Introduction Hash-based MACs State recovery Universal forgery ~ Key-recovery Conclusion
000000000000000 000000000 000000000000000000000000 0000000 0000

Generic Attacks against MAC algorithms

Gaétan Leurent

Inria, France

SAC 2015

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 1/69

Introduction
©00000000000

Confidentiality and authenticity

» Cryptography has two main objectives:

Confidentiality keeping the message secret
Authenticity making sure the message is authentic

» Authenticity is often more important than confidentiality
» Email signature
> Software update
» Credit cards
> Sensor networks
Remote control (e.g. garage door, car)
Remote access (e.g. password authentication)

v

v

» Authenticity achieved with signatures (asymmetric),
or MACs (symmetric)

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 2/69

Introduction Hash-based MACs State recovery Universal forgery ~ Key-recovery Conclusion
0®0000000000000 000000000 000000000000000000000000 0000000 0000

Message Authentication Codes

» Alice sends a message to Bob

» Bob wants to authenticate the message.

> Alice uses a key k to compute a tag: t = MAC (M)
» Bob verifies the tag with the same key k: t< MAC(M)

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 3/69

Introduction
00®0000000000 0

Example use: Authenticated NTP

» NTP: Network Time Protocol
» Synchronize clocks up to a few ms
» NTP client connect to several servers, and evaluate transmission time
» Correct time is critical for security applications
> Time used as nonce
» Use time to detect replay
» Use time to check certificate validity
» Timing message not secret, but must be authentic
> Public key crypto two slow (would affect time precision)
» NIST runs a public Authenticated NTP server

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 4/69

Introduction Hash-based MACs State recovery Universal forgery ~ Key-recovery Conclusion
©000®00000000000 000000000 000000000000000000000000 0000000 0000

Example use: challenge-response authentication

AN

y < MAGC,,,(x)

Y
Alice > Server

password pw password pw
if y = MAC,,,(x), accept

else, reject

» CRAM-MDS5 authentication in SASL, POP3, IMAP, SMTP, ...

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 5/69

Introduction F
0000®0000000000 ©

MAC Constructions

v

Dedicated designs
» Pelican-MAC, SQUASH, SipHash, Chaskey

v

From block ciphers
» CBC-MAC, OMAC, PMAC

v

From hash functions
» HMAC, Sandwich-MAC, Envelope-MAC

» From universal hash functions (randomized MACs)
» UMAC, VMAC, GMAC, Poly1 305

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015

6/69

Introduction
00000e000000

Security notions

» Key-recovery: given access to a MAC oracle, extract the key

» Forgery: given access to a MAC oracle, forge a valid pair
> For a message chosen by the adversary: existential forgery

> For a challenge given to the adversary: universal forgery

» Distinguishing games:
» Distinguish MACZ{ from a PRF: distinguishing-R
eg. distinguish HMAC from a PRF
> Distinguish MAC? from MACZRF: distinguishing-H
e.g. distinguish HMAC-SHAT1 from HMAC-PRF

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015

7/69

Introduction
000000e00000

CBC-MAC

Py Pq P,

IV —~@
E E E

Co G G
» One of the first MAC [NIST, ANSI, ISO, '857]
» Designed by practitioners, to be used with DES

» Based on CBC encryption mode

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 8/69

Introduction
000000e00000

CBC-MAC

P() P‘] PZ
D D

m
m

v

One of the first MAC [NIST, ANSI, ISO, '857]
Designed by practitioners, to be used with DES

v

v

Based on CBC encryption mode
Keep the last cipher-text block as a MAC

v

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 8/69

Introduction Hash-based MACs State recovery Universal forgery — Key-recovery
000000080000000 000000000 000000000000000000000000 0000000 0000

Security of modes of operations

> Initially, security of CBC-MAC-DES was an assumption

» To reduce the number of assumptions,
study the block cipher and the mode independently

Conclusion

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 9/69

Introduction Hash-based MACs State recovery Universal forgery — Key-recovery — Conclusion

000000000000 000000000 0000000000000 0O000O0000000 0000000 0000

Security of modes of operations

» Initially, security of CBC-MAC-DES was an assumption

» To reduce the number of assumptions,
study the block cipher and the mode independently

Security proof for the mode

> Assume that the block cipher is good, prove that the MAC is good
» Lower bound on the security of the mode

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 9/69

Introduction Hash-based MACs State recovery Universal forgery — Key-recovery — Conclusion

000000000000 000000000 0000000000000 0O000O0000000 0000000 0000

Security of modes of operations

» Initially, security of CBC-MAC-DES was an assumption

» To reduce the number of assumptions,
study the block cipher and the mode independently

Security proof for the mode
> Assume that the block cipher is good, prove that the MAC is good
» Lower bound on the security of the mode

Cryptanalysis of the block cipher

» Try to show non-random behavior

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015

Introduction Hash-based MACs State recovery Universal forgery — Key-recovery — Conclusion
000000080000000 000000000 000000000000000000000000 0000000 0000

Security of modes of operations

» Initially, security of CBC-MAC-DES was an assumption

» To reduce the number of assumptions,
study the block cipher and the mode independently

Security proof for the mode
> Assume that the block cipher is good, prove that the MAC is good
» Lower bound on the security of the mode

Cryptanalysis of the block cipher

» Try to show non-random behavior

Generic attacks for the mode

» Attack that work for any choice of the block cipher
» Upper bound on the security of the mode

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 9/69

Introduction Hash-based MACs State recovery Universal forgery Key-recovery Conclusion
00000000e000000 000000000 000000000000000000000000 OO00000 0000

Security of CBC-MAC
Po P1 P
e 9

» Security proofs

> Secure with fixed-length message [Bellare, Kilian & Rogaway '94]
> Attacks with variable length: MAC(Pq || P1) = MAC(P; @ MAC(Py))

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 10/69

Introduction
000000008000

Security of CBC-MAC
Po P1 P

e 9
EV[|E]|IE|]|]|E

—

» Security proofs

» Secure with fixed-length message [Bellare, Kilian & Rogaway '94]
> Attacks with variable length: MAC(Pq || P1) = MAC(P; @ MAC(Py))

» Encrypt the last cipher-text block with a different key (ECBC)

