bound on the security of the mode
- Cryptanalysis of the block cipher
 - ► Try to show non-random behavior
- Generic attacks for the mode
 - Attack that work for any choice of the block cipher
 - Upper bound on the security of the mode

Introduction

Security of modes of operations

- Initially, security of CBC-MAC-DES was an assumption
- To reduce the number of assumptions, study the block cipher and the mode independently
- Security proof for the mode
 - Assume that the block cipher is good, prove that the MAC is good
 - Lower bound on the security of the mode
- Cryptanalysis of the block cipher
 - ► Try to show non-random behavior
- Generic attacks for the mode
 - Attack that work for any choice of the block cipher
 - Upper bound on the security of the mode

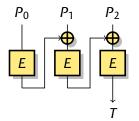
Introduction

Security of modes of operations

- Initially, security of CBC-MAC-DES was an assumption
- To reduce the number of assumptions, study the block cipher and the mode independently
- Security proof for the mode
 - Assume that the block cipher is good, prove that the MAC is good
 - Lower bound on the security of the mode
- Cryptanalysis of the block cipher
 - Try to show non-random behavior
- Generic attacks for the mode
 - Attack that work for any choice of the block cipher
 - Upper bound on the security of the mode

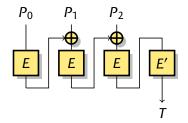
Security of modes of operations

- Initially, security of CBC-MAC-DES was an assumption
- To reduce the number of assumptions, study the block cipher and the mode independently
- Security proof for the mode
 - Assume that the block cipher is good, prove that the MAC is good
 - Lower bound on the security of the mode
- Cryptanalysis of the block cipher
 - ▶ Try to show non-random behavior
- 3 Generic attacks for the mode
 - Attack that work for any choice of the block cipher
 - Upper bound on the security of the mode



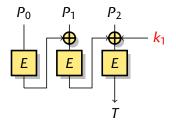
Security proofs

- Secure with fixed-length message [Bellare, Kilian & Rogaway '94]
- ► Attacks with variable length: $MAC(P_0 || P_1) = MAC(P_1 \oplus MAC(P_0))$



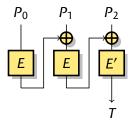
Security proofs

- ► Secure with fixed-length message [Bellare, Kilian & Rogaway '94]
- ▶ Attacks with variable length: $MAC(P_0 \parallel P_1) = MAC(P_1 \oplus MAC(P_0))$
- Encrypt the last cipher-text block with a different key (ECBC)
- Secure with variable-length message
- ▶ Many variants: FCBC, XCBC, OMAC, ... [Black & Rogaway '00]



Security proofs

- ► Secure with fixed-length message [Bellare, Kilian & Rogaway '94]
- ▶ Attacks with variable length: $MAC(P_0 \parallel P_1) = MAC(P_1 \oplus MAC(P_0))$
- Encrypt the last cipher-text block with a different key (ECBC)
- Secure with variable-length message
- ► Many variants: FCBC, XCBC, OMAC, ... [Black & Rogaway '00]



Security proofs

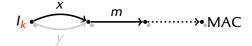
Introduction 0000000000000000

- Secure with fixed-length message [Bellare, Kilian & Rogaway '94]
- ► Attacks with variable length: $MAC(P_0 \parallel P_1) = MAC(P_1 \oplus MAC(P_0))$
- Encrypt the last cipher-text block with a different key (ECBC)
- Secure with variable-length message
- Many variants: FCBC, XCBC, OMAC, ...

[Black & Rogaway '00]

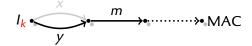
Find internal collisions

- [Preneel & van Oorschot '95]
- ► Query 2^{n/2} random short messages
- ▶ 1 internal collision expected, detected in the output
- 2 Query t = MAC(x || m)
- (y || m, t) is a forgery



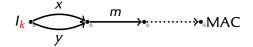
Find internal collisions

- [Preneel & van Oorschot '95]
- Query 2^{n/2} random short messages
- ▶ 1 internal collision expected, detected in the output
- 2 Query $t = MAC(x \parallel m)$
- (y || m, t) is a forgery



Find internal collisions

- [Preneel & van Oorschot '95]
- Query 2^{n/2} random short messages
- ▶ 1 internal collision expected, detected in the output
- 2 Query $t = MAC(x \parallel m)$
- (y || m, t) is a forgery



Find internal collisions

- [Preneel & van Oorschot '95]
- Query 2^{n/2} random short messages
- ▶ 1 internal collision expected, detected in the output
- 2 Query $t = MAC(x \parallel m)$
- $(y \parallel m, t)$ is a forgery

Problem

Introduction

► CBC-MAC with DES is unsafe after 2³² queries

Security Proofs

What's a security proof?

- ► $Adv_{CBC-F}^{prf}(q,t) \le Adv_F^{prp}(mq,t+O(mqn)) + \frac{q^2m^2}{2^{n-1}}$
- ▶ Bound on the success probability of an adversary against the MAC
 - q number of queries
 - t time
 - m max query length
- ▶ "If DES is a secure PRF, then CBC-MAC-DES is a secure PRF"

Limitations

- ► Birthday-bound security
 - ▶ Bound meaningless when $mq \approx 2^{n/2}$
- No information on security degradation after the birthday bound
 - Usually assumed that key-recovery attacks require more...

Remaining of this talk

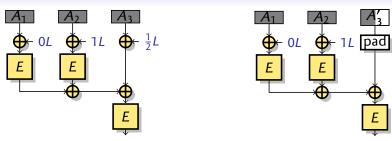
MAC security is well understood

- Good MAC constructions have birthday bound security proof
- ▶ We have a generic existential forgery attack with birthday complexity

Or is it?

- ▶ Different MACs have different security loss after the birthday bound!
- ▶ We need to study generic attack to understand the security of modes

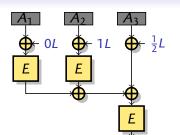
PMAC

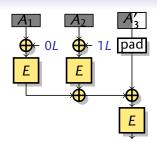


- PMAC: parallelisable block-cipher based MAC [Black & Rogaway '02]
 - Uses secret offsets to the block cipher input: $L = E_k(0)$

Introduction

PMAC





Collision attack: two sets of messages

[Lee & al '06]

 $A_x = [x], |x| = 128$

 $B_y = [y], |y| < 128$

► Full block

Partial block

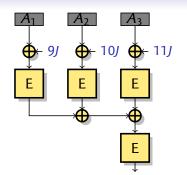
 $MAC(A_x) = E([x] \oplus \frac{1}{2}L)$

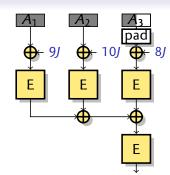
 $MAC(B_y) = E(pad([y]))$

- ► Collision (A_x, B_y) ?
 - ► The MAC collide iff $[x] \oplus \frac{1}{2}L = pad([y])$
 - Deduce L
 - Universal forgery attack

Introduction

AEZ





AEZ uses a variant of PMAC

- [Hoang, Krovetz & Rogaway '15]
- ► A collision gives $J: [x] \oplus 9J = pad([y]) \oplus 8J$
- ► Key derivation (AEZ v2) $J = E_0(k)$
- Collisions reveal the master key!

