
New Generic Attacks Against Hash-based MACs
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Abstract. In this paper we study the security of hash-based MAC al-
gorithms (such as HMAC and NMAC) above the birthday bound. Up to the
birthday bound, HMAC and NMAC are proven to be secure under reason-
able assumptions on the hash function. On the other hand, if an n-bit
MAC is built from a hash function with a l-bit state (l ≥ n), there is a
well-known existential forgery attack with complexity 2l/2. However, the
remaining security after 2l/2 computations is not well understood. In par-
ticular it is widely assumed that if the underlying hash function is sound,
then a generic universal forgery attack should require 2n computations
and some distinguishing (e.g. distinguishing-H but not distinguishing-R)
and state-recovery attacks should also require 2l computations (or 2k if
k < l).
In this work, we show that above the birthday bound, hash-based MACs
offer significantly less security than previously believed. Our main re-
sult is a generic distinguishing-H and state-recovery attack against hash-
based MACs with a complexity of only Õ(2l/2). In addition, we show a
key-recovery attack with complexity Õ(23l/4) against HMAC used with a
hash functions with an internal checksum, such as GOST. This surprising
result shows that the use of a checksum might actually weaken a hash
function when used in a MAC. We stress that our attacks are generic,
and they are in fact more efficient than some previous attacks proposed
on MACs instanciated with concrete hash functions.
We use techniques similar to the cycle-detection technique proposed by
Peyrin et al. at Asiacrypt 2012 to attack HMAC in the related-key model.
However, our attacks works in the single-key model for both HMAC and
NMAC, and without restriction on the key size.
Key words: NMAC, HMAC, hash function, distinguishing-H, key recovery,
GOST.

1 Introduction

Message Authentication Codes (MACs) are crucial components in many security
systems. A MAC is a function that takes a k-bit secret key K and an arbitrarily
long message M as inputs, and outputs a fixed-length tag of size n bits. The
tag is used to authenticate the message, and will be verified by the receiving
party using the same key K. Common MAC algorithms are built from block
ciphers (e.g. CBC-MAC), from hash functions (e.g. HMAC), or from universal

1



hash functions (e.g. UMAC). In this paper we study MAC algorithms based on
hash functions.

As a cryptographic primitive, a MAC algorithm should meet some security re-
quirements. It should be impossible to recover the secret key except by exhaustive
search, and it should be computationally impossible to forge a valid MAC with-
out knowing the secret key, the message being chosen by the attacker (existential
forgery) or given as a challenge (universal forgery). In addition, cryptanalysts
have also studied security notions based on distinguishing games. Informally,
the distinguishing-R game is to distinguish a MAC construction from a random
function, while the distinguishing-H game is to distinguish a known MAC con-
struction (e.g. HMAC) instantiated with a known component (e.g. SHA-1) under a
random key from the same construction instantiated with a random component
(e.g. HMAC with a fixed input length random function).

One of the best known MAC algorithm is HMAC [2], designed by Bellare et al.
in 1996. HMAC is now widely standardized (by ANSI, IETF, ISO and NIST), and
widely deployed, in particular for banking processes or Internet protocols (e.g.
SSL, TLS, SSH, IPSec). It is a single-key version of the NMAC construction, the
latter being built upon a keyed iterative hash function HK , while HMAC uses an
unkeyed iterative hash function H:

NMAC(Kout,Kin,M) = HKout(HKin(M))

HMAC(K,M) = H(K ⊕ opad ‖ H(K ⊕ ipad ‖ M))

where opad and ipad are predetermined constants, and where Kin denotes the
inner key and Kout the outer one.

More generally, a MAC algorithm based on a hash function uses the key at
the beginning and/or at the end of the computation, and updates an l-bit state
with a compression function. The security of MAC algorithms is an important
topic, and both positive and negative results are known. On the one hand, there
is a generic attack with complexity 2l/2 based on internal collisions and length
extension [17]. This gives an existential forgery attack, and a distinguishing-H
attack. One the other hand, we have security proofs for several MAC algorithms
such as HMAC and sandwich-MAC [2,1,26]. Roughly speaking, the proofs show
that some MAC algorithms are secure up to the birthday bound (2l/2) under
various assumptions on the compression function and hash function.

Thanks to those results, one may consider that the security of hash-based
MAC algorithms is well understood. However, there is still a strong interest
in the security above the birthday bound. In particular, it is very common to
expect security 2k for key recovery attacks if the hash function is sound; the
Encyclopedia of Cryptography and Security article on HMAC states explicitly [16]
“A generic key recovery attack requires 2n/2 known text-MAC pairs and 2n+1

time” (assuming n = l = k). Indeed, key recovery attacks against HMAC with a
concrete hash function with complexity between 2l/2 and 2l have been considered
as important results [9,24,27]. Similarly, the best known dinstinguishing-H and
state-recovery attacks have a complexity of 2l (or 2k if k < l), and distinguishing-
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Table 1. Comparison of our generic attacks on HMAC, and some previous attacks
on concrete hash function. We measure the complexity as the number of calls to
the compression function (i.e. number of messages times message length)

Function Attack Complexity M. len Notes Ref

HMAC-MD5 dist-H, state rec. 297 2 [25]
HMAC-SHA-0 dist-H 2100 2 [12]
HMAC-HAVAL (3-pass) dist-H 2228 2 [12]
HMAC-SHA-1 (43 first steps) dist-H 2154 2 [12]
HMAC-SHA-1 (58 first steps) dist-H 2158 2 [18]
HMAC-SHA-1 (61 mid. steps) dist-H 2100 2 [18]
HMAC-SHA-1 (62 mid. steps) dist-H 2157 2 [18]