» Secure with variable-length message

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 10/69

Introduction

Security of CBC-MAC
Po P1 P
| & o—«
E[I|E|||E
;

v

Security proofs

» Secure with fixed-length message [Bellare, Kilian & Rogaway '94]
> Attacks with variable length: MAC(Pq || P1) = MAC(P; @ MAC(Py))

v

Encrypt the last cipher-text block with a different key (ECBC)
Secure with variable-length message
» Many variants: FCBC, XCBC, OMAC, ... [Black & Rogaway '00]

v

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 10/69

Introduction
00000000e000000

Security

Py PP,

e 9
E||[|E]]|]|F

v

Security proofs

» Secure with fixed-length message [Bellare, Kilian & Rogaway '94]
> Attacks with variable length: MAC(Pq || P1) = MAC(P; @ MAC(Py))

v

Encrypt the last cipher-text block with a different key (ECBC)
Secure with variable-length message
» Many variants: FCBC, XCBC, OMAC, ... [Black & Rogaway '00]

v

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 10/69

Introduction Hash-based MACs State recovery Universal forgery ~ Key-recovery Conclusion
©00000000800000 000000000 000000000000000000000000 0000000 0000

Generic Attack against Iterated Deterministic MACs

X
I, O. o« MAC
Y
Find internal collisions [Preneel & van Oorschot '95]

» Query 2”2 random short messages
» 1 internal collision expected, detected in the output

Query t = MAC(x || m)

(y (I m, t) is a forgery

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 11/69

Introduction Hash-based MACs State recovery Universal forgery ~ Key-recovery Conclusion
000000000800000 000000000 000000000000000000000000 0000000 0000

Generic Attack against Iterated Deterministic MACs

X
Ik /_\A.L).. o MAC
Find internal collisions [Preneel & van Oorschot '95]

» Query 2”2 random short messages
» 1 internal collision expected, detected in the output

Query t = MAC(x || m)

(y [| m, t) is a forgery

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 11/69

Introduction Hash-based MACs State recovery Universal forgery — Key-recovery Conclusion
000000000800000 000000000 000000000000000000000000 0000000 0000

Generic Attack against Iterated Deterministic MACs

Iy ‘\/W'L)" o« MAC
Y
Find internal collisions [Preneel & van Oorschot '95]

» Query 2”2 random short messages
» 1 internal collision expected, detected in the output

Query t = MAC(x || m)

(y [| m, t) is a forgery

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 11/69

Introduction
000000000e00000

Ik OL). o MAC
Y
Find internal collisions [Preneel & van Oorschot '95]

» Query 2”2 random short messages
» 1 internal collision expected, detected in the output

Query t = MAC(x || m)

(y [| m, t) is a forgery

Problem

» CBC-MAC with DES is unsafe after 232 queries

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 11/69

Introduction
000000000080

Security Proofs
What's a security proof?

> AdVEECA(q,t) < AdVEP(mq, t + O(mqn)) + L
» Bound on the success probability of an adversary against the MAC

g number of queries
t time
m max query length
» “If DES is a secure PRF, then CBC-MAC-DES is a secure PRF”

Limitations

» Birthday-bound security

» Bound meaningless when mq ~ 2"/2

» No information on security degradation after the birthday bound
» Usually assumed that key-recovery attacks require more...

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 12 /69

Introduction
00000000000e

Remaining of this talk

MAC security is well understood

» Good MAC constructions have birthday bound security proof

» We have a generic existential forgery attack with birthday complexity
Orisit?

» Different MACs have different security loss after the birthday bound!

» We need to study generic attack to understand the security of modes

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 13/69

Introduction Hash-based MACs State recovery Universal forgery — Key-recovery — Conclusion
000000000000e00 OO00000000 000000000000000000000000 0000000 0000

PMAC

[As]

Emgu P 5L oL 1L [pa
E E E E
e $ e

E E

» PMAC: parallelisable block-cipher based MAC
[Black & Rogaway '02]

» Uses secret offsets to the block cipher input: L = E;(0)

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 14 /69

Introduction Hash-based MACs State recovery Universal forgery — Key-recovery — Conclusion
000000000000e00 OO00000000 000000000000000000000000 0000000 0000

PMAC

(A3]
oL 1L @ iL oL 1L [pa
E E E E
— &9 S
E E
¥ ¥
» Collision attack: two sets of messages [Lee & al '06]
> Ay = [x], X = 128 > B, = [yl)yl <128
» Full block » Partial block
> MAC(Ay) = E(Ix] @ ;1) > MAC(8,) = E(pad([y]))

> Collision (Ax, By)?

» The MAC collide iff [x]® %L = pad([y])
» Deduce L
> Universal forgery attack

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 14 /69

Introduction

v

v

v

v

Hash-based MACs
0000000000000e0 000000000

AEZ
E E E

AEZ uses a variant of PMAC

E

i

State recovery

rge
0000000000000 0O000O0000000 0000000

A collision gives J: [x] © 9/ = pad([y]) © 8)
Key derivation (AEZ v2)] = Eq(k)

Collisions reveal the master key!

G. Leurent (Inria)

Generic Attacks against MAC algorithms

E

A

[Hoang, Krovetz & Rogaway "15]

[FLS, AC'15]

SAC 2015

15/69

Introduction
ocoe

Security of block cipher based MACs

Proofs

CBC-MAC, PMAC, and AEZ have security proofs
up to the birthday bound

Attacks

Effect of collision attacks with 272 queries
» CBC-MAC: almost universal forgeries [Jia & al '09]
» PMAC: universal forgeries

» AEZ: key recovery

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 16 /69

Introduction Hash-based MACs ~ State recovery Universal forgery ~ Key-recovery Conclusion
000000000000000 000000000 000000000000000000000000 0000000 0000

Outline

Introduction

Hash-based MACs
Hash-based MACs
HMAC

State recovery attacks

Universal forgery attacks

Key-recovery attacks

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 17/69

Hash-based MACs
©00000

Hash functions

mo mq mj M|

» Hash function: public function {0,1}* — {0,1}"

> Maps arbitrary-length message to fixed-length hash
» Mekle-Damgérd mode

> Process message iteratively

» Use the message length in the padding (MD strengthening)
» Variants:

» Finalization function
» Use a block counter (HAIFA)
» Truncate the hash to n < ¢ (wide-pipe)

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 18 /69

Hash-based MACs
©00000

Hash functions

mo mq mj M|

» Hash function: public function {0,1}* — {0,1}"

> Maps arbitrary-length message to fixed-length hash
» Mekle-Damgérd mode

> Process message iteratively

» Use the message length in the padding (MD strengthening)
» Variants:

» Finalization function
» Use a block counter (HAIFA)
» Truncate the hash to n < ¢ (wide-pipe)

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 18 /69

Hash-based MACs
©00000

Hash functions

mo mq mj M|

» Hash function: public function {0,1}* — {0,1}"

> Maps arbitrary-length message to fixed-length hash
» Mekle-Damgérd mode

> Process message iteratively

» Use the message length in the padding (MD strengthening)
» Variants:

» Finalization function
» Use a block counter (HAIFA)
» Truncate the hash to n < ¢ (wide-pipe)

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 18 /69

Hash-based MACs
©00000

Hash functions

mo mn my M|

» Hash function: public function {0,1}* — {0,1}"

> Maps arbitrary-length message to fixed-length hash
» Mekle-Damgérd mode

> Process message iteratively

» Use the message length in the padding (MD strengthening)
» Variants:

» Finalization function
» Use a block counter (HAIFA)
» Truncate the hash to n < £ (wide-pipe)

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 18 /69

Hash-based MACs
0®0000

Hash function security

» Hash function should behave like a random function

» Hard to find collisions, preimages
» Hash can be used as a fingerprint

» ldeal hash function: Random Oracle

Hash-based MACs

» Good hash functions (families) are indistinguishable
from a random oracle up to 292 queries

» Hashing message and key with a random oracle is a secure MAC

> Internal state size ¢ larger than block ciphers

» Secret-prefix MAC: MAC (M) = H(k || M)
» Secret-suffix MAC: MAC (M) = HM || k)

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 19/69

Hash-based MACs
00®000

Secret-prefix MAC

Definition (Secret-prefix MAC)
MAC(M) = H(k || M)

» Insecure with MD/SHA: length-extension attack

k M 2 k M 2 P 4
SDDD- DDDDHD-
X0 X1 X2 X0 X1 X2 X3 X4

MAC (M) MAC (M| 2] P)
» Can compute MAC (M [| 2 || P) from MAC, (M) without k
» Practical attack against Flickr API [Duong & Rizzo '09]

» Secure with modern hash functions (with finalization)

» Recommend with sponges (Keccak)
» Skein-MAC is essentially Secret-prefix MAC

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 20/69

Hash-based MACs
000e00

Secret-suffix MAC (1)

Definition (Secret-suffix MAC)
MAC, (M) = HM [k)

» Can be broken using offline collisions

» Find a collision H(M7) = H(M;) (with full blocks)
» Since hash function are iterative, H(M1 || k) = H(M3 || k)
> Existential forgery

» Finding a collision offline requires 22 time
» Almost practical for 128-bit hash functions (e.g. RIPEMD-128)
» Cryptanalytic shortcuts (e.g. MD5)

» Finding a collision online require 22 queries
> Far from practical, easy to detect the attack

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 21/69

Hash-based MACs ~ State re
O 0000e0000 000

Secret- suﬁ‘zx MAC (1)

Definition (Secret-suffix MAC)
MAC(M) = HM || k)

» Birthday key-recovery attack [Preneel & van Oorschot '96]

Guess the first key byte as k*
Find a one-block hash collision (Cp, C7) with C; = M; || kK

Cy = [22% - %1% My = PPP.. 9
Co= [édd ~ édd Mo = ééd---ddi

Query MAC(M7) and MAC(M,)
MAC(Mq) = H([#2% =~ %7 [Kg] [Kkikzks ... |
MAC(Mo) = H([4éé = éii [Ko] [kikaks - |
If the MACs are equal, the guess was correct

» Practical attack when using MD5 (e.g. APOP) [L'07, Sasaki & al '08]

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 22/69

Introduction Hash-based MACs ~ State recovery

Universal forgery — Key-recovery — Conclusion
000000000000000 OO0O0Oe000

0000000000000 0O000O0000000 0000000 0000

Envelope MAC and Sandwich MAC
To avoid problems, use the key at the beginning and at the end

Definition (Envelope MAC)
MAC, (M) = H(k M | k)

» Secure up to the birthday bound [Bellare, Canetti & Krawczyk '96]
» Key-recovery attack with complexity 202

[Preneel & van Oorschot '96]

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 23/69

Hash-based MACs ~ Stal
O 000008000 000

Envelope MAC and Sandwich MAC
To avoid problems, use the key at the beginning and at the end
Definition (Envelope MAC)
MAC, (M) = H(k M | k)

» Secure up to the birthday bound [Bellare, Canetti & Krawczyk '96]
> Key-recovery attack with complexity 2¢/2
[Preneel & van Oorschot '96]

Definition (Sandwich MAC)

MAC(M) = H(pad(k) || pad(M) || k)
» Secure up to the birthday bound [Yasuda '071]
» Key-recovery attack does no apply

The proof does not capture this important difference!

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 23/69

Hash-based MACs State recovery Universal forgery Key-recovery Conclusion

CO0000e00 0000000000000 0O000O0000000 0000000 0000

HMAC

» HMAC has been designed by Bellare, Canetti, and Krawczyk in 1996

» Standardized by ANSI, IETF, ISO, NIST.

» Used in many applications:
» To provide authentication:
» SSL, IPSEC, ...

» To provide identification:

> Challenge-response protocols
» CRAM-MDS5 authentication in SASL, POP3, IMAP, SMTP, ...

> For key-derivation:

» HMAC as a PRF in IPsec
» HMAC-based PRF in TLS

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 24/69

v

v

v

v

v

v

Hash-based MACs
oeo

mo mi

Hash-based MIACs

mj M|

{-bit chaining value
n-bit output
k-bit key

Key-dependant initial value /;

Unkeyed compression function h

MAC(M)

we focuson € =n =k

Key-dependant finalization, with message length gi

G. Leurent (Inria)

Generic Attacks against MAC algorithms

SAC 2015 25/69

Introduction Hash-based MACs State recovery Universal forgery Key-recovery
000000000000000 ©0000000e 000000000000000000000000 OO00000 0000

Security of hash-based MACS

» Security proofs up to the birthday bound

» Generic attacks based on collisions
» Proofis tight for some security notions

> Existential forgery
> Distinguishing-R

» What is the remaining security above the birthday bound?
> Generic distinguishing-H attack?
» Generic state-recovery attack?
» Generic universal forgery attack?
> Generic key-recovery attack?