[FLS, AC'15]

Security of block cipher based MACs

Proofs

Introduction

CBC-MAC, PMAC, and AEZ have security proofs up to the birthday bound

Attacks

Effect of collision attacks with $2^{n/2}$ queries

► CBC-MAC: almost universal forgeries

[Jia & al '09]

- ► PMAC: universal forgeries
- ► AEZ: key recovery

Outline

Generic Attacks against MAC algorithms

Introduction

MACs Security Proofs

Hash-based MACs

Hash-based MACs HMAC

State recovery attacks

Using multi-collisions
Using the cycle structure
Short messages attacks using chains

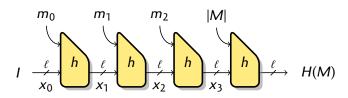
Universal forgery attacks

Using cycles
Using chains

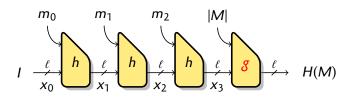
Key-recovery attacks

HMAC-GOST

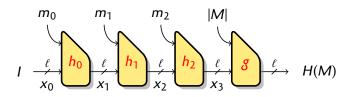
17 / 69



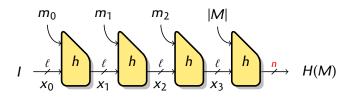
- ► Hash function: public function $\{0,1\}^* \rightarrow \{0,1\}^n$
 - Maps arbitrary-length message to fixed-length hash
- Mekle-Damgård mode
 - Process message iteratively
 - Use the message length in the padding (MD strengthening)
- Variants:
 - Finalization function
 - Use a block counter (HAIFA)
 - ▶ Truncate the hash to $n < \ell$ (wide-pipe)



- Hash function: public function $\{0,1\}^* \rightarrow \{0,1\}^n$
 - Maps arbitrary-length message to fixed-length hash
- Mekle-Damgård mode
 - Process message iteratively
 - Use the message length in the padding (MD strengthening)
- Variants:
 - Finalization function
 - Use a block counter (HAIFA)
 - ▶ Truncate the hash to $n < \ell$ (wide-pipe)



- Hash function: public function $\{0,1\}^* \rightarrow \{0,1\}^n$
 - Maps arbitrary-length message to fixed-length hash
- Mekle-Damgård mode
 - Process message iteratively
 - Use the message length in the padding (MD strengthening)
- Variants:
 - Finalization function
 - Use a block counter (HAIFA)
 - ▶ Truncate the hash to $n < \ell$ (wide-pipe)



- Hash function: public function $\{0,1\}^* \rightarrow \{0,1\}^n$
 - Maps arbitrary-length message to fixed-length hash
- Mekle-Damgård mode
 - Process message iteratively
 - Use the message length in the padding (MD strengthening)
- Variants:
 - Finalization function
 - Use a block counter (HAIFA)
 - ▶ Truncate the hash to $n < \ell$ (wide-pipe)

- ▶ Hash function should behave like a random function
 - Hard to find collisions, preimages
 - Hash can be used as a fingerprint
- Ideal hash function: Random Oracle

Hash-based MACs

- ▶ Good hash functions (families) are indistinguishable from a random oracle up to $2^{\ell/2}$ queries
- Hashing message and key with a random oracle is a secure MAC
- ▶ Internal state size ℓ larger than block ciphers
- Secret-prefix MAC:

 $MAC_k(M) = H(k \parallel M)$

Secret-suffix MAC:

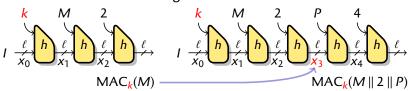
 $MAC_{k}(M) = H(M || k)$

Secret-prefix MAC

Definition (Secret-prefix MAC)

 $MAC_k(M) = H(k \parallel M)$

Insecure with MD/SHA: length-extension attack



- Can compute MAC_k(M || 2 || P) from MAC_k(M) without k
- Practical attack against Flickr API [Duong & Rizzo '09]
- Secure with modern hash functions (with finalization)
 - Recommend with sponges (Keccak)
 - Skein-MAC is essentially Secret-prefix MAC

Secret-suffix MAC (I)

Definition (Secret-suffix MAC)

$MAC_{k}(M) = H(M \parallel k)$

- Can be broken using offline collisions
 - Find a collision $H(M_1) = H(M_2)$ (with full blocks)
 - ► Since hash function are iterative, $H(M_1 \parallel k) = H(M_2 \parallel k)$
 - Existential forgery
- Finding a collision offline requires $2^{\ell/2}$ time
 - Almost practical for 128-bit hash functions (e.g. RIPEMD-128)
 - Cryptanalytic shortcuts (e.g. MD5)
- Finding a collision online require $2^{\ell/2}$ queries
 - Far from practical, easy to detect the attack

Secret-suffix MAC (II)

Definition (Secret-suffix MAC)

$$MAC_{k}(M) = H(M \parallel k)$$

Birthday key-recovery attack

[Preneel & van Oorschot '96]

- Guess the first key byte as k*
- 2 Find a one-block hash collision (C_0, C_1) with $C_i = M_i \parallel k^*$

3 Query $MAC(M_1)$ and $MAC(M_2)$

$$\mathsf{MAC}(M_1) = H\left(\begin{array}{c|c} \uparrow \uparrow \uparrow \uparrow & \cdots \uparrow \uparrow \uparrow \uparrow & k_0 \end{array} \middle| \begin{array}{c|c} k_1 k_2 k_3 \dots \\ \hline \mathsf{MAC}(M_0) = H\left(\begin{array}{c|c} \downarrow \downarrow \downarrow & \cdots \downarrow \downarrow \downarrow & k_0 \end{array} \middle| \begin{array}{c|c} k_1 k_2 k_3 \dots \\ \hline \end{array} \right)$$

- 4 If the MACs are equal, the guess was correct
- ▶ Practical attack when using MD5 (e.g. APOP) [L '07, Sasaki & al '08]

Envelope MAC and Sandwich MAC

To avoid problems, use the key at the beginning and at the end

Definition (Envelope MAC)

$$MAC_{k}(M) = H(k || M || k)$$

- ► Secure up to the birthday bound [Bellare, Canetti & Krawczyk '96]
- Key-recovery attack with complexity $2^{\ell/2}$

[Preneel & van Oorschot '96]

Definition (Sandwich MAC)

$$MAC_k(M) = H(pad(k) || pad(M) || k)$$

- Secure up to the birthday bound
- ► Key-recovery attack does no apply

[Yasuda '07]

The proof does not capture this important difference!

