State-recovery for HMAC-HAIFA

Short message attacks 0000

Improved Generic Attacks Against Hash-based MACs and HAIFA

Itai Dinur¹ <u>Gaëtan Leurent</u>²

¹ENS, France

²Inria, France

Crypto 2014

I. Dinur & G. Leurent (ENS & Inria) Improved Generic Attacks Against Hash-based MACs and HAIFA Crypto 2014 1/21

State-recovery for HMAC-HAIFA

Short message attacks 0000

HMAC with GOST

НМАС

• Very common MAC algorithm $H(K \oplus \text{opad} || H(K \oplus \text{ipad} || M))$

GOST R 34.11-94

- Russian hash funct. standard
- Uses an internal checksum

I. Dinur & G. Leurent (ENS & Inria) Improved Generic Attacks Against Hash-based MACs and HAIFA Crypto 2014 2/21

Introduction

Short message attacks 0000

HMAC with GOST

НМАС

► Very common MAC algorithm $H(K \oplus \text{opad} || H(K \oplus \text{ipad} || M))$

GOST R 34.11-94

- Russian hash funct. standard
- Uses an internal checksum

I. Dinur & G. Leurent (ENS & Inria) Improved Generic Attacks Against Hash-based MACs and HAIFA Crypto 2014 2/21

Introduction

Short message attacks 0000

HMAC with GOST

НМАС

► Very common MAC algorithm $H(K \oplus \text{opad} || H(K \oplus \text{ipad} || M))$

GOST R 34.11-94

- Russian hash funct. standard
- Uses an internal checksum

► Key recovery attack in 2^{3ℓ/4}

[LPW, AC 2013]

State-recovery for HMAC-HAIFA 000000000

Short message attacks 0000

HMAC-GOST key recovery

GOST uses an internal checksum

Key recovery attack

- ► Use a state-recovery attack to recover x_{*} [LPW, AC 2013]
- Chosen message difference gives chosen checksum difference
- "Related-key attack" on the finalization

State-recovery for HMAC-HAIFA 000000000

Short message attacks 0000

HMAC-GOST key recovery

GOST uses an internal checksum

Question

- The is a new GOST hash function: Streebog
 - Also has a checksum
 - Uses a block-counter (HAIFA)
- Can we build a key-recovery attack against HMAC-Streebog?

I. Dinur & G. Leurent (ENS & Inria) Improved Generic Attacks Against Hash-based MACs and HAIFA Crypto 2014 3/21

Introduction

Short message attacks 0000

Security of HMAC

- ► Security proof up to 2^{ℓ/2}
- Matching attack for existential forgery
- We used to assume that many harder attack should cost 2^ℓ

Recent work

 State-recovery attack 	
• $2^{\ell}/\ell$ using multi-collisions	[NSWY13]
• $2^{\ell/2}$ using the cycle structure of random graphs	[LPW12]
 Universal forgery attack 	
 2^{5ℓ/6} using the cycle structure of random graphs 2^{3ℓ/4} improvement 	[PW14] [CPSW14]

Limitations of recent attacks

In this work we address two important limitations of recent attacks:

- **1** Attacks are not applicable to HAIFA-based hash function
 - Compression function tweak for each block (counter)
 - Used in Blake, Skein, Streebog, ...
- 2 Most of these attack use queries of length $\approx 2^{\ell/2}$
 - ▶ In practice, many hash functions limit the message length *e.g.* 2^{55} blocks for SHA-1 ($\ell = 160$) and SHA-256 ($\ell = 256$)

State-recovery for HMAC-HAIFA

Short message attacks 0000

Outline

Introduction HMAC-GOST Recent work

State-recovery for HMAC-HAIFA Previous work New results

Short message attacks

State-recovery Universal forgery

Hash-based MAC with a HAIFA hash function

- Generic model (HMAC, Sandwich-MAC, Envelope-Mac)
- Unkeyed compression functions h_i
 - Each compression function is different with HAIFA
- *l*-bit internal state
- Key dependant initialization I_k
- Key dependant finalization g_k

State-recovery for HMAC-HAIFA

Short message attacks

State-recovery attacks

Send messages to the oracle

 M_i $I_k \bullet b_0 \bullet b_1 \bullet b_2 \bullet \dots \bullet \mathfrak{R} \bullet \mathsf{MAC}(M_0)$ $I_k \bullet b_0 \bullet b_1 \bullet b_2 \bullet \dots \bullet \mathfrak{R} \bullet \mathsf{MAC}(M_1)$ $I_k \bullet b_0 \bullet b_1 \bullet b_2 \bullet \dots \bullet \mathfrak{R} \bullet \mathsf{MAC}(M_2)$ $I_k \bullet b_0 \bullet b_1 \bullet b_2 \bullet \dots \bullet \mathfrak{R} \bullet \mathsf{MAC}(M_3)$ $I_k \bullet b_0 \bullet b_1 \bullet b_2 \bullet \dots \bullet \mathfrak{R} \bullet \mathsf{MAC}(M_4)$ Online Structure

 Do some computations offline with the compression function

Offline Structure

- Match the sets of points?
 - How to test equality? Online chaining values unknown
 - How many equality test do we need?