Generic attacks:

hash-based MAC (e.g. HMAC) dist-H O(2l/2) 2l/2 Sec. 4

state rec. Õ(2l/2) 2l/2 Sec. 5

dist-H, state rec. O(2l−s) 2s s ≤ l/4 full version

HMAC with a checksum key rec. O(l · 23l/4) 2l/2 Sec. 7

O(l · 23l/4) 2l/4 full version

HMAC-MD5? dist-H, state rec. 267, 278 264 Sec. 4, 5
O(296) 232 full version

HMAC-HAVAL† (any) dist-H, state rec. O(2202) 254 full version

HMAC-SHA-1† dist-H, state rec. O(2120) 240 full version
HMAC-GOST? key rec. 2200 2128 Sec. 7

2200 264 full version

? The MD5 and GOST specifications allow arbitrary-length messages
† The SHA-1 and HAVAL specifications limits the message length to 264 bits (and 264

bits is 254 blocks)

H attacks on HMAC with a concrete hash function with complexity between 2l/2

and 2l have been considered as important results [12,18,25].

Our contributions. In this paper we revisit the security of hash-based MAC
above the birthday bound. We describe a generic distinguishing-H attack in the
single key model and with complexity of only O(2l/2) computations, thus putting
an end to the long time belief of the cryptography community that the best
generic distinguishing-H on NMAC and HMAC requires Ω(2l) operations. Instead,
we show that a distinguishing-H attack is not harder than a distinguishing-R at-
tack. Our results actually invalidate some of the recently published cryptanalysis
works on HMAC when instantiated with real hash functions [12,18,25]

Our method is based on a cycle length detection, like the work of Peyrin et.
al [14], but our utilization is quite different and much less restrictive: instead of
iterating many times HMAC with small messages and a special related-key, we will
use only a few iterations with very long messages composed of almost the same
message blocks to observe the cycle and deduct information from it. Overall,
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unlike in [14], our technique works in the single-key model, for both HMAC and
NMAC, and can be applied for any key size. In addition, leveraging our new ideas,
we provide a single-key internal state recovery for any hash-based MAC with
only O(l · log(l) · 2l/2) computations.

We also introduce a different approach to reduce the length of the queried
messages for distinguishing-H and internal-state-recovery attacks. Due to the
limited space, we only give a quick overview of these shorter-message attacks,
and refer the reader to the full version of this paper for more details.

Finally, this internal state recovery can be transformed into a single-key key
recovery attack on HMAC with complexity O(l · 23l/4) when instantiated with a
hash function using a checksum, such as the GOST hash function [6]. A surprising
corollary to our results is that incorporating a checksum to a hash function seems
to actually reduce the security of the overall HMAC design.

We give an overview of our results, and a comparison with some previous
analysis in Table 1.

The description of HMAC/NMAC algorithms and their security are given in Sec-
tion 2 and we recall in Section 3 the cycle-detection ideas from [14]. Then, we
provide in Section 4 the generic distinguishing-H attack. We give in Sections 5
and 6 internal state recovery methods, and finally describe our results when the
hash function incorporates a checksum in Section 7.

2 Hash-based MAC algorithms

In this paper, we study a category of MAC algorithms based on hash functions,
where the key is used at the beginning and at the end of the computation, as
described in Figure 1. More precisely, we consider algorithms where: the message
processing is done by updating an internal state x using a compression function
h; the state is initialized with a key dependent value Ik; and the tag is computed
from the last state xp and the key K by an output function g.

x0 = IK xi+1 = h(xi,mi) MACK(M) = g(K,xp, |M |)

In particular, this description covers NMAC/HMAC [2], envelope-MAC [21], and
sandwich-MAC [26]. The results described in Sections 4 and 5 can be applied
to any hash-based MAC, but we focus on HMAC for our explanations because
it is the most widely used hash-based MAC, and its security has been widely
analyzed already. On the other hand the result of Section 7 is specific to MAC
algorithms that process the key as part of the message, such as HMAC.

2.1 Description of NMAC and HMAC

A hash function H is a function that takes an arbitrary length input message
M and outputs a fixed hash value of size n bits.

Virtually every hash function in use today follows an iterated structure like
the classical Merkle-Damg̊ard construction [13,4]. Iterative hash functions are
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Fig. 1. Hash-based MAC. Only the initial value and the final transformation are
keyed.

built upon successive applications of a so-called compression function h, that
takes a b-bit message block and a l-bit chaining value as inputs and outputs a
l-bit value (where l ≥ n). An output function can be included to derive the n-bit
hash output from the last chaining variable and from the message length. When
l > n (resp. when l = n) we say that the hash function is wide pipe (resp. narrow
pipe).

The message M is first padded and then divided into blocks mi of b bits
each. Then, the message blocks are successively used to update the l-bit internal
state xi with the compression function h. Once all the message blocks have been
processed, the output function g is applied to the last internal state value xp.

x0 = IV xi+1 = h(xi,mi) hash = g(xp, |M |)

The MAC algorithm NMAC [2] uses two l-bit keys Kout and Kin. NMAC replaces
the public IV of a hash function H by a secret key K to produce a keyed hash
function HK(M). NMAC is then defined as:

NMAC(Kout,Kin,M) = HKout
(HKin

(M)).