Envelope MAC and Sandwich MAC

To avoid problems, use the key at the beginning and at the end

Definition (Envelope MAC)

Hash-based MACs 000000000

$$MAC_{k}(M) = H(k || M || k)$$

- Secure up to the birthday bound [Bellare, Canetti & Krawczyk '96]
- Key-recovery attack with complexity $2^{\ell/2}$

[Preneel & van Oorschot '96]

Definition (Sandwich MAC)

$$MAC_k(M) = H(pad(k) || pad(M) || k)$$

- Secure up to the birthday bound
- Key-recovery attack does no apply

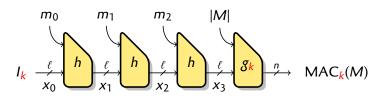
[Yasuda '07]

The proof does not capture this important difference!

HMAC

- HMAC has been designed by Bellare, Canetti, and Krawczyk in 1996
- Standardized by ANSI, IETF, ISO, NIST.
- ► Used in many applications:
 - To provide authentication:
 - SSL, IPSEC, ...
 - ► To provide identification:
 - Challenge-response protocols
 - CRAM-MD5 authentication in SASL, POP3, IMAP, SMTP, ...
 - For key-derivation:
 - HMAC as a PRF in IPsec
 - HMAC-based PRF in TLS

Hash-based MACs



- ▶ ℓ-bit chaining value
- ▶ n-bit output
- ► *k*-bit key

we focus on $\ell = n = k$

- Key-dependant initial value I_k
- Unkeyed compression function h
- ► Key-dependant finalization, with message length g_k

- Security proofs up to the birthday bound
- Generic attacks based on collisions
 - Proof is tight for some security notions
 - Existential forgery
 - Distinguishing-R
- What is the remaining security above the birthday bound?
 - Generic distinguishing-H attack?
 - Generic state-recovery attack?
 - Generic universal forgery attack?
 - Generic key-recovery attack?

Outline

Generic Attacks against MAC algorithms

Introduction

MACs

Hash-based MACs

Hash-based MACs

State recovery attacks

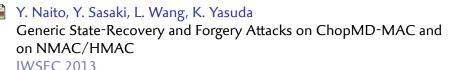
Using multi-collisions Using the cycle structure Short messages attacks using chains

Universal forgery attacks

Key-recovery attacks

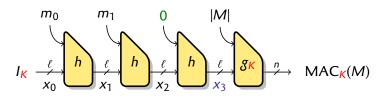
27 / 69

Bibliography



- G. Leurent, T. Peyrin, L. Wang New Generic Attacks against Hash-Based MACs ASIACRYPT 2013
 - I. Dinur, G. Leurent Improved Generic Attacks against Hash-Based MACs and HAIFA **CRYPTO 2014**

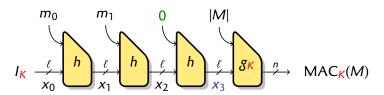
Multi-collision based attack



- Using a fixed message block, we apply a fixed function
- Starting point and ending point unknown because of the key

- - Generic Attacks against MAC algorithms

[Naito, Sasaki, Wang & Yasuda '13]



- Using a fixed message block, we apply a fixed function
- Starting point and ending point unknown because of the key

Can we detect properties of the function $h_0: x \mapsto h(x, 0)$ *?*

- Use bias in the output of the compression function
 - Some outputs are more likely than others
 - With $2^{\ell-\epsilon}$ work, find a value x^* with ℓ preimages (offline)
- How to detect when this state is reached?

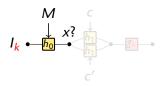
Building filters

Filters to compare online and online states

Test whether the state reached after processing M is equal to x

- Collisions are preserved by the finalization (for same-length messages)

Offline Structure



Online Structure

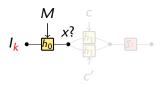
Building filters

Filters to compare online and online states

Test whether the state reached after processing M is equal to x

- Collisions are preserved by the finalization (for same-length messages)
- 1 Find a collision: h(x,c) = h(x,c')

Offline Structure



Online Structure

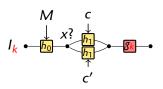
Filters to compare online and online states

Test whether the state reached after processing M is equal to x

- Collisions are preserved by the finalization (for same-length messages)
- Find a collision: h(x,c) = h(x,c')

Offline Structure

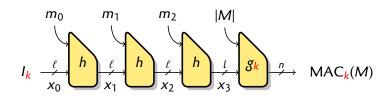
2
$$MAC(M \| c) \stackrel{?}{=} MAC(M \| c')$$



Online Structure

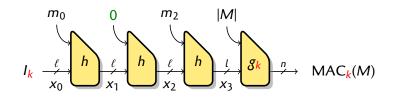
30 / 69

First state-recovery attack



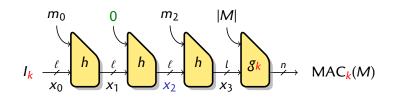
- I Fix a message block $m_1 = [0]$. With $2^{\ell-\epsilon}$ work, find a value x^* with ℓ preimages
- 2 Find a collision $h(x^*, c) = h(x^*, c')$
- For random m_0 , compare MAC($m_0 \parallel [0] \parallel c$) and MAC($m_0 \parallel [0] \parallel c'$) If they are equal, $x_2 = x^*$

First state-recovery attack

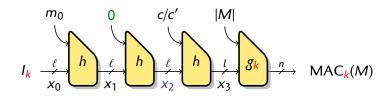


- 1 Fix a message block $m_1 = [0]$.

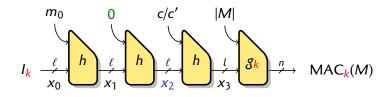
First state-recovery attack



- I Fix a message block $m_1 = [0]$. With $2^{\ell-\epsilon}$ work, find a value x^* with ℓ preimages
- Find a collision $h(x^*, c) = h(x^*, c')$
- For random m_0 , compare MAC($m_0 \parallel [0] \parallel c$) and MAC($m_0 \parallel [0] \parallel c'$) If they are equal, $x_2 = x^*$



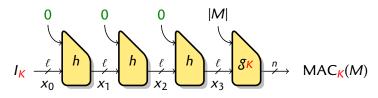
- 1 Fix a message block $m_1 = [0]$. With $2^{\ell-\varepsilon}$ work, find a value x^* with ℓ preimages
- Find a collision $h(x^*,c) = h(x^*,c')$



- 1 Fix a message block $m_1 = [0]$. With $2^{\ell-\varepsilon}$ work, find a value x^* with ℓ preimages
- Find a collision $h(x^*,c) = h(x^*,c')$
- For random m_0 , compare $MAC(m_0 \parallel [0] \parallel c)$ and $MAC(m_0 \parallel [0] \parallel c')$ If they are equal, $x_2 = x^*$

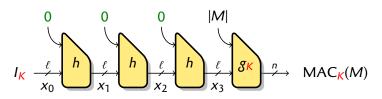
Structure of state-recovery attacks

- 1 Identify special states easier to reach
- 2 Build filter for special states
- Build messages to reach special states Test if special state reached using filters
- ▶ In this attack, steps 1 & 2 offline, step 3 online.



