Introduction
MD4
HMAC and NMAC

Previous work Wang's attack

NMAC attack

New ideas

IV-dependent paths Message pairs Differential paths Extracting more

Conclusion

Full Key-Recovery Attacks on HMAC/NMAC-MD4 and NMAC-MD5

Pierre-Alain Fouque, Gaëtan Leurent, Phong Nguyen

Laboratoire d'Informatique de l'École Normale Supérieure

CRYPTO 2007

G. Leurent

HMAC and NMAC
Previous work

MD4

Wang's attack NMAC attack

New ideas

IV-dependent paths

Message pairs

Differential paths

Extracting more

Conclusion

► Alice wants to send a message to Bob

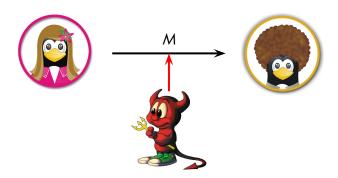
- ▶ But Charlie has access to the communication channel
- ▶ Alice and Bob share a secret key k...
- ...and use a MAC algorithm.
- ▶ Bob rejects the message if $MAC_k(M) \neq t$

G. Leurent

MD4

HMAC and NMAC

Previous work
Wang's attack
NMAC attack


New ideas

IV-dependent paths

Message pairs

Differential paths

Extracting more

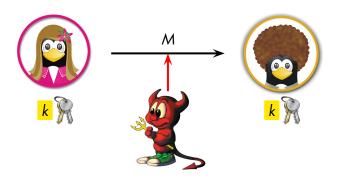
- Alice wants to send a message to Bob
- ▶ But Charlie has access to the communication channel
- ▶ Alice and Bob share a secret key k...
- ...and use a MAC algorithm.
- ▶ Bob rejects the message if $MAC_k(M) \neq t$

G. Leurent

MD4

HMAC and NMAC

Previous work
Wang's attack
NMAC attack


New ideas

IV-dependent paths

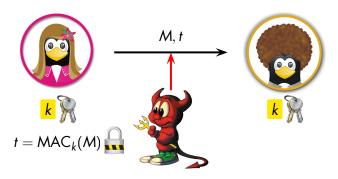
Message pairs

Differential paths

Extracting more

- Alice wants to send a message to Bob
- ▶ But Charlie has access to the communication channel
- ▶ Alice and Bob share a secret key k...
- ...and use a MAC algorithm.
- ▶ Bob rejects the message if $MAC_k(M) \neq t$

G. Leurent


MD4

HMAC and NMAC

Previous work Wang's attack

NMAC attack
New ideas

IV-dependent paths Message pairs Differential paths Extracting more

- Alice wants to send a message to Bob
- ▶ But Charlie has access to the communication channel
- ▶ Alice and Bob share a secret key k...
- ...and use a MAC algorithm.
- ▶ Bob rejects the message if $MAC_k(M) \neq t$

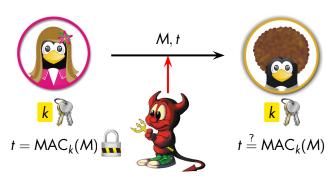
MD4

HMAC and NMAC

Previous work
Wang's attack
NMAC attack

New ideas

IV-dependent paths


Message pairs

Differential paths

Extracting more

Conclusion

What is a MAC algorithm?

- ► Alice wants to send a message to Bob
- ▶ But Charlie has access to the communication channel
- ▶ Alice and Bob share a secret key k...
- ...and use a MAC algorithm.
- ▶ Bob rejects the message if $MAC_k(M) \neq t$

MD4 HMAC and NMAC

Previous work
Wang's attack
NMAC attack

New ideas

IV-dependent paths

Message pairs

Differential paths

Extracting more

Conclusion

MAC security

A MAC (Message Authentication Code) should provide authentication and integrity protection.

MAC security notions: chosen message attacks

The adversary has access to an oracle $M \mapsto MAC_k(M)$. He must compute a new MAC for:

- One message of his choice: existential forgery.
- ► Any message: universal forgery.

One very popular MAC (ANSI, IETF, ISO, NIST), HMAC is based on a hash function.

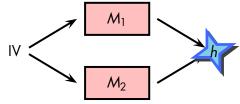
Topic of the talk

Can we use the attacks on MD4 or MD5 to break HMAC?

MD4

HMAC and NMAC

Previous work


Wang's attack NMAC attack

New ideas

IV-dependent paths Message pairs Differential paths Extracting more

Conclusion

Known attacks on MD hash functions

Collision attacks:

generate
$$M_1, M_2$$
: $H(M_1) = H(M_2)$

- MD4 in 2¹, MD5 in 2²⁷, SHA-1 in 2⁶³
- Colliding blocks look random
- Limited impact: commitment
- Add a prefix and a suffix, hide the randomness
- Partial freedom in the colliding blocks
- Chosen prefix collisions:

MD4

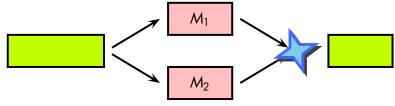
HMAC and NMAC

Previous work

Wang's attack NMAC attack

New ideas

IV-dependent paths


Message pairs

Differential paths

Extracting more

Conclusion

Known attacks on MD hash functions

- Collision attacks: generate M₁, M₂: H(M₁) = H(M₂)
- Add a prefix and a suffix, hide the randomness
 - ▶ Include two documents, use the collision as a switch
 - Signature by a third party
 - Fraud is detectable
- Partial freedom in the colliding blocks
- Chosen prefix collisions: given P_1 , P_2 generate M_1 , M_2 : $H(P_1||M_1) = H(P_2||M_2)$

MD4

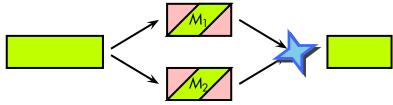
HMAC and NMAC

Previous work

Wang's attack NMAC attack

New ideas

IV-dependent paths


Message pairs

Differential paths

Extracting more

Conclusion

Known attacks on MD hash functions

- Collision attacks: generate M₁, M₂: H(M₁) = H(M₂)
- Add a prefix and a suffix, hide the randomness
- Partial freedom in the colliding blocks
 - Weak challenge-response authentication: APOP
- ► Chosen prefix collisions: given P_1 , P_2 generate M_1 , M_2 : $H(P_1||M_1) = H(P_2||M_2)$

MD4

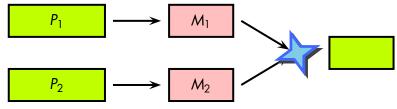
HMAC and NMAC

Previous work

Wang's attack NMAC attack

New ideas

IV-dependent paths


Message pairs

Differential paths

Extracting more

Conclusion

Known attacks on MD hash functions

- Collision attacks: generate M₁, M₂: H(M₁) = H(M₂)
- Add a prefix and a suffix, hide the randomness
- Partial freedom in the colliding blocks
- ► Chosen prefix collisions: given P_1 , P_2 generate M_1 , M_2 : $H(P_1||M_1) = H(P_2||M_2)$
 - Colliding certificates with different names.

Introduction MD4

HMAC and NMAC

Previous work

Previous work Wang's attack

NMAC attack

New ideas

IV-dependent paths Message pairs Differential paths

Differential paths Extracting more

Conclusion

MD family status

Current status

Collision-resistance is seriously broken, but for most constructions, no real attacks are known:

- Key derivation
- Peer authentication
- HMAC
- **...**

More in-depth study and improvement of Wang's attack are needed.

Our results on MD4

- ▶ We adapted Wang's attack to HMAC/NMAC.
- ▶ Universal forgery attack with 2⁸⁸ data and 2⁹⁵ CPU.

MD4

HMAC and NMAC

Previous work

Wang's attack

New ideas

IV-dependent paths Message pairs Differential paths

Extracting more

Conclusion

MD family status

Current status

Collision-resistance is seriously broken, but for most constructions, no real attacks are known:

- Key derivation
- Peer authentication
- HMAC
- **...**

More in-depth study and improvement of Wang's attack are needed.

Our results on MD4

- ▶ We adapted Wang's attack to HMAC/NMAC.
- ▶ Universal forgery attack with 2⁸⁸ data and 2⁹⁵ CPU.

MD4

HMAC and NMAC

Previous work Wang's attack

NMAC attack
New ideas

IV-dependent paths Message pairs Differential paths Extracting more

Conclusion

Outline

Introduction

The MD4 hash function HMAC and NMAC

Previous work

Wang's attack Contini-Yin NMAC attack

New ideas

IV-dependent differential path
Efficient computation of message pairs
Differential paths
Extracting more key bits

Introduction

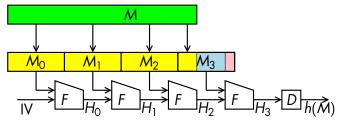
MD4

HMAC and NMAC

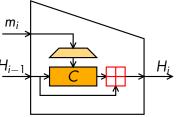
Previous work

Wang's attack NMAC attack

New ideas


IV-dependent paths Message pairs Differential paths

Extracting more


Conclusion

The MD4 hash function General design

▶ Merkle-Damgård: $H_i = F(M_i, H_{i-1})$

▶ Davies-Meyer a Feistel-like cipher.

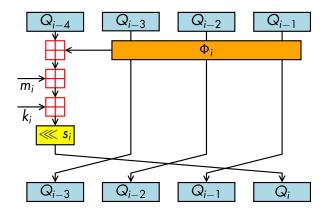
The MD4 compression function Step update

G. Leurent

Introduction MD4

HMAC and NMAC

Previous work
Wang's attack
NMAC attack


New ideas

IV-dependent paths

Message pairs

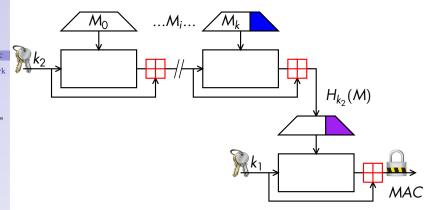
Differential paths

Extracting more

▶ In:
$$Q_{-4}||Q_{-1}||Q_{-2}||Q_{-3}$$

▶ Out:
$$Q_{-4} \boxplus Q_{44} || Q_{-1} \boxplus Q_{47} || Q_{-2} \boxplus Q_{46} || Q_{-3} \boxplus Q_{45}$$

Introduction
MD4
HMAC and NMAC


Previous work Wang's attack

NMAC attack
New ideas

IV-dependent paths Message pairs Differential paths Extracting more

Conclusion

NMAC description

- ► NMAC_{k_1,k_2}(M) = $H_{k_1}(H_{k_2}(M))$
- \blacktriangleright Keyed hash function H_k : replace the IV by the key.
- Prevents offline collision search and extension attacks.