The MAC algorithm HMAC [2] is a single-key version of NMAC, with Kout =
h(IV,K ⊕ opad) and Kin = h(IV,K ⊕ ipad), where opad and ipad are b-bit
constants. However, a very interesting property of HMAC for practical utilization
is that it can use any key size and can be instantiated with an unkeyed hash
function (like MD5, SHA-1, etc. which have a fixed IV ):

HMAC(K,M) = H(K ⊕ opad ‖ H(K ⊕ ipad ‖ M)).

where ‖ denotes the concatenation operation. For simplicity of the description
and without loss of generality concerning our attacks, in the rest of this article
we assume that the key can fit in one compression function message block, i.e.
k ≤ b (note that K is actually padded to b bits if k < b).

2.2 Security of NMAC and HMAC

In [1], Bellare proved that the NMAC construction is a pseudo-random function
(PRF) under the sole assumption that the internal compression function h (keyed
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by the chaining variable input) is a PRF. The result can be transposed to HMAC

as well under the extra assumption that h is also a PRF when keyed by the
message input.

Concerning key recovery attacks, an adversary should not be able to recover
the key in less than 2k computations for both HMAC and NMAC. In the case of
NMAC one can attack the two keys Kout and Kin independently by first finding
an internal collision and then using this colliding pair information to brute force
the first key Kin, and finally the second one Kout.

Universal or existential forgery attacks should cost 2n computations for a
perfectly secure n-bit MAC. However, the iterated nature of the hash functions
used inside NMAC or HMAC allows a simple existential forgery attack requiring only
2l/2 computations [17]. Indeed, with 2l/2 queries, an adversary can first find an
internal collision between two messages (M,M ′) of the same length during the
first hash call. Then, any extra block m added to both of these two messages will
lead again to an internal collision. Thus, the attacker can simply forge a valid
MAC by only querying for M ‖m and deducing that M ′ ‖m will have the same
MAC value.

Concerning distinguishers on HMAC or NMAC, two types have been discussed
in the literature: Distinguishing-R and Distinguishing-H attacks, defined below:

Distinguishing-R. Let Fn be the set of n-bit output functions. We denote FK
the oracle on which the adversary A can make queries. The oracle is instanti-
ated either with FK = HMACK (with K being a randomly chosen k-bit key) or
with a randomly chosen function RK from Fn. The goal of the adversary is to
distinguish between the two cases and its advantage is given by

Adv(A) = |Pr[A(HMACK) = 1]− Pr[A(RK) = 1]| .

Obviously the collision-based forgery attack detailed above gives directly a
distinguishing-R attack on NMAC and HMAC. Thus, the expected security of HMAC
and NMAC against distinguishing-R attacks is 2l/2 computations.

Distinguishing-H. The attacker is given access to an oracle HMACK and the
compression function of the HMAC oracle is instantiated either with a known
dedicated compression function h or with a random chosen function r from Fb+ll

(the set of (b + l)-bit to l-bit functions), which we denote HMAChK and HMACrK
respectively. The goal of the adversary is to distinguish between the two cases
and its advantage is given by

Adv(A) =
∣∣Pr[A(HMAChK) = 1]− Pr[A(HMACrK) = 1]

∣∣ .
The distinguishing-H notion was introduced by Kim et al. [12] for situations

where the attacker wants to check which cryptographic hash function is embed-
ded in HMAC. To the best of our knowledge, the best known generic distinguishing-
H attack requires 2l computations.
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Related-key attacks. At Asiacrypt 2012 [14], a new type of generic distin-
guishing (distinguishing-R or distinguishing-H) and forgery attacks for HMAC was
proposed. These attacks are in the related-key model and can apply even to wide-
pipe proposals, but they only work for HMAC, and only when a special restrictive
criterion is verified: the attacker must be able to force a specific difference be-
tween the inner and the outer keys (with the predefined values of opad and ipad

in HMAC, this criterion is verified when k = b). The idea is to compare the cycle
length when iterating the HMAC construction on small messages with a key K,
and the cycle length when iterating with a key K ′ = K ⊕ opad⊕ ipad.

Attacks on instantiations with concrete hash functions. Because of its
widespread use in many security applications, HMAC has also been carefully scru-
tinized when instantiated with a concrete hash function, exploiting weaknesses
of some existing hash function. In parallel to the recent impressive advances on
hash function cryptanalysis, the community analyzed the possible impact on the
security of HMAC when instantiated with standards such as MD4 [19], MD5 [20],
SHA-1 [22] or HAVAL. In particular, key-recovery attacks have been found on
HMAC-MD4 [9,24] and HMAC-HAVAL [27]. Concerning the distinguishing-H notion,
one can cite for example the works from Kim et al. [12], Rechberger et al. [18]
and Wang et al. [25].

However, to put these attacks in perspective, it is important to know the
complexity of generic attacks, that work even with a good hash function.

3 Cycle detection for HMAC

Our new attacks are based on some well-known properties of random functions.

3.1 Random mapping properties on a finite set

Let us consider a random function f mapping n bits to n bits and we denote
N = 2n. We would like to know the structure of the functional graph defined
by the successive iteration of this function, for example the expected number of
components, cycles, etc. First, it is easy to see that each component will contain
a single cycle with several trees linked to it. This has already been studied for a
long time, and in particular we recall two theorems from Flajolet and Odlyzko [7].