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015

Conclusion

26/69

Introduction Hash-based MACs State recovery
000000000000000 000000000 000000000000000000000000

Outline

Introduction

Hash-based MACs

State recovery attacks
Using multi-collisions
Using the cycle structure
Short messages attacks using chains

Universal forgery attacks

Key-recovery attacks

G. Leurent (Inria) Generic Attacks against MAC algorithms

KL’»I/’I'L’L'UZ'L’/'I/
0000

SAC 2015

Conclusion

27/69

Introduction Hash-based MACs State recovery Universal forgery — Key-recovery Conclusion
000000000000000 ©0O0000000 000000000000000000000000 0000000 0000

Bibliography

[§ Y. Naito, Y. Sasaki, L. Wang, K. Yasuda

Generic State-Recovery and Forgery Attacks on ChopMD-MAC and
on NMAC/HMAC
IWSEC 2013

[d G. Leurent, T. Peyrin, L. Wang
New Generic Attacks against Hash-Based MACs
ASIACRYPT 2013

[1. Dinur, G. Leurent

Improved Generic Attacks against Hash-Based MACs and HAIFA
CRYPTO 2014

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 28/69

tion Ha

[e]e]

Multi-collision based attack
[Naito, Sasaki, Wang & Yasuda "13]

mo mq 0 M|

MACk(M)

» Using a fixed message block, we apply a fixed function
» Starting point and ending point unknown because of the key

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 29/69

State recovery
000

Multi-collision based attack
[Naito, Sasaki, Wang & Yasuda "13]

my mq 0 M|

MACk(M)

» Using a fixed message block, we apply a fixed function
» Starting point and ending point unknown because of the key

Can we detect properties of the function hg : x — h(x,0)?

» Use bias in the output of the compression function

> Some outputs are more likely than others
» With 27¢ work, find a value x* with ¢ preimages (offline)

» How to detect when this state is reached?
G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 29/69

Introduction Hash-based MACs State recovery Universal forgery — Key-recovery — Conclusion
000000000000000 ©0O0000000 0®0000000000000000000000 0000000 0000

Building filters
Filters to compare online and online states

Test whether the state reached after processing M is equal to x

» Collisions are preserved by the finalization
(for same-length messages)

M
x?
X o Ik .
Offline Structure Online Structure

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 30/69

Introduction Hash-based MACs State recovery Universal forgery Key-recovery Conclusion
000000000000000 ©O0000000 0®0000000000000000000000 OO00000 0000

Filters to compare online and online states

Test whether the state reached after processing M is equal to x

» Collisions are preserved by the finalization
(for same-length messages)

Find a collision:
h(x,c) = h(x,c’)

1
1
1
1
|
/. !
c.’ : M
) 1
au ?
B X X¢
X < ° 1 h
Ny : k*
. .
(i :
° 1
Offline Structure ' Online Structure

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 30/69

Hash-based MACs
000000000

Introduction
000000000000000

Key-recovery
0000

State recovery
0®0000000000000000000000

Universal forgery
0000000

Building filters
Filters to compare online and online states

Test whether the state reached after processing M is equal to x

» Collisions are preserved by the finalization
(for same-length messages)

Find a collision:
h(x,c) = h(x,c’)

[c
Offline Structure Online Structure

G. Leurent (Inria) Generic Attacks against MAC algorithms

SAC 2015

Conclusion

MAC(M || ¢) = MAC(M || ¢’)

30/69

Introduction Hash-based MACs State recovery Universal forgery — Key-recovery — Conclusion
000000000000000 ©0O0000000 008000000000000000000000 0000000 0000

First state-recovery attack
[Naito, Sasaki, Wang & Yasuda "13]

MAC(M)

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 31/69

Introduction Hash-based MACs State recovery Universal forgery — Key-recovery — Conclusion
000000000000000 ©0O0000000 008000000000000000000000 0000000 0000

First state-recovery attack
[Naito, Sasaki, Wang & Yasuda "13]

MAC(M)

Fix a message block m7 = [0].

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 31/69

tion Ha

[e]e]

First state-recovery attack
[Naito, Sasaki, Wang & Yasuda "13]

MAC(M)

Fix a message block m7 = [0].
With 2¢-¢ work, find a value x* with £ preimages

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 31/69

First state-recovery attack
[Naito, Sasaki, Wang & Yasuda "13]

MAC, (M)

Fix a message block m7 = [0].
With 2¢-¢ work, find a value x* with £ preimages

Find a collision h(x*, c) = h(x*,c’)

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 31/69

State recovery
00e0

First state-recovery attack
[Naito, Sasaki, Wang & Yasuda "13]

Fix a message block m7 = [0].
With 2¢-¢ work, find a value x* with £ preimages

Find a collision h(x*, c) = h(x*,c’)

For random mg, compare MAC(mq || [0] || ¢) and MAC(my || [0] || ¢’)
If they are equal, x; = x*

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 31/69

Introduction Hash-based MACs State recovery Universal forgery Key-recovery
000000000000000 ©O0000000 000®00000000000000000000 OO00000 0000

Structure of state-recovery attacks

Identify special states easier to reach
Build filter for special states

Build messages to reach special states
Test if special state reached using filters

> In this attack, steps 1 & 2 offline, step 3 online.

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015

Conclusion

32/69

State recovery
©000000

Cycle based attack

0 0 0 |M|

MACK(M)

» Using a fixed message block, we iterate a fixed function
» Starting point and ending point unknown because of the key

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 33/69

State recovery
©000000

Cycle based attack

0 0 0 |M|

MACK(M)

» Using a fixed message block, we iterate a fixed function
» Starting point and ending point unknown because of the key

Can we detect properties of the function hg : x — h(x,0)?

» Study the cycle structure of random mappings

» Used to attack HMAC in related-key setting
[Peyrin, Sasaki & Wang, Asiacrypt 12]

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 33/69

Introduction Hash-based MACs State recovery Universal forgery — Key-recovery Conclusion
000000000000000 000000000 00000®000000000000000000 0000000 0000

Random Mappings

X,3 X » Functional graph of a random mapping
\4 X — f(X)

X7 > lterate f: x; = f(x;1)

X7
X
/’\06/. ® » Collision after =~ 202 iterations
X1

> Cycles

X0 e

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 34/69

Introduction Hash-based MACs State recovery Universal forgery — Key-recovery Conclusion
000000000000000 000000000 00000®000000000000000000 0000000 0000

Random Mappings

v

Functional graph of a random mapping

e
Iterate f: x; = f(x;_1)

\/ Collision after ~ 292 iterations
'\ » Cycles

k Trees rooted in the cycle

v

v

v

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 34/69

Introduction Hash-based MACs State recovery Universal forgery — Key-recovery Conclusion
000000000000000 ©0O0000000 00000®000000000000000000 0000000 0000

Random Mappings

v

Functional graph of a random mapping

V 7 ™~ x = fix)
Iterate f: x; = f(xj_1)
Collision after ~ 292 iterations

/\/ e

Trees rooted in the cycle

v

v

v

k » Several components

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 34/69

IACs State recovery
o ©00000®0000000

Cycle structure

Expected properties of a random
mapping over N points:

> # Components: J logN

» # Cyclic nodes: y71tN/2
Tail length: v/7tN/8

Rho length: V7tN/2
Largest tree: 0.48N

Largest component: 0.76N

v

v

v

v

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 35/69

Introduction Hash-based MACs State recovery Universal forgery Key-recovery — Conclusion
000000000000000 000000000 000000®00000000000000000 0000000 0000

Cycle structure

Expected properties of a random
mapping over N points:
> # Components: J logN
Cyclic nodes: y71tN/2
Tail length: v/7tN/8

Rho length: v/7tN/2
Largest tree: 0.48N

Largest component: 0.76N

v

v

v

v

v

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 35/69

Introduction Hash-based MACs State recovery Universal forgery — Key-recovery
000000000000000 ©0O0000000 000000080000000000000000 0000000 0000

Using the cycle length

Offline: find the cycle length L of the main component of hg
Online: query t = MAC([012")and ¥ = MAC(~ [0]2"+)

eé—o

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015

Conclusion

36/69

Introduction Hash-based MACs State recovery Universal forgery Key-recovery — Conclusion
000000000000000 000000000 0000000@0000000000000000 0000000 0000

Cycle structure

Expected properties of a random
mapping over N points:
> # Components: J logN
Cyclic nodes: y71tN/2
Tail length: v/7tN/8

Rho length: v/7tN/2
Largest tree: 0.48N

Largest component: 0.76N

v

v

v

v

v

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 36/69

d MACs State recovery
O 0000000000000

Using the cycle length

Offline: find the cycle length L of the main component of hg
Online: query t = MAC(|| [0]*") and ¢’ = MAC(r || [0]"*+)

e "
Y

Success if
» The starting point is in the main component p=0.76
> The cycle is reached with less than 292 iterations p=05

Randomize starting point

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 36/69

Introduction Hash-based MACs State recovery Universal forgery Key-recovery Conclusion
000000000000000 ©O0000000 00000000e000000000000000 OO00000 0000

Dealing with the message length
Problem: most MACs use the message length.

0 0 0 |M|

MAC,(M)

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 37/69

Introduction Hash-based MACs State recovery Universal forgery ~ Key-recovery Conclusion
000000000000000 000000000 000000008000000000000000 0000000 felelele}

Dealing with the message length

Solution: reach the cycle twice

./\.

AN

/

oé—o

M = r||[012" || 1] [0]2"

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 37/69

Introduction Hash-based MACs State recovery Universal forgery — Key-recovery Conclusion

0000000000000 00 000000000 00000000 ®000000000000000 0000000 0000

Dealing with the message length

Solution: reach the cycle twice

)
W, L

= O 0" My = r[[101" || [1]]I [0t

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015

State recovery
0000080

Distinguishing-H attack

Offline: find the cycle length L of the main component of hg

Online: query t= MAC(| [0 1111111 [0]*+4)
t = MAC(r || [02"*L | (1] 11 012")

Ift = t/, then h is the compression function in the oracle

Analysis

» Complexity: 2%2 compression function calls

» Success probability: p ~ 0.14

> Both starting point are in the main component p =0.76%
» Both cycles are reached with less than 292 jterations p >0.52

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 38/69

Introduction Hash-based MACs State recovery Universal forgery — Key-recovery Conclusion
000000000000000 000000000 0000000000e0000000000000 0000000 0000

State recovery attack

» Consider the first cyclic point
» With high pr., root of the giant tree

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 39/69

Introduction Hash-based MACs State recovery Universal forgery Key-recovery Conclusion
000000000000000 ©O0000000 0000000000e0000000000000 0000000 0000

Cycle structure

Expected properties of a random
mapping over N points:
> # Components: J logN
Cyclic nodes: y71tN/2
Tail length: v/7tN/8

Rho length: V7tN/2
Largest tree: 0.48N

Largest component: 0.76N

v

v

v

v

v

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 39/69

Introduction Hash-based MACs State recovery Universal forgery
000000000000000 000000000 0000000000e0000000000000 0000000

State recovery attack

» Consider the first cyclic point
» With high pr., root of the giant tree

/ Offline: find cycle length L,
. and root of giant tree a
\ / Online: Binary search

for smallest z with collisi%ns:

2
MAC(IITOF 1| XTI 101"+
MAC(r || [0 | [XT I [0]>)

’\/\/ State after r || [0]* is & (with high pr.)
o(:/

Analysis

» Complexity 202 x £ x log(?)

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 39/69

State recovery
©000000000000

Short message attacks
Limitations of cycle-based attacks

> Messages of length 22 are not very practical...
» SHA-1 and HAVAL limit the message length to 2%* bits

> Cycle detection impossible with messages shorter than L ~ 2¢/2
> Shorter cycles have a small component

» Not applicable to HAIFA hash functions
Compare with collision finding algorithms

» Pollard’s rho algorithm use cycle detection

» Parallel collision search for van Oorschot and Wiener
uses shorter chains

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015

40/69

900000000000

Chain-based attack

A B C M|

MACk(M)

» Using a fixed message, we iterate a fixed sequence of function

» Starting point and ending point unknown because of the key

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 41/69

tion Ha

[e]e]

A B C M|

MACk(M)

» Using a fixed message, we iterate a fixed sequence of function

» Starting point and ending point unknown because of the key

Can we detect properties of the iteration of fixed functions?

» Study the entropy loss

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 41/69

X0
X1
X2
X3
X4

Theorem (Entropy loss)

/O

Yo
4l
Y2
Y3

20000e0000000000

Collision finding with short chains

Compute chains x ~ y
Stop when y distinguished

If y € {yi}, collision found

Let f1,f;, ..., fos be a fixed sequence of random functions;

the image of gys £ fys o ...

o f, o f1 contains about 2(~* points.

» Use these state as special states (instead of cycle entry point)

Generic Attacks against MAC algorithms SAC 2015 42/69

State recovery
000®000000000

State-recovery attacks

» Send messages to the oracle » Do some computations offline

with the compression function
M;

I ofdsprlspote—--—Fls MAC(Mo)

I +hbosfulefisls—--—flls MAC(M1)

I +hosfulefis}s—--—flls MAC(M,)

I +hbosfulefis}s—--—flls MAC(M3)

I +hosfulefis}s—--—Flls MAC(M4)

Online Structure

Offline Structure

» Match the sets of points?
> How to test equality? Online chaining values unknown
» How many equality test do we need?