Introduction
MD4
HMAC and NMAC

Previous work Wang's attack

NMAC attack
New ideas

IV-dependent paths Message pairs Differential paths Extracting more

Conclusion

HMAC description

- ► $\mathsf{HMAC}_k(M) = H(\bar{k} \oplus \mathsf{opad} || H(\bar{k} \oplus \mathsf{ipad} || M))$
 - opad and ipad are 1-block constants
 - k is k padded to one block
- No need to key the hash function.
- $\blacktriangleright \mathsf{HMAC}_k \approx \mathsf{NMAC}_{H(\bar{k} \oplus \mathsf{opad}), H(\bar{k} \oplus \mathsf{ipad})}$
- ► HMAC security is equivalent to NMAC security.

HMAC/NMAC security proof

If the compression function F is secure as a PRF then HMAC/NMAC is:

- secure against existential forgery up to $2^{n/2}$
- \triangleright secure against universal forgery up to 2^n

Introduction MD4 HMAC and NMAC

Wang's attack NMAC attack

New ideas

IV-dependent paths Message pairs Differential paths

Extracting more

Conclusion

Outline

The MD4 hash function HMAC and NMAC

Previous work

Wang's attack Contini-Yin NMAC attack

IV-dependent differential path Efficient computation of message pairs Extracting more key bits

Introduction
MD4
HMAC and NMAC

Previous work

Wang's attack

New ideas

IV-dependent pati

IV-dependent paths Message pairs Differential paths Extracting more

Conclusion

MD4 Collisions: Wang's attack

- Precomputation:
 - Choose a message difference.
 - Compute a differential path.
 - Derive a set of sufficient conditions.
- Collision search:
 - Find a message that satisfies the set of conditions.

Main result

We know a difference Δ and a set of conditions on the internal state variables Q_i 's, such that:

If all the conditions are satisfied by the internal state variable in the computation of H(M), then $H(M) = H(M + \Delta)$.

Full Key-Recovery attack on HMAC-MD4

G. Leurent

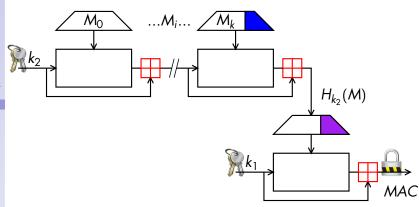
Introduction MD4 HMAC and NMAC

Previous work Wang's attack

Wang's attack
NMAC attack

New ideas

IV-dependent paths


Message pairs

Differential paths

Extracting more

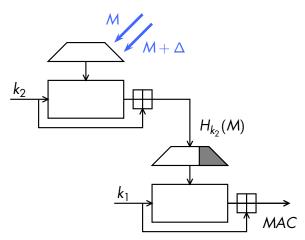
Conclusion

How to use collisions?

- ▶ We can detect hash collisions through NMAC collisions.
- ▶ Without the IV, we can't use message modifications.
- ▶ Try many pairs $(M, M + \Delta)$, and wait for a collision.
- ► The collision contains some key information, but we need a way to extract it...

Introduction MD4

HMAC and NMAC


Previous work Wang's attack

NMAC attack

New ideas

IV-dependent paths Message pairs Differential paths Extracting more

Conclusion

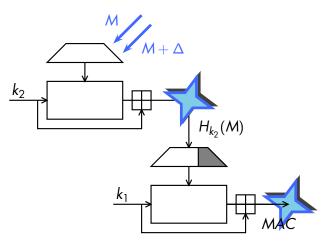
- Find an inner collision.
- Use M to modify the inner state.
- **3** Learn bits of Q_i by observing collisions; compute k_2 .

Introduction MD4

HMAC and NMAC

Previous work Wang's attack

NMAC attack


New ideas

IV-dependent paths

Message pairs

Differential paths

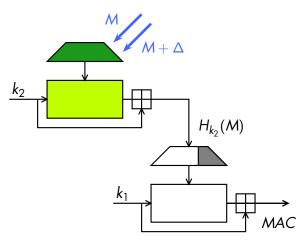
Extracting more Conclusion

- 1 Find an inner collision.
- Use M to modify the inner state.
- 3 Learn bits of Q_i by observing collisions; compute k_2 .

Introduction
MD4

HMAC and NMAC

Previous work Wang's attack


NMAC attack

New ideas

IV-dependent paths

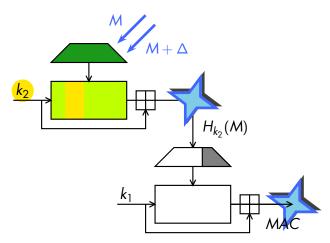
Message pairs Differential paths Extracting more

Conclusion

- Find an inner collision.
- 2 Use M to modify the inner state.
- **13** Learn bits of Q_i by observing collisions; compute k_2 .