Theorem 1 ([7, Th. 2]). The expectations of the number of components, num-
ber of cyclic points, number of terminal points, number of image points, and
number of k-th iterate image points in a random mapping of size N have the
asymptotic forms, as N →∞:

(i) # Components: 1
2 logN

(ii) # Cyclic nodes:
√
πN/2

(iii) # Terminal nodes: e−1N

(iv) # Image points: (1− e−1)N
(v) # k-th iterate images: (1− τk)N ,

with τ0 = 0, τk+1 = e−1+τk .
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In particular, a random mapping has only a logarithmic number of distinct
components, and the number of cyclic points follows the square root of N .

By choosing a random starting point P and iterating the function f , one
will follow a path in the functional graph starting from P , that will eventually
connect to the cycle of the component in which P belongs, and we call tail
length the number of points in this path. Similarly, we call cycle length the
number of nodes in the cycle. Finally, the number of points in the non-repeating
trajectory from P is called the rho length, and we call α-node of the path the
node that connects the tail and the cycle.

Theorem 2 ([7, Th. 3]). Seen from a random point in a random mapping
of size N , the expectations of the tail length, cycle length, rho length, tree size,
component size, and predecessors size have the following asymptotic forms:

(i) Tail length (λ):
√
πN/8

(ii) Cycle length (µ):
√
πN/8

(iii) Rho length (ρ = λ+ µ):
√
πN/2

(iv) Tree size: N/3

(v) Component size: 2N/3

(vi) Predecessors size:
√
πN/8

One can see that, surprisingly, in a random mapping most of the points tend
to be grouped together in a single giant component, and there is a giant tree
with a significant proportion of the points. The asymptotic expectation of the
maximal features is given by Flajolet and Sedgewick [8].

Theorem 3 ([8, VII.14]). In a random mapping of size N , the largest tree
has an expected size of δ1N with δ1 ≈ 0.48 and the largest component has an
expected size of δ2N with δ2 ≈ 0.7582.

These statistical properties will be useful to understand the advantage of our
attacks. We show the functional graph of a simple random-looking function in
Figure 4 in the Appendix.

3.2 Using cycle-detection to obtain some secret information

In this article and as in [14], we will study the functional graph structure of
a function to derive a distinguisher or obtain some secret information. More
precisely, in [14] Peyrin et al. observed that the functional graph structure of
HMAC was the same when instantiated with a key K or with a related key K ′ =
K⊕ipad⊕opad (note that in order to be able to query this related-key K ′, the
key K has to be of size b or b− 1, which is quite restrictive). This is a property
that should not exist for a randomly chosen function and they were able to detect
this cycle structure by measuring the cycle length in both cases K and K ′, and
therefore obtaining a distinguishing-R attack for HMAC in the related-key model.
In practice, the attacker can build and observe the functional graph of HMAC by
simply successively querying the previous n-bit output as new message input.

In this work, instead of studying the structure of the functional graph of HMAC
directly, we will instead study the functional graph of the internal compression
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function h with a fixed message block: we denote hM (X) = h(X,M). We aim
to obtain some information on hM that we can propagate outside the HMAC

structure. This is therefore perfectly suited for a distinguishing-H attack, which
requires the attacker to exhibit a property of h when embedded inside the HMAC

construction. We can traverse the functional graph of hM by querying the HMAC

oracle with a long message composed of many repetitions of the fixed message
block M . The issue is now to detect some properties of the functional graph of
hM inside HMAC and without knowing the secret key. We explain how to do that
in the next section.

4 Distinguishing-H attack for hash-based MACs

In the rest of the article, we use the notation [x]k to represent the successive
concatenation of k message blocks x, with [x] = [x]1.

4.1 General description

In order to derive a distinguishing-H attack, we need to do some offline com-
putations with the target compression function h and use this information to
compare online with the function embedded in the MAC oracle. We use the
structure of the functional graph of h[0] to derive our attack (of course we can
choose any fixed message block). We can travel in the graph by querying the
oracle using consecutive [0] message blocks. However, since the key is unknown,
we do not know where we start or where we stop in this graph. We have seen in
the previous section that the functional graph of a random function is likely to
have a giant component containing most of the nodes. We found that the cycle
size of the giant component of h[0] is a property that can be efficiently tested.

More precisely, we first compute the cycle size of the giant component of
h[0] offline; we denote it as L. Then, we measure the cycle size of the giant
component of the unknown function by querying the MAC oracle with long
messages composed of many consecutive [0] message blocks. If no length padding

is used in the hash function, this is quite simple: we just compare MAC([0]2
l/2

)

and MAC([0]2
l/2+L). With a good probability, the sequence of 2l/2 zero block is

sufficiently long to enter the cycle, and if the cycle has length L, the two MAC
outputs will collide.

Unfortunately, this method does not work because the lengths of the messages
are different, and thus the last message block with the length padding will be
different and prevent the cycle collision to propagate to the MAC output. We
will use a trick to overcome this issue, even though the basic method remains
the same. The idea is to build a message M going twice inside the cycle of the
giant component, so that we can add L [0] message blocks in the first cycle to
obtain a message M1 and L [0] message blocks in the second cycle to obtain M2.
This is depicted in Figure 2: M1 will cycle L [0] message blocks in the first cycle
(red dotted arrows), while M2 will cycle L [0] message blocks in the second cycle
(blue dashed arrows), and thus they will both have the same length overall.
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To perform the distinguishing-H attack, the adversary simply randomly se-

lects an initial message block m and query M1 = m ‖ [0]2
l/2 ‖ [1] ‖ [0]2

l/2+L and

M2 = m ‖ [0]2
l/2+L ‖ [1] ‖ [0]2

l/2

to the MAC oracle, and deduce that the target
function is used to instantiate the oracle if the two MAC values are colliding.
The [1] message block is used to quit the cycle and randomize the entry point to
return again in the giant component. We give below a detailed attack procedure
and complexity analysis.