- Using a fixed message block, we iterate a fixed function
- Starting point and ending point unknown because of the key

Cycle based attack

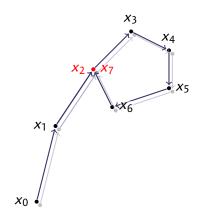


- Using a fixed message block, we iterate a fixed function
- Starting point and ending point unknown because of the key

Can we detect properties of the function $h_0: x \mapsto h(x, 0)$?

- Study the cycle structure of random mappings
- Used to attack HMAC in related-key setting [Peyrin, Sasaki & Wang, Asiacrypt 12]

Random Mappings



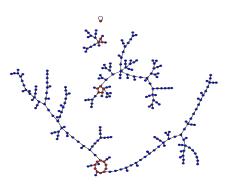
- ► Functional graph of a random mapping $x \rightarrow f(x)$
- ▶ Iterate f: $x_i = f(x_{i-1})$
- Collision after ≈ 2^{ℓ/2} iterations
 Cycles
- ► Trees rooted in the cycle
- Several components

Random Mappings

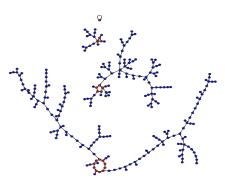
- ► Functional graph of a random mapping $x \rightarrow f(x)$
- ▶ Iterate f: $x_i = f(x_{i-1})$
- ► Collision after $\approx 2^{\ell/2}$ iterations
 - Cycles
- ► Trees rooted in the cycle
- Several components

Random Mappings

- ► Functional graph of a random mapping $x \rightarrow f(x)$
- ▶ Iterate f: $x_i = f(x_{i-1})$
- ▶ Collision after $\approx 2^{\ell/2}$ iterations
 - Cycles
- Trees rooted in the cycle
- Several components

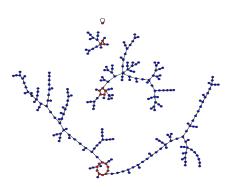


- # Components: $\frac{1}{2} \log N$
- # Cyclic nodes: $\sqrt{\pi N/2}$
- ► Tail length: $\sqrt{\pi N/8}$
- ► Rho length: $\sqrt{\pi N/2}$
- ► Largest tree: 0.48*N*
- ► Largest component: 0.76N



- # Components: $\frac{1}{2} \log N$
- # Cyclic nodes: $\sqrt{\pi N/2}$
- ► Tail length: $\sqrt{\pi N/8}$
- ► Rho length: $\sqrt{\pi N/2}$
- ► Largest tree: 0.48*N*
- ► Largest component: 0.76N

- 1 Offline: find the cycle length L of the main component of h_0
- **Online:** query $t = MAC(r || [0]^{2^{\ell/2}})$ and $t' = MAC(r || [0]^{2^{\ell/2} + L})$



- # Components: $\frac{1}{2} \log N$
- # Cyclic nodes: $\sqrt{\pi N/2}$
- ► Tail length: $\sqrt{\pi N/8}$
- ► Rho length: $\sqrt{\pi N/2}$
- ► Largest tree: 0.48*N*
- ► Largest component: 0.76N

Using the cycle length

- Offline: find the cycle length L of the main component of h_0
- **Online:** query $t = MAC(r || [0]^{2^{\ell/2}})$ and $t' = MAC(r || [0]^{2^{\ell/2} + L})$

Success if

▶ The starting point is in the main component

p = 0.76

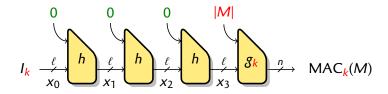
▶ The cycle is reached with less than $2^{\ell/2}$ iterations

p ≥ 0.5

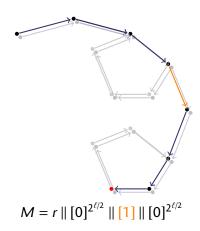
Randomize starting point

Dealing with the message length

Problem: most MACs use the message length.

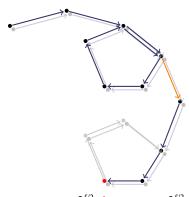


Solution: reach the cycle twice

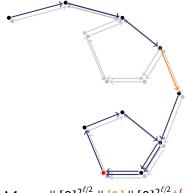


Dealing with the message length

Solution: reach the cycle twice



$$M_1 = r || [0]^{2^{\ell/2} + L} || [1] || [0]^{2^{\ell/2}}$$



$$M_2 = r \| [0]^{2^{\ell/2}} \| [1] \| [0]^{2^{\ell/2} + L}$$

Distinguishing-H attack

Offline: find the cycle length L of the main component of h_0

2 Online: query
$$t = MAC(r || [0]^{2^{\ell/2}} || [1] || [0]^{2^{\ell/2} + L})$$
$$t' = MAC(r || [0]^{2^{\ell/2} + L} || [1] || [0]^{2^{\ell/2}})$$

If t = t', then h is the compression function in the oracle

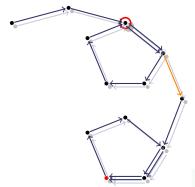
Analysis

- ► Complexity: $2^{\ell/2}$ compression function calls
- ► Success probability: *p* ~ 0.14
 - Both starting point are in the main component
 - ▶ Both cycles are reached with less than $2^{\ell/2}$ iterations

 $p = 0.76^2$ $p \ge 0.5^2$

State recovery attack

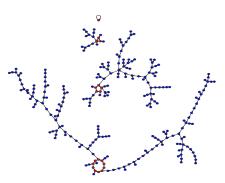
- Consider the first cyclic point
- With high pr., root of the giant tree



- Offline: find cycle length L, and root of giant tree α
- 2 Online: Binary search for smallest z with collisions: MAC $(r || [0]^z || [x] || [0]^{2^{\ell/2} + L})$ MAC $(r || [0]^{z+L} || [x] || [0]^{2^{\ell/2}})$
- **3** State after $r \parallel [0]^z$ is α (with high pr.