Introduction

MD4 HMAC and NMAC


Previous work

Wang's attack NMAC attack

New ideas

IV-dependent paths Message pairs Differential paths Extracting more

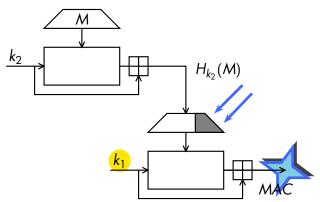
Conclusion

- Find an inner collision.
- Use M to modify the inner state.
- **3** Learn bits of Q_i by observing collisions; compute k_2 .

Introduction MD4

HMAC and NMAC

Previous work Wang's attack


NMAC attack

New ideas

IV-dependent paths Message pairs Differential paths Extracting more

Conclusion

Outer key recovery

- \blacktriangleright We can't choose $H_{k_2}(M)$.
- ▶ We can only have a difference in the first 128 bits.

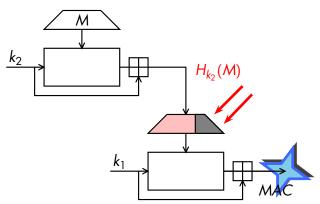
Introduction
MD4
HMAC and NMAC

Previous work

Wang's attack
NMAC attack

New ideas

IV-dependent paths


Message pairs

Differential paths

Extracting more

Conclusion

Outer key recovery

Problems

- We can't choose $H_{k_2}(M)$.
- ▶ We can only have a difference in the first 128 bits.

Contini and Yin's attack (Asiacrypt 2006)

G. Leurent

Introduction MD4 HMAC and NMAC

Previous work

Wang's attack

NMAC attack

New ideas IV-dependent paths

Message pairs Differential paths Extracting more

- ▶ Recovers the inner key k_2 but not the outer key k_1 .
- ▶ Best path: $p = 2^{-58}$. Complexity 263.
- Not enough for universal forgery. Attacker still need 2^n computations.

Introduction
MD4
HMAC and NMAC

Previous work

Wang's attack

Now idea

IV-dependent paths Message pairs Differential paths Extracting more

Conclusion

Outline

Introduction

The MD4 hash function HMAC and NMAC

Previous work

Wang's attack Contini-Yin NMAC attack

New ideas

IV-dependent differential path
Efficient computation of message pairs
Differential paths
Extracting more key bits

Introduction MD4 HMAC and NMAC

Previous work Wang's attack NMAC attack

New ideas

IV-dependent paths

Message pairs Differential paths

Extracting more

Conclusion

A New IV-recovery Attack

- We want to avoid the need for related messages.
- ▶ We look for paths where the existence of collision discloses information about the key.

Advantage

- ▶ In Contini-Yin attack, you need to choose a lot of bits in $H_{k_2}(M)$ (related messages).
- ▶ We only need to choose the differences in $H_{k_2}(M)$.

Introduction
MD4
HMAC and NMAC

Previous work Wang's attack

NMAC attack

New ideas

IV-dependent paths Message pairs Differential paths

Extracting more

Using IV-dependent paths

- ▶ Use a differential path with $\delta m_0 \neq 0$.
- The beginning of the path depends on a condition (X) of the IV:
 - $p_X = \Pr_M[H(M) = H(M + \Delta)|X] \gg 2^{-128}$.

step	δm_i	$\partial \Phi_i$	∂Q_i	conditions
0	⟨ ▲ ^[0] ⟩		⟨▲[3]⟩	
1				$Q_{-1}^{[3]} = Q_{-2}^{[3]}$ (X)

 $Pr_{\mathcal{M}}[H(\mathcal{M}) = H(\mathcal{M} + \Delta)|\neg X] \ll p_X.$

step	δ m $_i$	$\partial \Phi_i$	∂Q_i	conditions
0	⟨ ▲ ^[0] ⟩		⟨▲ [3]⟩	
1		⟨▲ [3]⟩	⟨ ▲ ^[10] ⟩	$Q_{-1}^{[3]} \neq Q_{-2}^{[3]}$ (- X)

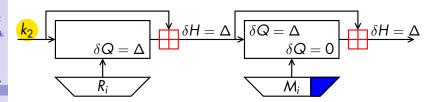
- ▶ We try $2/p_X$ pairs:
 - ▶ If we have a collision then (X) is satisfied.
 - Otherwise, (X) is not satisfied.

Introduction MD4 HMAC and NMAC

Previous work Wang's attack

Wang's attack NMAC attack

New ideas


IV-dependent paths Message pairs

Differential paths Extracting more

Conclusion

Efficient computation of message pairs

To recover the outer key, we need $2/p_X$ message pairs with $H_{k_2}(M_2)=H_{k_2}(M_1)+\Delta$

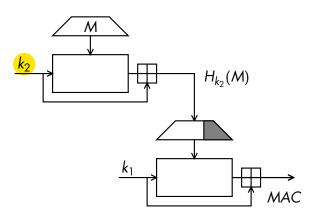
- We start with one message pair (R_1, R_2) such that $H_{k_2}(R_2) = H_{k_2}(R_1) + \Delta$ (birthday paradox).
- We compute second blocks (N_1, N_2) such that $H_{k_2}(R_2||N_2) = H_{k_2}(R_1||N_1) + \Delta$
- ► This is essentially a collision search with the padding inside the block.