Fig. 2. Distinguishing-H attack

This attack is very interesting as the first generic distinguishing-H attack
on HMAC and NMAC with a complexity lower than 2l. However, we note that
the very long message length might be a limitation. In theory this is of no
importance and our attack is indeed valid, but in practice some hash functions
forbid message inputs longer than a certain length. To address this issue we
provide an alternative attack in the full version of this paper, using shorter
messages, at the cost of a higher complexity.

4.2 Detailed attack process

1. (offline) Search for a cycle in the functional graph of h[0] and denote L its
length.

2. (online) Choose a random message block m and query the HMAC value of the

two messagesM1 = m‖[0]2
l/2‖[1]‖[0]2

l/2+L andM2 = m‖[0]2
l/2+L‖[1]‖[0]2

l/2

.
3. If the HMAC values of M1 and M2 collide then output 1, otherwise output 0.

4.3 Complexity and success probability analysis

We would like to evaluate the complexity of the attack. The first step will require
about 2l/2 offline computations to find the cycle for the target compression
function h. It is important to note that we can run this first step several times
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in order to ensure that we are using the cycle from the largest component of
the functional graph of h[0]. The second step makes two queries of about 2l/2 +

2l/2 + L ' 3 · 2l/2 message blocks each. Therefore, the overall complexity of the
attack is about 2l/2+3 compression function computations.

Next, we evaluate the advantage of the adversary in winning the distinguishing-
H game defined in Section 2.2. We start with the case where the oracle is in-
stantiated with the real compression function h. The adversary will output 1
if a collision happens between the HMAC computations of M1 and M2. Such a
collision can happen when the following conditions are satisfied:

• The processing of the random block m sets us in the same component (of
the functional graph of h[0]) as in the offline computation. Since we ensured
that the largest component was found during the offline computation, and
since it has an average size of 0.7582 · 2l elements according to Theorem 2,
this event will happen with probability 0.7582.
• The 2l/2 [0] message blocks concatenated after m are enough to reach the

cycle of the component, i.e. the tail length when reaching the first cycle is
smaller than 2l/2. Since the average tail length is less than 2l/2 elements,
this will happen with probability more than 1/2.
• The processing of the block [1] sets us in the same component (of the func-

tional graph of h[0]) as in the offline computation; again the probability is
0.7582.
• The 2l/2 [0] message blocks concatenated after [1] are enough to reach the

cycle of the component; again this happens with probability 1/2.

The collision probability is then (0.7582)2 × 1/4 ' 0.14 and thus we have that
Pr[A(HMAChK) = 1] ≥ 0.14. In the case where the oracle is instantiated with
a random function r, the adversary will output 1 if and only if a random HMAC

collision happens between messages M1 and M2. Such a collision can be obtained

if the processing of any of the last [0]2
l/2

blocks of the two messages leads to an
internal collision, therefore with negligible probability 2l/2 ·2−l = 2−l/2. Overall,
the adversary advantage is equal to Adv(A) =

∣∣0.14− 2−l/2
∣∣ ' 0.14.

5 Internal state recovery for NMAC and HMAC

This section extends the distinguishing-H attack in order to build an internal
state recovery attack.

5.1 General description

In order to extent the distinguishing-H attack to a state recovery attack, we
observe that there is a high probability that the α-node reached in the online
phase is the root of the giant tree of the functional graph of h[0]. More precisely,
we can locate the largest tree and the corresponding α-node in the offline phase,
by repeating the cycle search a few times. We note that δ1 + δ2 > 1, therefore
the largest tree is in the largest component with asymptotic probability one (see
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Theorem 3). Thus, assuming that the online phase succeeds, the α-node reached
in the online phase is the root of the largest tree with asymptotic probability
δ1/δ2 ≈ 0.63. If we can locate the α-node of the online phase (i.e. we deduce its
block index inside the queried message), we immediately get its corresponding
internal state value from the offline computations.

Since the average rho length is
√
π2l/2 we can not use a brute-force search to

locate the α-node, but we can use a binary search instead. We denote the length
of the cycle of the giant component as L, and the follow the distinguishing-H
attack to reach the cycle. We choose a random message block m and we query the

two messages M1 = m‖ [0]2
l/2 ‖ [1]‖ [0]2

l/2+L and M2 = m‖ [0]2
l/2+L ‖ [1]‖ [0]2

l/2

.

If the MAC collide, we know that the state reached after processing m ‖ [0]2
l/2

is located inside the main cycle. We use a binary search to find the smallest X
so that the state reached after m ‖ [0]X is in the cycle.