Analysis

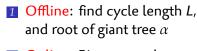
► Complexity $2^{\ell/2} \times \ell \times \log(\ell)$

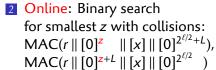


- # Components: $\frac{1}{2} \log N$
- # Cyclic nodes: $\sqrt{\pi N/2}$
- ► Tail length: $\sqrt{\pi N/8}$
- ► Rho length: $\sqrt{\pi N/2}$
- ► Largest tree: 0.48*N*
- ► Largest component: 0.76N

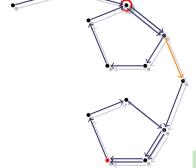
State recovery attack

- Consider the first cyclic point
- With high pr., root of the giant tree





State after $r \parallel [0]^z$ is α (with high pr.)



Analysis

► Complexity $2^{\ell/2} \times \ell \times \log(\ell)$

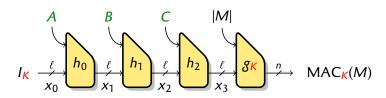
Limitations of cycle-based attacks

- Messages of length $2^{\ell/2}$ are not very practical...
 - ▶ SHA-1 and HAVAL limit the message length to 2⁶⁴ bits
- Cycle detection impossible with messages shorter than $L \approx 2^{\ell/2}$
 - ► Shorter cycles have a small component
- Not applicable to HAIFA hash functions

Compare with collision finding algorithms

- ▶ Pollard's rho algorithm use cycle detection
- Parallel collision search for van Oorschot and Wiener uses shorter chains

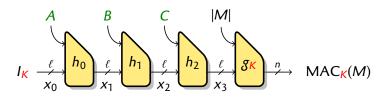
Chain-based attack



- Using a fixed message, we iterate a fixed sequence of function
- Starting point and ending point unknown because of the key

Can we detect properties of the iteration of fixed functions?

Study the entropy loss

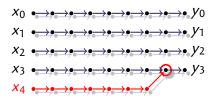


- Using a fixed message, we iterate a fixed sequence of function
- Starting point and ending point unknown because of the key

Can we detect properties of the iteration of fixed functions?

Study the entropy loss

Collision finding with short chains



- **1** Compute chains $x \sim y$ Stop when y distinguished
- If $y \in \{y_i\}$, collision found

Theorem (Entropy loss)

Let $f_1, f_2, ..., f_{2^s}$ be a fixed sequence of random functions; the image of $g_{2^s} \triangleq f_{2^s} \circ ... \circ f_2 \circ f_1$ contains about $2^{\ell-s}$ points.

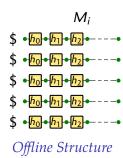
Use these state as special states (instead of cycle entry point)

State-recovery attacks

Send messages to the oracle

 M_i $I_k \bullet f_0 \bullet f_1 \bullet f_2 \bullet \cdots \bullet f_k \bullet MAC(M_0)$ $I_k \bullet f_0 \bullet f_1 \bullet f_2 \bullet \cdots \bullet f_k \bullet MAC(M_1)$ $I_k \bullet f_0 \bullet f_1 \bullet f_2 \bullet \cdots \bullet f_k \bullet MAC(M_2)$ $I_k \bullet f_0 \bullet f_1 \bullet f_2 \bullet \cdots \bullet f_k \bullet MAC(M_3)$ $I_k \bullet f_0 \bullet f_1 \bullet f_2 \bullet \cdots \bullet f_k \bullet MAC(M_4)$ Online Structure

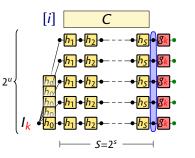
 Do some computations offline with the compression function



- Match the sets of points?
 - How to test equality? Online chaining values unknown
 - How many equality test do we need?

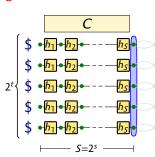
First attempt

► Chains of length 2^s, with a fixed message C



Online Structure

- Evaluate 2^t chains offline Build filters for endpoints
- 2 Query 2^u message $M_i = [i] \parallel C$ Test endpoints with filters



Offline Structure

$$s+t+u=\ell$$

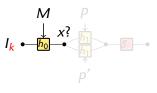
Cplx: 2^{s+t+u}

Building filters

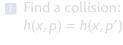
Filters to compare online and online states

Test whether the state reached after processing M is equal to x

Collisions are preserved by the finalization (for same-length messages)



Online Structure

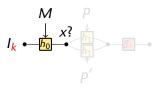


Building filters

Filters to compare online and online states

Test whether the state reached after processing M is equal to x

- Collisions are preserved by the finalization (for same-length messages)



Online Structure

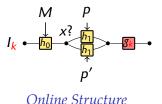
Find a collision: h(x,p) = h(x,p')

Building filters

Filters to compare online and online states

Test whether the state reached after processing M is equal to x

- Collisions are preserved by the finalization (for same-length messages)
- $2 \mathsf{MAC}(M||p) \stackrel{?}{=} \mathsf{MAC}(M||p')$

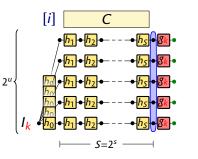


Find a collision: h(x,p) = h(x,p')

$$x \stackrel{p}{\underset{h_1}{\longleftarrow}}$$

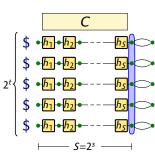
First attempt

► Chains of length 2^s, with a fixed message C



Online Structure

- Evaluate 2^t chains offline Build filters for endpoints
- Query 2^u message M_i = [i] || C
 Test endpoints with filters



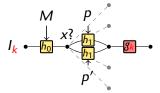
Offline Structure

$$s + t + u = \ell$$

Cplx: 2^{s+t+u}

Online filters

- Using the filters is too expensive.
- If we build filters online, using them is cheap.
- 1 Find p, p' s.t. MAC(M||p) = MAC(M||p')



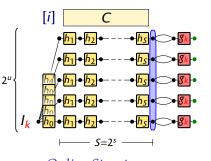
Online Structure

2
$$h(x,m) \stackrel{?}{=} h(x,m')$$

Cost	Build	Test
Offline filter	$2^{\ell/2}$	2 ^s
Online filter	$2^{\ell/2+s}$	1

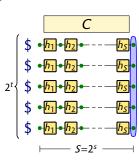
First attack on HMAC-HAIFA

Chains of length 2^s, with a fixed message C



Online Structure

- 1 Query 2^u message $M_i = [i] \parallel C$ Build filters for M;
- Evaluate 2^t chains offline Test endpoints with filters



Offline Structure

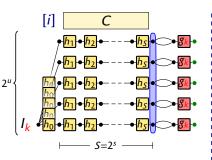
$$s + t + u = \ell$$

Cplx: $2^{s+u+\ell/2}$
Cplx: 2^{t+s}

Cplx: 2^{t+u}

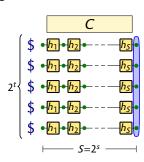
First attack on HMAC-HAIFA

► Chains of length 2^s, with a fixed message C



Online Structure

- Query 2^u message $M_i = [i] \parallel C$ Build filters for M_i
- Evaluate 2^t chains offline Test endpoints with filters



Offline Structure

Optimal complexity

 $2^{\ell-s}$, for $s \le \ell/6$ (using u = s)
Minimum: $2^{5\ell/6}$

Diamond filters

- Building filers is a bottleneck.
- ► Can we amortize the cost of building many filters?