Introduction

HMAC and NMAC

Previous work

Wang's attack NMAC attack


New ideas

IV-dependent paths Message pairs

Differential paths

Extracting more

Conclusion

- 1 Recover k_2 .
- **2** Generate pairs with $H_{k_2}(M_2) = H_{k_2}(M_1) + \Delta$.
- 3 Learn bits of k_1 by observing collisions.

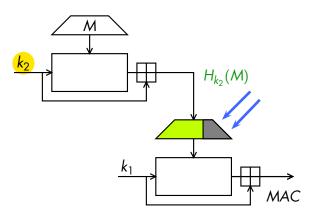
G. Leuren

Introduction MD4

HMAC and NMAC

Previous work

Wang's attack NMAC attack


New ideas

IV-dependent paths Message pairs

Differential paths

Extracting more

Conclusion

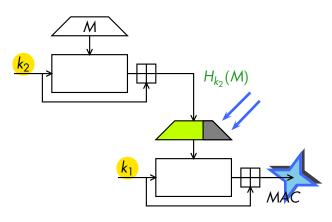
- 1 Recover k_2 .
- **2** Generate pairs with $H_{k_2}(M_2) = H_{k_2}(M_1) + \Delta$.
- 3 Learn bits of k_1 by observing collisions.

Introduction MD4

HMAC and NMAC

Previous work

Wang's attack NMAC attack


New ideas

IV-dependent paths

Message pairs

Differential paths

Extracting more Conclusion

- 1 Recover k_2 .
- **2** Generate pairs with $H_{k_2}(M_2) = H_{k_2}(M_1) + \Delta$.
- Learn bits of k_1 by observing collisions.

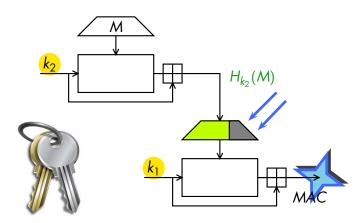
Introduction

MD4 HMAC and NMAC

71111 C UIW 1411

Previous work Wang's attack

NMAC attack


New ideas

IV-dependent paths Message pairs

Differential paths

Extracting more

Conclusion

- 1 Recover k_2 .
- **2** Generate pairs with $H_{k_2}(M_2) = H_{k_2}(M_1) + \Delta$.
- 3 Learn bits of k_1 by observing collisions.

Introduction MD4 HMAC and NMAC

Previous work Wang's attack

NMAC attack

New ideas IV-dependent paths

Message pairs

Differential paths

Extracting more

Conclusion

Differential paths

We need very constrained paths:

- At least one difference in m_□.
- ▶ No difference in $m_4...m_{15}$.
- High probability.
- Many paths (each one gives only one bit of the key).

- ▶ We use an algorithm to find a differential path from the
- We found 22 paths with $p_X \approx 2^{-79}$.
- ► Attack complexity: 2⁸⁸ data, 2¹⁰⁵ time.

Introduction MD4 HMAC and NMAC

Previous work

Wang's attack NMAC attack

New ideas

IV-dependent paths

Message pairs

Differential paths

Extracting more

Conclusion

Differential paths

We need very constrained paths:

- At least one difference in m_□.
- No difference in m₄...m₁₅.
- High probability.
- Many paths (each one gives only one bit of the key).

Differential path algorithm

- ▶ We use an algorithm to find a differential path from the message difference Δ .
- ▶ We found 22 paths with $p_X \approx 2^{-79}$.
- ► Attack complexity: 2⁸⁸ data, 2¹⁰⁵ time.

Introduction
MD4
HMAC and NMAC

Previous work
Wang's attack
NMAC attack

New ideas

IV-dependent paths

Message pairs

Differential paths Extracting more

Conclusion

Extracting more key bits

When we have a collision for one of the paths, we can recover some extra information on the key:

step	si	δ m $_i$	$\partial \Phi_i$	∂Q_i	conditions
0	3	⟨ ▲ ^[0] ⟩		⟨ ▲[3]⟩	
1	7				$Q_{-1}^{[3]} = Q_{-2}^{[3]}$ (X)
2	11				$Q_1^{[3]} = 0$ (Y)
3	19				$Q_2^{[3]} = 1$ (Z)
4	3			⟨ ▲ ^[6] ⟩	

Note: (Y) and (Z) are not key bits, they depend on the message.

Use **(Y)** *and* **(Z)** *to efficiently reduce the key entropy.*

On average we reduce the search space from 2^{105} to 2^{94} .