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 43/69

State recovery
0000800000000

First attempt
» Chains of length 2°, with a fixed message C

m
ﬁ
Falefide——
Flefide——

2u

i $
| $
s
5 $
; $

Online Structure Offline Structure

Evaluate 2t chains offline s+t+u=¢

Query 2Y message M; = [i] || C

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 44/69

Introduction Hash-based MACs State recovery Universal forgery — Key-recovery — Conclusion
000000000000000 ©0O0000000 0000000000000000e0000000 0000000 0000

Building filters
Filters to compare online and online states

Test whether the state reached after processing M is equal to x

» Collisions are preserved by the finalization
(for same-length messages)

M :
x? :
Ik ° : X o
Online Structure ' Offline Structure

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 45/69

IACs State recovery

[o] 0O000000000000000e0000000

Building filters

Filters to compare online and online states

d N
00

Test whether the state reached after processing M is equal to x

» Collisions are preserved by the finalization
(for same-length messages)

Find a collision:
h(x,p) = h(x,p’)

X
I, o}

Online Structure Offline Structure

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 45/69

Introduction Hash-based MACs State recovery Universal forgery Key-recovery Conclusion
000000000000000 ©O0000000 0000000000000000e0000000 0000000 0000

Building filters
Filters to compare online and online states

Test whether the state reached after processing M is equal to x

» Collisions are preserved by the finalization
(for same-length messages)

MAC(Ml|p) = MAC(MI[lp’) Find a collision:

h(x, p) = h(x,p’)
M P

I '—@F'
o

Online Structure Offline Structure

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 45/69

State recovery
000000®000000

First attempt
» Chains of length 2°, with a fixed message C

m
ﬁ
Falefide——
Flefide——

2u

Online Structure Offline Structure
Evaluate 2 chains offline s+t+u="¢
Build filters for endpoints
Query 2Y message M; = [i] || C
Test endpoints with filters Cplx: 25ttty

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 46 /69

Introduction Hash-based MACs State recovery Universal forgery — Key-recovery — Conclusion
0000000000000 00 000000000 0000000000000 00000e00000 0000000 0000
Online filters
» Using the filters is too expensive.
» If we build filters online, using them is cheap.
! ?
Find p,p’ s.t. : h(x,m) = h(x,m’)
1
MAC(Mlp) = MACMIlp) |
1
M | P
1
X 1
2 h
e ' X e
k :
1
: P’
1
Online Structure ' Offline Structure
Cost Build Test
Offline filter 2%/2 2°
Online filter 2¢2+s 1
G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 47/69

State recovery
00000000e0000

First attack on HMAC-HAIFA

» Chains of length 2°, with a fixed message C

[i]

Bl

ZU

Online Structure

o{8k}e
oSk}
o8k}
o{8k}e
o{8k}e

Query 2Y message M; = [i] || C

Build filters for M;

Evaluate 2! chains offline
Test endpoints with filters

G. Leurent (Inria)

Generic Attacks against MAC algorithms

Offline Structure

st+t+u="¢
CplXI 25+u+f/2
Cplx: 2t*s
Cplx: 2t

SAC 2015 48/69

State recovery
00000000e0000

First attack on HMAC-HAIFA
» Chains of length 2°, with a fixed message C

[i]

ZU

-G $
@ | $
Bl ! 24§ o
B $
B $

Online Structure Offline Structure
Query 2Y message M; = [i] || C
Build filters for M;

Evaluate 2! chains offline
Test endpoints with filters

Optimal complexity
2075 fors < €/6

(using u = s)
Minimum: 2°¢/°

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 48/69

Introduction Hash-based MACs State recovery Universal forgery — Key-recovery
000000000000000 ©0O0000000 00000000000000000000e000 0000000 0000

Diamond filters

» Building filers is a bottleneck.

» Can we amortize the cost of building many filters?

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015

Conclusion

49/69

State recovery
0000000008000

Diamond filters

» Building filers is a bottleneck.

» Can we amortize the cost of building many filters?

Diamond structure [Kelsey & Kohno, EC’06]
> ~ Herd N initial states to a common state
— ./"\ > Try ~ 202/3\/N msg from each state.
— .\/._) ’ » Whp, the initial states can be paired
= - > Repeat... Total ~ VN - 202

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 49/69

State recovery
0000000008000

Diamond filters

» Building filers is a bottleneck.

» Can we amortize the cost of building many filters?

Diamond filter
— :> Build a diamond structure
— '\.C. Build a collision filter for the final state
.> '\ ./))
— » Can also be built online

» Building N offline filters: VN 202 rather than N - 202
» Building N online filters: \/N - 202+ rather than N - 20/2+s

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 49/69

State recovery
0000000000800

Improved attack on HMAC-HAIFA
» Chains of length 2°, with a fixed message C

[i]
falefids——
Falefige——
Falefide——
falefide——

ZU

B
E
s
| $
Ik

B §=25 —— —5=25 —
Online Structure Offline Structure
Query 2Y message M; = [i] || C s+t+u="¢
Build diamond filter for M; Cplx: 25+u/2+(/2
Evaluate 2! chains offline Cplx: 2t
Test endpoints with filters Cplx: 2t

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 50/69

State recovery
0000000000800

Improved attack on HMAC-HAIFA
» Chains of length 2°, with a fixed message C

[i]

| $ ofBle—
bofe—-- | $ il -
2 e 2§ B
{hafefhofe—-- E $ faefale—-
{afefoale—-- | $ «fi) -
s §2 E T o —
Online Structure ' Offline Structure
Query 2% message M; = [i][| € Optimal complexity

Build diamond filter for M;

Evaluate 2! chains offline
Test endpoints with filters

2075 fors < ¢/5
(using u = s)
Minimum: 2405

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 50/69

Un
ODOO00000000000080 OC

State
000

Improvement using collisions (fixed function)

Xo Yo Compute chains x ~ y
X1 ' Stop when y distinguished
X2 Y2

If y € {yi}, collision found

X3 £o)

X4 ._”_)._)._)/VV

Theorem (Entropy loss for collisions)

Let X and y be two collisions found using chains of length 2°,
with a fixed (-bit random function f.
Then Pr [= y] = ©(2%7).