Diamond structure

[Kelsey & Kohno, EC'06]

Herd N initial states to a common state

- ► Try $\approx 2^{\ell/2}/\sqrt{N}$ msg from each state.
- Whp, the initial states can be paired
- Repeat...

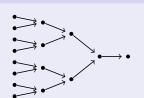
 $\mathsf{Fotal} \approx \sqrt{N} \cdot 2^{\ell/2}$

Diamond filters

- Building filers is a bottleneck.
- ► Can we amortize the cost of building many filters?

Diamond structure

[Kelsey & Kohno, EC'06]



Herd N initial states to a common state

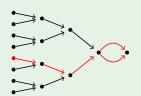
- ► Try $\approx 2^{\ell/2}/\sqrt{N}$ msg from each state.
- Whp, the initial states can be paired
- Repeat...

Total $\approx \sqrt{N} \cdot 2^{\ell/2}$

Diamond filters

- Building filers is a bottleneck.
- Can we amortize the cost of building many filters?

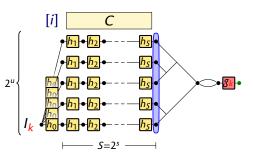
Diamond filter



- 1 Build a diamond structure
- 2 Build a collision filter for the final state
- Can also be built online
- ▶ Building N offline filters: $\sqrt{N} \cdot 2^{\ell/2}$ rather than $N \cdot 2^{\ell/2}$
- ▶ Building N online filters: $\sqrt{N} \cdot 2^{\ell/2+s}$ rather than $N \cdot 2^{\ell/2+s}$

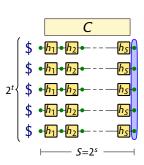
Improved attack on HMAC-HAIFA

Chains of length 2^s, with a fixed message C



Online Structure

- 1 Query 2^u message $M_i = [i] \parallel C$ Build diamond filter for M_i
- Evaluate 2^t chains offline Test endpoints with filters



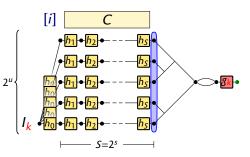
Offline Structure

 $s + t + u = \ell$ Cplx: $2^{s+u/2+\ell/2}$ Cplx: 2^{t+s}

Cplx: 2^{t+u}

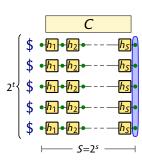
Improved attack on HMAC-HAIFA

► Chains of length 2^s, with a fixed message C



Online Structure

- Query 2^u message $M_i = [i] \parallel C$ Build diamond filter for M_i
- Evaluate 2^t chains offline Test endpoints with filters



Offline Structure

Optimal complexity

 $2^{\ell-s}$, for $s \le \ell/5$ (using u = s)
Minimum: $2^{4\ell/5}$

Improvement using collisions (fixed function)

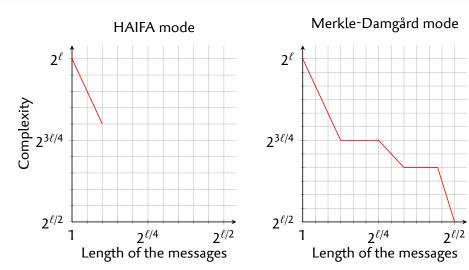
- **1** Compute chains $x \sim y$ Stop when y distinguished
- 2 If $y \in \{y_i\}$, collision found

Theorem (Entropy loss for collisions)

Let \hat{x} and \hat{y} be two collisions found using chains of length 2^s , with a fixed ℓ -bit random function f. Then $\Pr[\hat{x} = \hat{y}] = \Theta(2^{2s-\ell})$.

Use the collisions as special states (instead of cycle entry point)

Trade-offs for state-recovery attacks



Outline

Introduction

MACs

Hash-based MACs

Hash-based MACs

State recovery attacks

Using the cycle structure Short messages attacks using chains

Universal forgery attacks

Using cycles Using chains

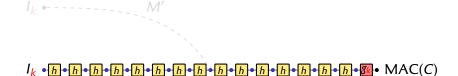
Key-recovery attacks

Bibliography

- T. Peyrin, L. Wang
 Generic Universal Forgery Attack on Iterative Hash-Based MACs
 EUROCRYPT 2014
- J. Guo, T. Peyrin, Y. Sasaki, L. Wang
 Updates on Generic Attacks against HMAC and NMAC
 CRYPTO 2014
- I. Dinur, G. Leurent Improved Generic Attacks against Hash-Based MACs and HAIFA CRYPTO 2014

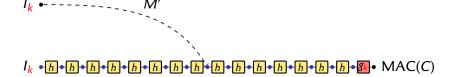
Universal forgery attack

- ▶ Given a challenge message C, compute MAC(C)
 - ▶ $len(C) = 2^s$
 - Oracle access to the MAC, can't ask MAC(C)
- ► Study internal states for the computation of MAC(C)
 - Unknown because of initial key and final key
 - Build a different message reaching same states
 - 2 Query MAC(M'), use as forgery



Universal forgery attack

- ▶ Given a challenge message C, compute MAC(C)
 - ▶ $len(C) = 2^s$
 - Oracle access to the MAC, can't ask MAC(C)
- Study internal states for the computation of MAC(C)
 - Unknown because of initial key and final key
 - Build a different message reaching same states
 - 2 Query MAC(M'), use as forgery



- Secret-suffix has no key at the beginning
 - All internal states for challenge message are known!
- ► Long-message second-preimage attack [Kelsey & Schneier '05]

$$\vdash H(M) = H(C) \Longrightarrow MAC(M) = H(M \parallel k) = H(C \parallel k) = MAC(C)$$

- Cplx: $2^{\ell/2}$ Cplx: $2^{\ell-s}$ 2 Find a connexion from the IV to the target states

- Secret-suffix has no key at the beginning
 - All internal states for challenge message are known!
- ► Long-message second-preimage attack [Kelsey & Schneier '05]

$$\vdash H(M) = H(C) \Longrightarrow MAC(M) = H(M \parallel \frac{k}{k}) = H(C \parallel \frac{k}{k}) = MAC(C)$$