Hash collisions can be detected through HMAC/NMAC

► Tailoring Wang's attack: IV-dependent collisions

Full key recovery

G. Leuren

Introduction
MD4
HMAC and NMAC

Previous work

Wang's attack NMAC attack

New ideas

IV-dependent paths

Message pairs

Differential paths

Extracting more

Attack complexity

Conclusion

Attac	Data	Time	Mem	Remark	
	E-Forgery	$2^{n/2}$	-	-	Collision based
Generic	U-Forgery	$2^{n/2}$	2^{n+1}		Collision based
		1	$2^{2n/3}$	$2^{2n/3}$	TM tradeoff, 2 ⁿ precpu
NMAC-MD4	E-Forgery	2 ⁵⁸	_	-	
HMAC-MD4	Partial-KR	2 ⁶³	2 ⁴⁰	-	
	U-Forgery	2 ⁸⁸	2 ⁹⁵	-	New result

Conclusion

G. Leurent

Possible improvements

- Introduction MD4 HMAC and NMAC
- Previous work Wang's attack NMAC attack
- New ideas IV-dependent paths
- Message pairs Differential paths
- Extracting more

Find better paths.

- Use the method of Contini and Yin for the inner key.
- Use near-collisions for the outer key.

About MD5

- Our NMAC-MD5 attack is in the related-key model.
- A real attack would require a differential path with less than one block of message...

Full Key-Recovery attack on HMAC-MD4

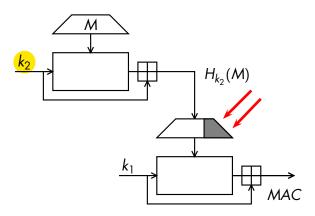
G. Leurent

Introduction MD4

HMAC and NMAC

Previous work Wang's attack

NMAC attack New ideas IV-dependent paths


Message pairs Differential paths Extracting more

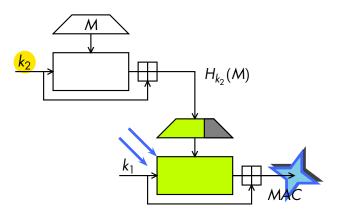
Any Questions?

Thank you for your attention.

Diff. paths

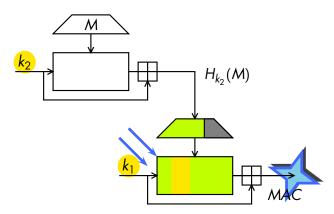
- 1 We don't have a path with a suitable Δ .
- 2 We use a path with a difference in the IV
- 3 Filter $H_{k_2}(M)$ to modify the outer state
- 4 Learn bits of Q_i by observing collisions; compute k_1 .

NMAC-MD5


Diff. paths

- 1 We don't have a path with a suitable Δ .
- 2 We use a path with a difference in the IV
- 3 Filter $H_{k_2}(M)$ to modify the outer state
- 4 Learn bits of Q_i by observing collisions; compute k_1 .

NMAC-MD5


Diff. paths

- 11 We don't have a path with a suitable Δ .
- We use a path with a difference in the IV
- 3 Filter $H_{k_2}(M)$ to modify the outer state
- 4 Learn bits of Q_i by observing collisions; compute k_1 .

NMAC-MD5

Diff. paths

- 1 We don't have a path with a suitable Δ .
- 2 We use a path with a difference in the IV
- 3 Filter $H_{k_2}(M)$ to modify the outer state
- **4** Learn bits of Q_i by observing collisions; compute k_1 .

NMAC-MD5 attack

G. Leurent

Diff. paths

- Small improvement of Contini & Yin's attack.
- Independently found by Rechberger & Rijmen (FC 2007).
- Related key model

Attacks			Data	Time	Mem	Remark
-		E-Forgery	$2^{n/2}$	-	-	Collision based
	Generic	U-Forgery	$2^{n/2}$	2^{n+1}	-	Collision based
	ļ		1	$2^{2n/3}$	$2^{2n/3}$	TM tradeoff, 2 ⁿ precpu
,	NMAC-MD5	E-Forgery	247	-	-	
	Related keys	Partial-KR	247	2^{45}	-	
ļ [']	Kolaloa Koyo	U-Forgery	2 ⁵¹	2100	-	New result

Differential paths

G. Leurent

NMAC-MD5

Dill. pai

The next slides show some examples of the differential paths used in the NMAC attack.

For more information see: Automatic search of differential path in MD4, by Pierre-Alain Fouque, Gaëtan Leurent and Phong Nguyen, Presented in the ECRYPT hash workshop, 2007, Cryptology ePrint Archive, Report 2007/206.