» Use the collisions as special states (instead of cycle entry point)

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 51/69

Introduction Hash-based MACs

State recovery
000000000

0O0000000000O000000000000e

Universal forgery
000000000000000 0000000

Trade-offs for state-recovery attacks

Key-recovery

Conclusion
0000

HAIFA mode Merkle-Damgard mode
25 i Zt’]
2
%
)
g— 230/4 | 230/4 |
o
U
2¢/2 | | 202 : ‘
1 2[/4 25/2 1 2t’/4 25/2

Length of the messages Length of the messages

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 52/69

Introduction Hash-based MACs State recovery Universal forgery ~ Key-recovery — Conclusion
000000000000000 000000000 000000000000000000000000 0000000 0000

Outline

Introduction

Hash-based MACs

State recovery attacks

Universal forgery attacks
Using cycles
Using chains
Key-recovery attacks

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 53/69

Introduction Hash-based MACs State recovery Universal forgery ~ Key-recovery — Conclusion
000000000000000 000000000 000000000000000000000000 0000000 0000

Bibliography

@ T. Peyrin, L. Wang
Generic Universal Forgery Attack on Iterative Hash-Based MACs
EUROCRYPT 2014

[@ J. Guo, T. Peyrin, Y. Sasaki, L. Wang
Updates on Generic Attacks against HMAC and NMAC
CRYPTO 2014

[& 1. Dinur, G. Leurent

Improved Generic Attacks against Hash-Based MACs and HAIFA
CRYPTO 2014

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 54/69

Universal forgery
000

Universal forgery attack
» Given a challenge message C, compute MAC(C)

> len(C) = 2°
» Oracle access to the MAC, can't ask MAC(C)

» Study internal states for the computation of MAC(C)
» Unknown because of initial key and final key

li o{n}e{h}e{n}e{h}e{r}e{h}e{n]={n}e{h]e{n}e{h}e{r]}e{R}{n]*{A]}+EA

MAC(C)

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 55/69

Universal forgery
000

Universal forgery attack

» Given a challenge message C, compute MAC(C)

> len(C) = 2°
» Oracle access to the MAC, can't ask MAC(C)

» Study internal states for the computation of MAC(C)
» Unknown because of initial key and final key

Build a different message reaching same states
Query MAC(M’), use as forgery

li o[p}{n}e{b}e{R]{R)={r]+{A}e{h}¢{R]{n]={A}+{R}+{R]+{R]={r]-BH+s MAC(C)

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 55/69

Universal forgery
00

UF against secret-suffix MAC

» Secret-suffix has no key at the beginning
> Allinternal states for challenge message are known!

» Long-message second-preimage attack [Kelsey & Schneier '05]
> H(M) = H(C) = MAC(M) = H(M || k) = H(C || k) = MAC(C)

Find a connexion from the IV to the target states Cplx: 265

[h}e{hJe{h]e{hlelhle{hfe{n]e{n ¥{h]}e{hle{hlelh]e{n]e{h]}+{h]*{EH

1V o

MAC(C)

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 56 /69

Universal forgery
00

UF against secret-suffix MAC

» Secret-suffix has no key at the beginning
> Allinternal states for challenge message are known!

» Long-message second-preimage attack [Kelsey & Schneier '05]
> H(M) = H(C) = MAC(M) = H(M || k) = H(C || k) = MAC(C)

Build a expandable message Cplx: 242
27+1bL 25+ 1bL 25 +1bL 2*+1bL 2> +1bL 22 +1bL

1bL 1bL 1bL 1bL 1bL 1bL

1V o

[h}e{hJe{h]e{hlelhle{h}e{n]e{n]}e{h]}e{h}e{h}e{h]e{n]e{h]}+{h]+{EH

MAC(C)

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 56 /69

Universal forgery
©00000

UF against secret-suffix MAC

» Secret-suffix has no key at the beginning
> Allinternal states for challenge message are known!

» Long-message second-preimage attack [Kelsey & Schneier '05]
> H(M) = H(C) = MAC(M) = H(M || k) = H(C || k) = MAC(C)

Build a expandable message Cplx: 202

1V o{b}e{b}e{]e{p)e{p]+{n}e{R}e{R]{A]={A}={A}e{R]+{R]{n]*{r}-BH+ MAC(C)

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 56 /69

Universal forgery
00

UF against secret-suffix MAC

» Secret-suffix has no key at the beginning
> Allinternal states for challenge message are known!

» Long-message second-preimage attack [Kelsey & Schneier '05]
> H(M) = H(C) = MAC(M) = H(M || k) = H(C || k) = MAC(C)

Build a expandable message Cplx: 242

Find a connexion from x, to the target states Cplx: 265

<
>
a
e

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 56 /69

Universal forgery
00

UF against secret-suffix MAC

» Secret-suffix has no key at the beginning
> Allinternal states for challenge message are known!

» Long-message second-preimage attack [Kelsey & Schneier '05]
> H(M) = H(C) = MAC(M) = H(M || k) = H(C || k) = MAC(C)

Build a expandable message Cplx: 242
Find a connexion from x, to the target states Cplx: 2¢

Select expandable message

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 56 /69

Introd:
00000

i(C

Universal forgery Key-recovery Concl
00®0000 0000

UF against secret-prefix MAC

» Secret-suffix has no key at the end
» Finalization function is known!

I o[p}{n}e{b}e{]e{R)={r]+{A}e{R}+{R]{n]={A}+{A}+{R]+{R]{r]+{8}s MAC(C)

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 57/69

(o]

Univer:
) oce

UF against secret-prefix MAC

» Secret-suffix has no key at the end
» Finalization function is known!

Query the MAC of C;; (truncated to i blocks)
Evaluate the finalization function on 25 states
Find a match, compute MAC

G. Leurent (Inria)

Online Structure

Generic Attacks against MAC algorithms

Cplx: 2%%
Cplx: 267

26’—5

EEEEE®E

A A A A
°

R
°

Offline Structure

SAC 2015

57 /69

Universal forgery
ooe

UF attack against hash-based MAC

» Combine both techniques

Recover an internal state of the challenge
Use second-preimage attack with known state

» Hard part is to recover an internal state

» Extract information about the challenge state through g

» Compute distance to cycle
» Use entropy loss of iterations

li o{n}e{h}e{n}e{h}e{r]}e{h}e{n]e{n}e{h]e{n}e{n]e{r]}e{h}e{n]*{A]}+EA

MAC(C)

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 58/69

Universal forgery
°

Using cycles
Main idea

» Measure the distance from challenge point to cycle in hyg
> Add zero blocks after the challenge

» Match with offline points with known distance

I

Zs{ CI . m(_,u) i rg) [2~*points|
e = ; . %

=25 2012

Online Structure Offline Structure

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 59/69

forgery

Using cycles

(online) For each challenge state, use binary search to find distance

MAC(Cy [| 0%+ (| 111 027) £ MAC(Cy 1| 09111 1| 07
(offline) Build a structure with 2¢=5 points with known distance.
(offline) Match the challenge states and the offline structure
(online) Test candidates at the right distance.