Build a expandable message

Cplx: $2^{\ell/2}$

$$2^{7} + 1 bl. \ 2^{6} + 1 bl. \ 2^{5} + 1 bl. \ 2^{4} + 1 bl. \ 2^{3} + 1 bl. \ 2^{2} + 1 bl.$$

IV $(m_{7}/m_{7}) (m_{6}/m_{6}) (m_{5}/m_{5}) (m_{4}/m_{4}) (m_{3}/m_{3}) (m_{2}/m_{2}) (m_{5}/m_{5}) (m_{4}/m_{4}) (m_{3}/m_{3}) (m_{2}/m_{2}) (m_{5}/m_{5}) (m_{5}/m_{5$

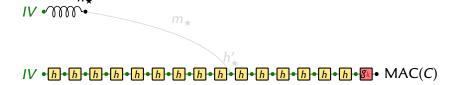
- Secret-suffix has no key at the beginning
 - All internal states for challenge message are known!
- ► Long-message second-preimage attack [Kelsey & Schneier '05]

$$\vdash H(M) = H(C) \Longrightarrow MAC(M) = H(M \parallel \frac{k}{k}) = H(C \parallel \frac{k}{k}) = MAC(C)$$

- Build a expandable message
- Find a connexion from x_* to the target states
- Select expandable message

Cplx: $2^{\ell/2}$

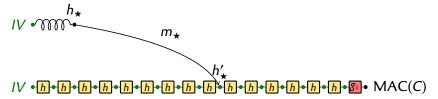
Cplx: 2^{i-s}



- Secret-suffix has no key at the beginning
 - All internal states for challenge message are known!
- ► Long-message second-preimage attack [Kelsey & Schneier '05]

$$\vdash H(M) = H(C) \Longrightarrow MAC(M) = H(M \parallel \frac{k}{k}) = H(C \parallel \frac{k}{k}) = MAC(C)$$

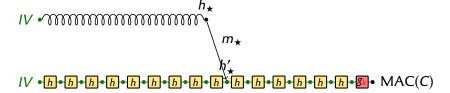
- Build a expandable message
- 2 Find a connexion from x_{\star} to the target states



- Secret-suffix has no key at the beginning
 - All internal states for challenge message are known!
- ► Long-message second-preimage attack [Kelsey & Schneier '05]

$$\vdash H(M) = H(C) \Longrightarrow MAC(M) = H(M \parallel \frac{k}{k}) = H(C \parallel \frac{k}{k}) = MAC(C)$$

- Build a expandable message
- 2 Find a connexion from x_{\star} to the target states
- 3 Select expandable message

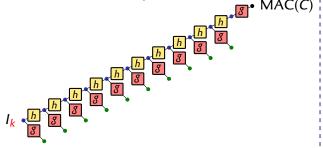


UF against secret-prefix MAC

- Secret-suffix has no key at the end
 - Finalization function is known!

UF against secret-prefix MAC

- Secret-suffix has no key at the end
 - Finalization function is known!
- **1** Query the MAC of C_{i} (truncated to i blocks)
- **2** Evaluate the finalization function on $2^{\ell-s}$ states
- Find a match, compute MAC



Online Structure

nlx: 2^{2.s}

Cplx: $2^{\ell-s}$

\$ • \vec{3}\$

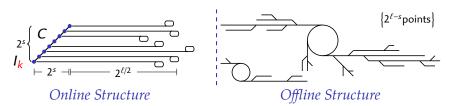
UF attack against hash-based MAC

- Combine both techniques
 - Recover an internal state of the challenge
 - 2 Use second-preimage attack with known state
- Hard part is to recover an internal state
- Extract information about the challenge state through g_k
 - Compute distance to cycle
 - Use entropy loss of iterations

Using cycles

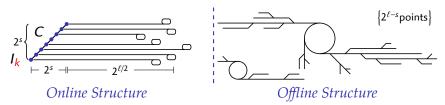
Main idea

- ▶ Measure the distance from challenge point to cycle in h_[0]
 - Add zero blocks after the challenge
- Match with offline points with known distance



Using cycles

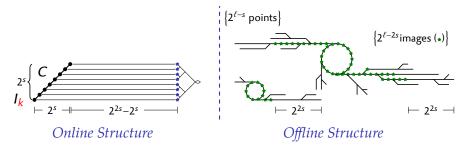
- (online) For each challenge state, use binary search to find distance $\mathsf{MAC}(C_{|i} \parallel 0^{d+L} \parallel 1 \parallel 0^{2^{\ell/2}}) \stackrel{?}{=} \mathsf{MAC}(C_{|i} \parallel 0^d \parallel 1 \parallel 0^{2^{\ell/2+L}})$
- **2** (offline) Build a structure with $2^{\ell-s}$ points with known distance.
- **3** (offline) Match the challenge states and the offline structure
- **4** (online) Test candidates at the right distance.



Using chains

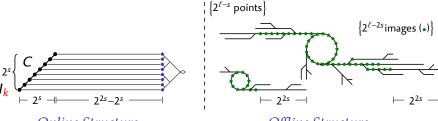
Main idea

- ► Add a sequence of fixed message blocks to reduce image space
- Match in the reduced space



Using chains

- 1 (online) Query messages $M_i = C_{li} \parallel [0]^{2^{2s}-i}$. Build diamond filter for endpoints Y
- 2 (offline) Build a structure with $2^{\ell-s}$ points. Consider 2^{2s} -images X. $|X| \le 2^{\ell-2s}$
- (offline) Match X and Y.
- (offline) For each match, find preimages as candidates.



Online Structure

Universal forgery attacks: summary

Universal forgery attacks

- It is possible to perform a generic universal forgery attack
- ▶ Best attack so far: $2^{\ell-s}$, with $s \leq \ell/4$ ($2^{3\ell/4}$ with $s = \ell/4$)
- Using distance to the cycle: query length $2^{\ell/2}$
 - ► Complexity $2^{\ell-s}$, $s \leq \ell/6$ Optimal: $2^{5\ell/6}$, with $s = 2^{\ell/6}$

 - ▶ Complexity $2^{\ell-s}$, $s \leq \ell/4$ Optimal: $2^{3\ell/4}$, with $s=2^{\ell/4}$
- [Guo, Peyrin, Sasaki & Wang, CR '14]
- Later attack using chains: shorter query length 2^t
 - ► Complexity $2^{\ell-s}$, $s \le \ell/7$, t = 2sOptimal: $2^{6\ell/7}$, with $s = 2^{\ell/7}$, $t = 2\ell/7$

[Dinur & L, CR '14]

[Peyrin & Wang, EC '14]