Full Key-Recovery attack on HMAC-MD4

G. Leurent NMAC-MD5

Diff. paths

n	ΙV	⁷ -de	epend	lent pa	th
step	si	δm_i	$\partial \Phi_i$	∂Q_i	conditions
0	3	< ▲ [0] >		⟨▲[3]⟩	
1	7				$Q_{-1}^{[3]} = Q_{-2}^{[3]}$
2	11				$Q_1^{(3)} = 0$
3	19				$Q_2^{[3]} = 1$
4	3			⟨▼▲[6,7]⟩	177 177 179
5	7				$Q_3^{[\delta]} = Q_2^{[\delta]}, Q_3^{[7]} = Q_2^{[7]}$
6	11				$Q_5^{(\delta)} = 0, Q_5^{(7)} = 0$
7	19		⟨▲[7]⟩	⟨▲[26]⟩	$Q_{6}^{[6]} = 1, Q_{6}^{[7]} = 0$
8	3		⟨▼[26]⟩	⟨▲ ^[9] , ▼ ^[29] ⟩	$Q_5^{[26]} = 1, Q_6^{[26]} = 0$
9	7				$Q_7^{[Y]} = Q_6^{[Y]}, Q_8^{[26]} = 0, Q_7^{[29]} = Q_6^{[29]}$
10	11				$Q_{q}^{[9]} = 0, Q_{q}^{[26]} = 1, Q_{q}^{[29]} = 0$
11	19			⟨▲[13]⟩	$Q_{10}^{[9]} = 1, Q_{10}^{[29]} = 1$
12	3			⟨▼ ^[0] , ▲ ^[12] ⟩	$Q_{10}^{[13]} = Q_{0}^{[13]}$
13	7				$Q_{11}^{(0)} = Q_{10}^{(0)}, Q_{11}^{(12)} = Q_{10}^{(12)}, Q_{12}^{(13)} = 0$
14	11		⟨▼[0]⟩	⟨ ▲▲▼ [1113]⟩	$Q_{13}^{(0)} = 1$, $Q_{13}^{(12)} = 0$, $Q_{13}^{(13)} = 1$
15	19		⟨▼[13]⟩		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
16	3	⟨ ■ [0] ⟩	⟨▲▼[12,13]⟩		$Q_{15}^{[11]} = Q_{12}^{[11]}, Q_{15}^{[12]} \neq Q_{12}^{[12]}, Q_{15}^{[13]} \neq Q_{12}^{[13]}$
17	5				$Q_{16}^{[11]} = Q_{15}^{[11]}$, $Q_{16}^{[12]} = Q_{15}^{[12]}$, $Q_{16}^{[13]} = Q_{15}^{[13]}$
18	9			⟨▲▲▲▼[2023]⟩	[20] [20] [21] [21] [22] [22] [22]
19	13				$Q_{17}^{[20]} = Q_{16}^{[20]}, Q_{17}^{[21]} = Q_{16}^{[21]}, Q_{17}^{[22]} = Q_{16}^{[22]}, Q_{17}^{[23]} = Q_{16}^{[23]}$
20	3		⟨▼[23]⟩	⟨▼[26]⟩	$Q_{19}^{[20]} = Q_{17}^{[20]}, Q_{19}^{[21]} = Q_{17}^{[21]}, Q_{19}^{[22]} = Q_{17}^{[22]}, Q_{19}^{[23]} \neq Q_{17}^{[23]}$
21	5				$Q_{20}^{[20]} = Q_{19}^{[20]}, Q_{20}^{[21]} = Q_{19}^{[21]}, Q_{20}^{[22]} = Q_{19}^{[22]}, Q_{20}^{[23]} = Q_{19}^{[23]}, Q_{19}^{[26]} = Q_{18}^{[26]}$
22	9			⟨▼[29]⟩	$\begin{array}{c} O_{1,h}^{(1)} = O_{1}^{(1)}, \ O_{1,h}^{(1)} = O_{1,h}^{(1,2)}, \ O_{1,h}^{(1,2)} = O_{1}^{(1,2)} \\ O_{1,h}^{(2)} = O_{1}^{(2)}, \ O_{1,h}^{(2)} = O_{1,h}^{(2)}, \ O_{1,h}^{(2)} = O_{1,h}^{(2$
23	13				$\begin{array}{cccccccccccccccccccccccccccccccccccc$
24	3			⟨▲▼[29,30]⟩	$Q_{23}^{(2')} = Q_{21}^{(2')}$
25	5		(1201)		Q ₂₃ = Q ₂₂ Q ₂₂
26	9		⟨ ▲ ^[29] ⟩		$Q_{25}^{(2)} \neq Q_{23}^{(2)}, Q_{25}^{(2)} = Q_{23}^{(2)}$
27	13			⟨▼[0]⟩	$Q_{26}^{(27)} = Q_{25}^{(27)}, \ Q_{26}^{(20)} = Q_{25}^{(20)}$
28	3			(▼[□])	
29 30	5 9				$Q_{27}^{(0)} = Q_{26}^{(0)}$
31	13	⟨ ▲ ^[O] ⟩			