The first step of the binary search should decide whether the node reached

after m ‖ [0]2
l/2−1

is also inside the first online cycle or not. More precisely,

we check if the two messages M ′1 = m ‖ [0]2
l/2−1 ‖ [1] ‖ [0]2

l/2+L and M ′2 =

m ‖ [0]2
l/2−1+L ‖ [1] ‖ [0]2

l/2

also give a colliding tag. If it is the case, then the
node after processing m ‖ 2l/2−1 is surely inside the cycle, which implies that
the α-node is necessarily located in the first 2l/2−1 zero blocks. On the other
hand, if the tags are not colliding, we cannot directly conclude that the α-node
is located in the second half since there is a non-negligible probability that the
α-node is in the first half but the [1] block is directing the paths in M ′1 and M ′2
to distinct components in the functional graph of h[0] (in which case the tag are
very likely to differ). Therefore, we have to test for collisions with several couples

Mu
1 = m‖ [0]2

l/2−1 ‖ [u]‖ [0]2
l/2+L, Mu

2 = m‖ [0]2
l/2−1+L ‖ [u]‖ [0]2

l/2

, and if none
of them collide we can safely deduce that the α-node is located in the second
2l/2−1 zero blocks. Overall, one such step reduces the number of the candidate
nodes by a half and we simply continue this binary search in order to eventually
obtain the position of the α-node with log2(2l/2) = l/2 iterations.

5.2 Detailed attack process

1. (offline) Search for a cycle in the functional graph of h[0] and denote L its
length.

2. (online) Find a message block m such that querying the two messages M1 =

m ‖ [0]2
l/2 ‖ [1] ‖ [0]2

l/2+L and M2 = m ‖ [0]2
l/2+L ‖ [1] ‖ [0]2

l/2

leads to the
same HMAC output. Let X1 and X2 be two integer variables, initialized to the
values 0 and 2l/2 respectively.

3. (online) Let X ′ = (X1 + X2)/2. Select β log(l) distinct message blocks [u],
and for each of them query the HMAC output for messages Mu

1 = m ‖ [0]X
′ ‖

[u] ‖ [0]2
l/2+L and Mu

2 = m ‖ [0]X
′+L ‖ [u] ‖ [0]2

l/2

. If at least one of the (Mu
1 ,

Mu
2 ) pairs leads to a colliding HMAC output, then set X2 = X ′. Otherwise,

set X1 = X ′. We use β = 4.5 as explained later.
4. (online) If X1 + 1 = X2 holds, output X2 as the block index of the α-node.

Otherwise, go back to the previous step.
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5.3 Complexity and success probability analysis

Complexity. We would like to evaluate the complexity of the attack. The first
step will require about 2l/2 offline computations to find the cycle. Again, it is
important to note that we can run this first step several times in order to ensure
that we are using the cycle from the biggest component of the functional graph
of h[0]. The second step repeats the execution of the distinguishing-H attack

from Section 4, which requires 6 · 2l/2 computations for a success probability of
0.14, until it finds a succeeding message block m. Therefore, after trying a few
m values, we have probability very close to 1 to find a valid one. The third and
fourth steps will be executed about l/2 times (for the binary search), and each
iteration of the third step performs 2 · β log(l) queries of about 2l/2 + 2l/2 +L '
3 · 2l/2 message blocks each. Therefore, the overall complexity of the attack is
about 3β · l · log(l) · 2l/2 compression function computations.

Success probability. Next we evaluate the success probability that the at-
tacker recovers the internal state and this depends on the success probability of
the binary search steps. We start with the case where the node after m ‖ [0]X

′

is inside the first online cycle. The third step will succeed as long as at least
one of the (Mu

1 , Mu
2 ) pairs collide on the output (we can omit the false positive

collisions which happen with negligible probability). One pair (Mu
1 , Mu

2 ) will
indeed collide if:

• The random block [u] sends both messages to the main component of the
functional graph of h[0]. Since it has an expected size of δ2·2l (see Theorem 3),
this is the case with probability δ22 .

• The 2l/2 [0] message blocks concatenated after [u] are enough to reach the
cycle, i.e. the tail length when reaching the second cycle is smaller than 2l/2.
Since the average tail length is smaller than 2l/2 elements, this will happen
with probability 1/2 for each message.

After trying β log(l) pairs, the probability that at least one pair collides is 1 −
(1− δ22/4)β log(l). If we use β = −1/ log(1− δ22/4) ≈ 4.5, this gives a probability
of 1− 1/l. On the other hand, if the node after m ‖ [0]X

′
is not inside the cycle,

the third step will succeed when no random collision occurs among the β log(l)
tries, and such collisions happen with negligible probability. Overall, since there
are l/2 steps in the binary search, the average success probability of the binary
search is (1− 1/l)l/2 ≥ e−1/2 ≈ 0.6.

Finally, the attack succeeds if the α-node is actually the root of the giant tree,
as computed in the offline phase. This is the case with probability δ1/δ2, and
the success probability of the full state recovery attack is δ1/δ2 · e−1/2 ≈ 0.38.

6 Internal state recovery with shorter messages

In the full version of the paper, we give a an alternative internal-state recovery
attack using shorter messages, that can also be used as a distinguishing-H attack
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with shorter messages. The attacks of Sections 4 and 5 have a complexity of
O(2l/2) using a small number of messages of length 2l/2; on the other hand the
alternative attack has a complexity O(23l/4) using 2l/2 messages of length 2l/4.
More generally, if the message size is limited to 2s blocks (s ≤ l/4), then the
attack requires 2l−2s messages. Due to space constraints, we only give a brief
description of this attack here.