Iy

Zs{ CI . m(_,u) i rg) [2~*points|
e = ; : %

=25 2012

Online Structure Offline Structure

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 59/69

Universal forgery — Ke
L 1)

Using chains

Main idea

» Add a sequence of fixed message blocks to reduce image space

» Match in the reduced space

! {2‘7’5 points]

1
1
1
(-2s;
! 2 images («)}
1
Py 1
o~ !)
o : £
Iy s :
=25 —— 22525 —— ! 225 — — 22 —
Online Structure Offline Structure

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 60/69

IACs State recovery Universal forgery ~ Key-recovery Conclusion
o

“““““““““““““““““““ jelelelelel le} 0000

Using chains

(online) Query messages M; = Cj; || [0]225—".
Build diamond filter for endpoints Y

(offline) Build a structure with 2¢=5 points.
Consider Zzs-images XX <26%

(offline) Match X and Y.

(offline) For each match, find preimages as candidates.

{25’5 points}

| [l N {Zf’zsimages (.)}
.
c 2 l fg
258 X) et
Iy {-"IJ \ L \k
= 25 A 22525 —— ! — 225 — — 225 —
Online Structure Offline Structure

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 60/69

Universal forgery ~ Key-recovery Conclusion
>O000000000000 0000008

0000

Universal forgery attacks: summary

Universal forgery attacks

v

It is possible to perform a generic universal forgery attack
» Best attack so far: 265, with s < £/4 (23* with s = £/4)

» Using distance to the cycle: query length 22
» Complexity 25,5 < ¢/6 [Peyrin & Wang, EC '14]
Optimal: 2°7°, with s = 20/
» Complexity 20,5 < (/4 [Guo, Peyrin, Sasaki & Wang, CR '14]

Optimal: 2304 with s = 204

> Later attack using chains: shorter query length 2¢
» Complexity 20~ ,s < {/7,t=2s [Dinur & L, CR "14]
Optimal: 2877, with s = 297, t = 2¢/7
» Complexity 20752,s < 2¢/5,t= s [Dinur & L, CR '14]

Optimal: 245 \with s = 2205 ¢ = 2(/5

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 61/69

Introduction Hash-based MACs State recovery Universal forgery ~ Key-recovery Conclusion
000000000000000 000000000 000000000000000000000000 0000000 0000

Outline

Introduction

Hash-based MACs

State recovery attacks

Universal forgery attacks

Key-recovery attacks
HMAC-GOST

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 62/69

GOST hash functions
A A A '

Mo M M, M; M|

» Family of Russian standards
» GOST-1994: n = =256
» GOST-2012: n < ¢ =512, HAIFA mode

» GOST and HMAC-GOST standardized by IETF

» Checksum (dashed lines)

> Larger state should increase the security

G. Leurent (Inria) Generic Attacks against MAC algorithms

Key-recovery
®000

(aka Streebog)

SAC 2015

63/69

Key-recovery
o] TeTe}

HMAC-GOST

» In HMAC, key-dependant value used after the message
> Related-key attacks on the last block

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 64 /69

Key-recovery ~ Conclusion
ocoeo

Key recovery attack on HMAC-GOST
e e e

k@ipad My My M, M

Recover the state of a short message

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 65/69

Key-recovery
coeo

Key recovery attack on HMAC-GOST
e e e

k®ipad My M M, M|

Recover the state of a short message
Build a multicollision: 23Y4 messages with the same x.

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 65/69

Introduction Hash-based MACs State recovery Universal forgery — Key-recovery Conclusion

Key recovery attack on HMAC-GOST
keM -
l
x

Recover the state of a short message
Build a multicollision: 23Y4 messages with the same x.

Query messages, detect collisions g(x, k ® M) = g(x, k ® M)
Store (M & M’, M) for 292 collisions

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 65/69

| forgery Key-recovery Conclusion
ocoeo

Key recovery attack on HMAC-GOST
koM -

Recover the state of a short message
Build a multicollision: 23Y4 messages with the same x.

Query messages, detect collisions g(x, k ® M) = g(x, k ® M)
Store (M & M’, M) for 292 collisions

Find collisions g(x,y) = g(x,y’) offline
Store (x ® y’, y) for 292 collisions

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 65/69

Key-recovery ~ Conclusion
ocoeo

Key recovery attack on HMAC-GOST
koM -

Recover the state of a short message
Build a multicollision: 23Y4 messages with the same x.

Query messages, detect collisions g(x, k ® M) = g(x, k ® M)
Store (M & M’, M) for 292 collisions
Find collisions g(x,y) = g(x,y’) offline
Store (x ® y’, y) for 292 collisions
Detect match M @& M’ = y @ y’. With high probability M © k = y

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 65/69

Key-recovery
ocooe

Complexity

Surprising result

The checksum actually make the hash function weaker!
» HMAC-GOST-1994 is weaker than HMAC-SHA256
» HMAC-GOST-2012 is weaker than HMAC-SHA512

It is important to recover the state of a short message
» For GOST-1994, we can recover the state of a short message

from a longer one using padding tricks Total complexity 234
» For GOST-2012, we use an advanced attack
with message length 2010 Total complexity 24405

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 66/69

Attack complexity

Conclusion

Function Mode £ S St. rec. Univ. F K. rec.
SHA-1 MD 160 2°° 2107 2132
SHA-224 MD 256 2% 2192

SHA-256 MD 256 2°° 2192 2228
SHA-512 MD 512 2118 p384 2453
HAVAL MD 256 254 2192 2229
WHIRLPOOL MD 512 2247 283 2446
BLAKE-256 HAIFA 256 2°° 2213

BLAKE-512 HAIFA 512 2118 2419

Skein-512 HAIFA 512 2% 2419

GOST-94 MD+o 256 o 2128 2192 2192
Streebog HAIFA+o 512 o 2419 2419 2419

G. Leurent (Inria)

Generic Attacks against MAC algorithms

SAC 2015 67/69

Conclusion

Conclusion
Be carefull with security proof

» “CBC-MAC is proven secure” does not mean
“CBC-MAC-AES is a secure as AES”

> Most security proofs are up to the birthday bound
> Is 64-bit security enough?

» Don't assume too much after the security bound of the proof
> Generic key-recovery for envelope-MAC, AEZ, HMAC-GOST

Gaps between proofs and attacks!

> Better generic attacks?
» Better proofs?

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015

68/69

Introduction Hash-based MACs State recovery Universal forgery Key-recovery
000000000000000 ©0O0000000 000000000000000000000000 0000000 0000

Thanks

uestions?

Conclusion

G. Leurent (Inria) Generic Attacks against MAC algorithms SAC 2015 69/69

	Introduction
	Hash-based MACs
	State recovery attacks
	Universal forgery attacks
	Key-recovery attacks