A path for the message pair generation

step	si	δm_i	$\partial \Phi_i$	∂Q_i	conditions
-4	0			⟨▼[4]⟩	
-3	0			,	
-2	0				
-1	0				
0	3			⟨▼[7]⟩	
1	7	⟨▲[31]⟩		<a>[6]	$Q_{-1}^{[7]} = Q_{-2}^{[7]}$
2	11	⟨▼[28], ▲[31]⟩		⟨▼[7], ▲[10]⟩	$Q_0^{[6]} = Q_{-1}^{[6]}, Q_1^{[7]} = 0$
3	19				$Q_2^{[0]} = 0, Q_1^{[7]} = 0, Q_1^{[10]} = Q_0^{[10]}$
4	3		⟨▲ [ᠪ]⟩	⟨▲▲▼[911]⟩	$Q_3^{[6]} = 0, \ Q_3^{[7]} = 0, \ Q_3^{[10]} = 0$
5	7		(((0.11))	⟨▲[13]⟩	$Q_4^{[7]} = 1$, $Q_3^{[9]} = Q_2^{[9]}$, $Q_3^{[10]} = 0$, $Q_3^{[11]} = Q_2^{[11]}$
6	11		⟨▲▼[10,11]⟩	⟨▼[18]⟩	$Q_5^{[0]} = 0$, $Q_5^{[10]} = 1$, $Q_5^{[11]} = 1$, $Q_4^{[13]} = Q_3^{[13]}$ $Q_6^{[0]} = 1$, $Q_6^{[10]} = 1$, $Q_6^{[11]} = 1$, $Q_6^{[13]} = 0$, $Q_5^{[18]} = Q_4^{[18]}$
7	19				$Q_6^{[9]} = 1, Q_6^{[10]} = 1, Q_6^{[11]} = 1, Q_6^{[13]} = 0, Q_5^{[10]} = Q_4^{[10]}$
8	3		⟨▲[13]⟩	⟨▼[12], ▲[16]⟩	$Q_7^{[13]} = 0, \ Q_7^{[18]} = 0$
9	7		⟨▼[12]⟩	⟨ ▲ [19]⟩	$Q_j^{[12]} = 1$, $Q_6^{[12]} = 0$, $Q_5^{[16]} = Q_6^{[16]}$, $Q_8^{[18]} = 1$ $Q_6^{[12]} = 0$, $Q_6^{[16]} = 0$, $Q_9^{[16]} = Q_7^{[16]}$
10	11			⟨▼[29]⟩	$Q_9^{[12]} = 0, Q_9^{[10]} = 0, Q_8^{[10]} = Q_7^{[10]}$
11	19	(11.41)	(110)	([] [] [] []	$Q_{10}^{112} = 1$, $Q_{10}^{103} = 1$, $Q_{10}^{173} = 0$, $Q_{8}^{123} = Q_{8}^{123}$
12	3	⟨▼[16]⟩	⟨ ▲ ^[19] ⟩	⟨ ▲▼ ^[15,16] , ▲ ^[22] ⟩	$Q_{11}^{[10]} = 0$, $Q_{11}^{[20]} = 0$ $Q_{11}^{[15]} = Q_{10}^{[15]}$, $Q_{11}^{[16]} = Q_{10}^{[16]}$, $Q_{11}^{[22]} = Q_{10}^{[22]}$, $Q_{12}^{[29]} = 1$
13	7		/ 1900	⟨▼▼▼▲[2629]⟩	$Q_{11}^{(15]} = Q_{10}^{(15]}, Q_{11}^{(16]} = Q_{10}^{(16)}, Q_{11}^{(22]} = Q_{10}^{(22)}, Q_{12}^{(29)} = 1$
14	11		⟨ ▲ ^[29] ⟩	([[5]]	$\begin{array}{c} G_{13}^{(15)} = 0, G_{13}^{(15)} = 0, G_{12}^{(23)} = 0, G_{12}^{(23)} = 0, G_{12}^{(25)} = G_{11}^{(25)}, G_{12}^{(27)} = G_{11}^{(27)}, G_{12}^{(28)} = G_{11}^{(28)}, G_{12}^{(27)} = 1, G_{11}^{(27)} = 0\\ G_{14}^{(15)} = 1, G_{14}^{(15)} = 1, G_{14}^{(12)} = 1, G_{14}^{(24)} = 1, G_{14}^{(24)} = 0, G_{14}^{(24)} = 0, G_{14}^{(24)} = 1, G_{12}^{(27)} = 1, G_{1$
15	19		⟨▼▲[28,29]⟩	⟨▲[15]⟩	$Q_{14}^{[15]} = 1$, $Q_{14}^{[16]} = 1$, $Q_{14}^{[22]} = 1$, $Q_{14}^{[26]} = 0$, $Q_{14}^{[27]} = 0$, $Q_{14}^{[26]} = 1$, $Q_{14}^{[27]} = 1$
16	3		⟨▲[15]⟩	⟨▲[25]⟩	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
17	5			⟨▲[31]⟩	$Q_{16}^{[15]} = Q_{14}^{[15]}, Q_{15}^{[25]} = Q_{14}^{[25]}$
18	9	/ [14])		/ (201)	$Q_{17}^{[15]} = Q_{16}^{[15]}, Q_{17}^{[25]} = Q_{15}^{[25]}, Q_{16}^{[31]} = Q_{15}^{[31]}$
19	13	⟨▼[16]⟩		⟨▼[28]⟩	$Q_{18}^{(23)} = Q_{17}^{(23)}, Q_{18}^{(31)} = Q_{16}^{(31)}$
20	3	⟨▲[31]⟩	⟨▼[28], ▲[31]⟩	⟨▲ ^[28] , ▼ ^[31] ⟩	$Q_{18}^{(2)} \neq Q_{17}^{(2)}, Q_{19}^{(3)} \neq Q_{18}^{(3)}$ $Q_{19}^{(3)} \neq Q_{18}^{(3)}$
21	5		⟨▼[31]⟩		$Q_{19}^{(31)} \neq Q_{18}^{(31)}$
22	9		/ 1201		$Q_{21}^{[31]} = Q_{19}^{[31]}$
23	13	/ 1201 1211	⟨▲[28]⟩		$Q_{22}^{[28]} \neq Q_{21}^{[28]}, \ Q_{22}^{[31]} = Q_{21}^{[31]}$
24	3	⟨▼[28], ▲[31]⟩			