6.1 Entropy loss in collisions finding

While the previous attacks are based on detecting cycles in the graph of a random
function, this alternative attack is based on the fact that finding collisions by
iterating a random function does not give a random collision: some particular
collisions are much more likely to be found than others. This fact is well known
in the context of collision search; for instance van Oorschot and Wiener [23]
recommend to randomize the function regularly when looking for a large number
of collisions. In this attack, we exploit this property to our advantage: first we
use a collision finding algorithm to locate collisions in hM with a fixed M; then
we query the MAC oracle with messages with long repetitions of the block M
and we detect collisions in the internal state; since the collisions found in this
way are not randomly distributed, there is a good probability that we will reach
one the collisions that was previously detected in the offline phase.

Actually, the attacks of Sections 4 and 5 can also be seen as following this
stategy: we use a collision finding algorithm based on cycle detection (following
Pollard’s rho algorithm), and we know that with a good probability, the collision
found will be the root of the giant tree. For the alternative attack, we use a
collision finding algorithm similar to [23], but using using fixed length chains. In
the full version of the paper, we study the entropy of the distribution of collisions
found in this way, and we show that when using chains of length 2s, we need
about 2l/2−s collisions in order to have a match between the online and offline
steps. This translates to an attack complexity of 2l−s, with s ≤ l/4.

7 Key recovery for HMAC based on a hash function with an
internal checksum

In this section we study HMAC used with a hash function with an internal check-
sum, such as GOST. We first show that the checksum does not prevent the
distinguishing-H and state recovery attack, but more surprisingly the checksum
actually allows to mount a full key-recovery attack significantly more efficient
than exhaustive search.

A hash function with an internal checksum computes the sum of all message
blocks, and uses this sum as an extra input to the finalization function. The sum
can be computed for any group operation, but it will usually be an XOR sum
or a modular addition. We use the XOR sum Sum⊕ to present our attack, but it
is applicable with any group operation.
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The checksum technique has been used to enhance the security of a hash func-
tion, assuming that controlling the checksum would be an additional challenge
for an adversary. While previous work argued its effectiveness [10], our result re-
veals a surprising fact that incorporating a checksum into a hash function could
even weaken its security in some applications such as HMAC.

A notable example of a hash function with a checksum is the GOST hash
function, which has been standardized by the Russian Government [6] and by
IETF [5]. HMAC-GOST has also been standardized by IETF [15] and is implemented
in OpenSSL. GOST uses parameters n = l = b, and uses a separate call to process
the message length, as follows:

x0 = IV xi+1 = h(xi,mi) x∗ = h(xp, |M |)
σ0 = 0 σi+1 = σi ⊕mi hash = g(x∗, σp)

If this section we describe the attack on GOST-like functions following this struc-
ture; Figure 3 shows an HMAC computation with a GOST-like hash function. We
give more general attacks when the output is computed as g(xp, |M |, σp) in the
full version of this paper.

IV

K ⊕ ipad

hl

M0

x0

hl

M1

x1

hl

M2

x2

σ3

x3 x∗

l

|M |

h h l g

H(K ⊕ ipad ‖ )·

Fig. 3. HMAC based on a hash function with a checksum (dashed lines) and a
length-padding block. We only detail the first hash function call.

7.1 General description

In HMAC, K ⊕ ipad is prepended to a message M , and (K ⊕ ipad) ‖M is hashed
by the underlying hash function H. Therefore, the final checksum value is σp =
Sum⊕((K ⊕ ipad) ‖M) = K ⊕ ipad⊕ Sum⊕(M). In this attack, we use the state
recovery attack to recover the internal state x∗ before the checksum is used and
we take advantage of the fact that the value σp actually contains the key, but
can still be controlled by changing the message. We use this to inject a known
difference in the checksum, and to perform a kind of related key attack on the
finalization function g, even though we have access to a single HMAC key.

More precisely, we use Joux’s multicollision attack [11] to generate a large
set of messages with the same value x̄ for x∗, but with different values of the
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checksum. We detect MAC-collisions among those messages, and we assume
that the collisions happens when processing the checksum of the internal hash
function. For each such collision, we have g(x̄,K⊕ipad⊕Sum⊕(M)) = g(x̄,K⊕
ipad ⊕ Sum⊕(M ′)), and we compute the input difference ∆M = Sum⊕(M) ⊕
Sum⊕(M ′).

Finally, we compute g(x̄,m) offline for a large set of random values m, and
we collect collisions. Again, we compute the input difference ∆m = m⊕m′ for
each collision, and we match ∆m to the previously stored ∆M . When a match
is found between the differences we look for the corresponding values and we
have K ⊕ ipad ⊕ Sum⊕(M) = m (or m′) with high probability. This gives the
value of the key K.

State recovery with a checksum. First, we note that the checksum σ does
not prevent the state recovery attacks of Section 5; the complexity only depend
on the size l of the state x. Indeed, the attack of Section 5 is based on detecting

collisions between pairs of messages M1 = m ‖ [0]2
l/2 ‖ [k] ‖ [0]2

l/2+L and M2 =

m‖ [0]2
l/2+L ‖ [k]‖ [0]2

l/2

. Since the messages have the same checksum, a collision
in the state will be preserved. More generally, the attacks can easily be adapted
to use only message with a fixed sum. For instance, we can use random messages
with two identical blocks in the attack of Section 5, and messages of the form

m ‖m ‖ [0]2
l/2 ‖ [k] ‖ [k] ‖ [0]2

l/2+L have a checksum of zero.