• Complexity $2^{\ell-s/2}$, $s \le 2\ell/5$, t = sOptimal: $2^{4\ell/5}$, with $s = 2^{2\ell/5}$, $t = 2\ell/5$

[Dinur & L, CR '14]

Outline

Introduction

MACs

Hash-based MACs

Hash-based MACs

State recovery attacks

Using the cycle structure Short messages attacks using chains

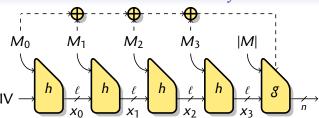
Universal forgery attacks

Key-recovery attacks

HMAC-GOST

62 / 69

GOST hash functions

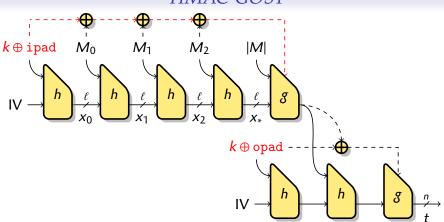


- ► Family of Russian standards
 - GOST-1994: $n = \ell = 256$
 - ▶ GOST-2012: $n \le \ell = 512$, HAIFA mode

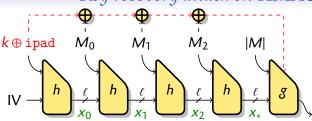
(aka Streebog)

- GOST and HMAC-GOST standardized by IETF
- Checksum (dashed lines)
 - Larger state should increase the security

HMAC-GOST

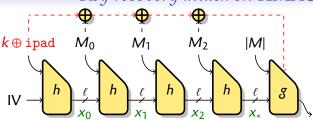


- ▶ In HMAC, key-dependant value used after the message
 - Related-key attacks on the last block

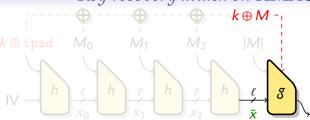


- Recover the state of a short message
- 2 Build a multicollision: $2^{3l/4}$ messages with the same x_*
- Query messages, detect collisions $g(\bar{x}, k \oplus M) = g(\bar{x}, k \oplus M')$ Store $(M \oplus M', M)$ for $2^{\ell/2}$ collisions
- Find collisions $g(\bar{x}, y) = g(\bar{x}, y')$ offline

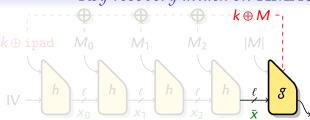
 Store $(x \oplus y', y)$ for $2^{\ell/2}$ collisions
- Detect match $M \oplus M' = y \oplus y'$. With high probability $M \oplus k = y$



- Recover the state of a short message
- **2** Build a multicollision: $2^{3l/4}$ messages with the same x_*
- Query messages, detect collisions $g(\bar{x}, k \oplus M) = g(\bar{x}, k \oplus M')$ Store $(M \oplus M', M)$ for $2^{\ell/2}$ collisions
- Find collisions $g(\bar{x}, y) = g(\bar{x}, y')$ offline
- Detect match $M \oplus M' = y \oplus y'$. With high probability $M \oplus k = y$

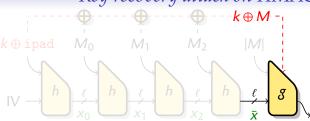


- Recover the state of a short message
- Build a multicollision: $2^{3l/4}$ messages with the same x_*
- Query messages, detect collisions $g(\bar{x}, k \oplus M) = g(\bar{x}, k \oplus M')$ Store $(M \oplus M', M)$ for $2^{\ell/2}$ collisions



- 1 Recover the state of a short message
- **2** Build a multicollision: $2^{3l/4}$ messages with the same x_*
- Query messages, detect collisions $g(\bar{x}, k \oplus M) = g(\bar{x}, k \oplus M')$ Store $(M \oplus M', M)$ for $2^{\ell/2}$ collisions
- Find collisions $g(\bar{x}, y) = g(\bar{x}, y')$ offline

 Store $(x \oplus y', y)$ for $2^{\ell/2}$ collisions
- Detect match $M \oplus M' = y \oplus y'$. With high probability $M \oplus k = y$



- 1 Recover the state of a short message
- **2** Build a multicollision: $2^{3l/4}$ messages with the same x_*
- Query messages, detect collisions $g(\bar{x}, k \oplus M) = g(\bar{x}, k \oplus M')$ Store $(M \oplus M', M)$ for $2^{\ell/2}$ collisions
- Find collisions $g(\bar{x}, y) = g(\bar{x}, y')$ offline Store $(x \oplus y', y)$ for $2^{\ell/2}$ collisions
- 5 Detect match $M \oplus M' = y \oplus y'$. With high probability $M \oplus k = y$

Complexity

Surprising result

The checksum actually make the hash function weaker!

- ► HMAC-GOST-1994 is weaker than HMAC-SHA256
- HMAC-GOST-2012 is weaker than HMAC-SHA512

It is important to recover the state of a short message

- ► For GOST-1994, we can recover the state of a short message from a longer one using padding tricks

 Total complexity 2^{3ℓ/4}
- ▶ For GOST-2012, we use an advanced attack with message length $2^{\ell/10}$

Total complexity $2^{4\ell/5}$

Attack complexity

Function	Mode	ℓ	S	St. rec.	Univ. F	K. rec.
SHA-1	MD	160	2 ⁵⁵	2 ¹⁰⁷	2 ¹³²	
SHA-224	MD	256	2^{55}	2^{192}		
SHA-256	MD	256	2^{55}	2^{192}	2^{228}	
SHA-512	MD	512	2^{118}	2^{384}	2^{453}	
HAVAL	MD	256	2^{54}	2^{192}	2 ²²⁹	
WHIRLPOOL	MD	512	2^{247}	2^{283}	2 ⁴⁴⁶	
BLAKE-256	HAIFA	256	2^{55}	2^{213}		
BLAKE-512	HAIFA	512	2^{118}	2 ⁴¹⁹		
Skein-512	HAIFA	512	2 ⁹⁰	2^{419}		
GOST-94	MD + σ	256	∞	2^{128}	2^{192}	2^{192}
Streebog	$HAIFA + \sigma$	512	∞	2 ⁴¹⁹	2 ⁴¹⁹	2 ⁴¹⁹

Conclusion

Be carefull with security proof

- "CBC-MAC is proven secure" does not mean "CBC-MAC-AES is a secure as AES"
 - Most security proofs are up to the birthday bound
 - ► Is 64-bit security enough?
- Don't assume too much after the security bound of the proof
 - Generic key-recovery for envelope-MAC, AEZ, HMAC-GOST

Gaps between proofs and attacks!

- Better generic attacks?
- Better proofs?

troduction Hash-based MACs State recovery Universal forgery Key-recovery Conclusion

Thanks

Questions?