Recovering the state of a short message. Unfortunately, the state we re-
cover will correspond to a rather long message (e.g. 2l/2 blocks), and all the
queries based on this message will be expensive. In order to overcome this issue,
we use the known state xM after a long message M to recover the state after
a short one. More precisely, we generate a set of 2l/4 long messages by append-
ing a random message blocks m twice to M . Note that Sum⊕(M ‖ m ‖ m) =
Sum⊕(M). Meanwhile, we generate a set of 23l/4 two-block messages m1 ‖ m2,
with m1 ⊕ m2 = Sum⊕(M). We query these two sets to the HMAC oracle and
collect collisions between a long and a short message. We expect that one col-
lision correspond to a collision in the value x∗ before the finalization function
g. We can compute the value x∗ for the long message from the known state
xM after processing M . This will correspond to the state after processing the
message m1 ‖ m2 and its padding block, or equivalently, after processing the
message m1 ‖ m2 ‖ [2] (because the length block is processed with the same
compression function). We can verify that the state is correctly recovered by
generating a collision m ‖m,m′ ‖ m′ offline from the state x∗, and comparing
HMAC(m1 ‖m2 ‖ [2] ‖m ‖m) and HMAC(m1 ‖m2 ‖ [2] ‖m′ ‖m′).

7.2 Detailed attack process

For simplicity of the description, we omit the padding block in the following
description, and we refer to the previous paragraphs for the details of how to
deal with the padding.
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1. Recover an internal state value xr after processing a message Mr through
HMAC. Refer to Section 5 for the detailed process.

2. (online) Choose 2l/4 one-block random messages m, query Mr ‖ m ‖ m to
HMAC and store m and the corresponding tag.

3. (online) Choose 23l/4 one-block random messages m, query (Sum⊕(Mr) ⊕
m) ‖m to HMAC and look for a match between the tag value and one of the
stored tag values in Step 2.
For a colliding pair (Sum⊕(Mr)⊕m)‖m and Mr‖m′‖m′, denote Sum⊕(Mr)⊕
m‖m as M1 and h(h(xr,m

′),m′) as x1. Generate a collision h(h(x1, u), u) =
h(h(x1, u

′), u′). Query M1 ‖ u ‖ u and M1 ‖ u′ ‖ u′ and compare the tags. If
they are equal, the internal state after processing M1 (before the checksum
block) is x1.

4. (offline) Generate 23l/4 messages that all collide on the internal state be-
fore the checksum block by Joux’s multicollision. More precisely, choose 2l/2

random message m and compute h(x1,m) to find a collision h(x1,m1) =
h(x1,m

′
1) = x2. Then iterate this procedure to find a collision h(xi,mi) =

h(xi,m
′
i) = xi+1 for i ≤ 3l/4. Denote the value of x3l/4+1 by x̄.

5. (online) Query the set of messages in Step 4 to HMAC in order to collect tag
collisions. For each collision M and M ′, compute the checksum difference
∆M = Sum⊕(M)⊕ Sum⊕(M ′), and store (Sum⊕(M), ∆M).

6. (offline) Choose a set of 23l/4 one-block random message m, compute g(x̄,m)
and collect collisions. For each collision m and m′, compute the difference
∆m = m ⊕ m′ and match ∆m to the stored ∆M at Step 5. If a match
is found, mark Sum⊕(M) ⊕ ipad ⊕ m and Sum⊕(M) ⊕ ipad ⊕ m ⊕ ∆m as
potential key candidates.

7. (offline) filter the correct key from the potential candidates by verifying a
valid message/tag pair.

7.3 Complexity and success probability analysis

We need to evaluate the complexity of our key recovery attack.

Step 1: O(l · log(l) · 2l/2) Step 2: 23l/4 Step 3: 2 · 23l/4

Step 4: 3l/4 · 2l/2 Step 5: 3l/4 · 23l/4 Step 6: 23l/4

Step 7: O(1)

Overall, the fifth step dominates the complexity, and the total complexity is
about 3l/4 · 23l/4 compression function computations.

Next we evaluate the success probability of our method. The first step suc-
ceeds with a probability almost 1 after several trials. Steps 2 and 3 need to guar-
antee a collision between a long and a short message. Since there are 2l pairs,

one such collision occurs with a probability of 1− (1− 2−l)2
l ≈ 1− 1/e ≈ 0.63.

The success probability of producing no less than 2l/2 collisions at each of steps
5 and 6 is 0.5 since the expected number of collisions is 2l/2. Thus the overall
success probability is no less than 0.16.
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Conclusion

Our results show that the security of HMAC and hash-based MAC above the
birthday bound is significantly weaker than previously expected. First, we show
that distinguishing-H and state-recovery attacks are not much harder than a
distinguishing-R attack, contrary to previous beliefs. Second, we show that the
use of a checksum can allow a key-recovery attack against HMAC with complexity
only Õ(23l/4). In particular, this attack is applicable to HMAC-GOST, a standard-
ized construction.

We give a comparison of our attacks and previous attack against concrete in-
stances of HMAC in Table 1, showing that some attacks against concrete instances
are in fact less efficient than our generic attacks.

As future works, it would be interesting to find other applications of the in-
ternal state recovery for HMAC. Moreover, we expect further applications of the
analysis of the functional graph, as it might be possible to use other distinguish-
ing properties, such as the tail length, the distance of a node from the cycle,
etc.

Acknowledgments

The authors would like to thank the anonymous referees for their helpful com-
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A Additional Figures

Fig. 4. Functional graph of Keccak (SHA-3) with 8-bit input and 8-bit output.
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