I. Dinur & G. Leurent (ENS & Inria) Improved Generic Attacks Against Hash-based MACs and HAIFA Crypto 2014 8/21

Special states

Special states in a small set are more likely to match

Previous work

[LPW14]

- Entry point of the main cycle (1 point)
- ► Collisions found with long chains (2^{ℓ-2s} points)

Not applicable to HAIFA

We use the entropy loss from iterations of random function

Theorem (Entropy loss)

Let $f_1, f_2, \ldots, f_{2^s}$ be a fixed sequence of random functions; the image of $g_{2^s} \triangleq f_{2^s} \circ \ldots \circ f_2 \circ f_1$ contains about $2^{\ell-s}$ points.

cf. [PK14]

I. Dinur & G. Leurent (ENS & Inria)

Improved Generic Attacks Against Hash-based MACs and HAIFA Crypto 2014

Special states

Special states in a small set are more likely to match

Previous work

- Entry point of the main cycle (1 point)
- ► Collisions found with long chains (2^{ℓ-2s} points)

Not applicable to HAIFA

We use the entropy loss from iterations of random function

Theorem (Entropy loss)

Let $f_1, f_2, \ldots, f_{2^s}$ be a fixed sequence of random functions; the image of $g_{2^s} \triangleq f_{2^s} \circ \ldots \circ f_2 \circ f_1$ contains about $2^{\ell-s}$ points.

cf. [PK14]

[LPW14]

I. Dinur & G. Leurent (ENS & Inria) Improved Generic Attacks Against Hash-based MACs and HAIFA Crypto 2014 9/21

State-recovery for HMAC-HAIFA

Short message attacks 0000

First attempt

Chains of length 2^s, with a fixed message C

Online Structure

- Evaluate 2^t chains offline Build filters for endpoints
- 2 Query 2^u message $M_i = [i] \parallel C$ Test endpoints with filters

I. Dinur & G. Leurent (ENS & Inria)

Improved Generic Attacks Against Hash-based MACs and HAIFA Crypto 2014 10 / 21

 $s+t+u=\ell$

Building filters

Short message attacks

Filters to compare online and online states

Test whether the state reached after processing M is equal to x

 Collisions are preserved by the finalization (for same-length messages)

I. Dinur & G. Leurent (ENS & Inria)

Improved Generic Attacks Against Hash-based MACs and HAIFA Crypto 2014

11/21

Building filters

Short message attacks

Filters to compare online and online states

Test whether the state reached after processing M is equal to x

 Collisions are preserved by the finalization (for same-length messages)

I. Dinur & G. Leurent (ENS & Inria)

Improved Generic Attacks Against Hash-based MACs and HAIFA Crypto 2014

11 / 21

Building filters

Short message attacks

Filters to compare online and online states

Test whether the state reached after processing M is equal to x

 Collisions are preserved by the finalization (for same-length messages)

2 MAC(
$$M||p) \stackrel{?}{=} MAC(M||p')$$

I. Dinur & G. Leurent (ENS & Inria)

Improved Generic Attacks Against Hash-based MACs and HAIFA Crypto 2014

11/21

State-recovery for HMAC-HAIFA

Short message attacks 0000

First attempt

Chains of length 2^s, with a fixed message C

Online Structure

- Evaluate 2^t chains offline Build filters for endpoints
- Query 2^u message M_i = [i] || C
 Test endpoints with filters

 $s+t+u=\ell$

Cplx: 2^{s+t+u}

I. Dinur & G. Leurent (ENS & Inria) Improved Generic Attacks Against Hash-based MACs and HAIFA Crypto 2014 12/21

State-recovery for HMAC-HAIFA

Short message attacks 0000

Online filters

- Using the filters is too expensive.
- If we build filters online, using them is cheap.

I. Dinur & G. Leurent (ENS & Inria)

Improved Generic Attacks Against Hash-based MACs and HAIFA Crypto 2014

2014 13/21

State-recovery for HMAC-HAIFA

Short message attacks 0000

First attack on HMAC-HAIFA

Chains of length 2^s, with a fixed message C

Offline Structure

 $s + t + u = \ell$ Cplx: $2^{s+u+\ell/2}$ Cplx: 2^{t+s} Cplx: 2^{t+u}

I. Dinur & G. Leurent (ENS & Inria) Improved Generic Attacks Against Hash-based MACs and HAIFA Crypto 2014 14/21

State-recovery for HMAC-HAIFA

Short message attacks 0000

First attack on HMAC-HAIFA

Chains of length 2^s, with a fixed message C

Improved Generic Attacks Against Hash-based MACs and HAIFA

Crypto 2014 14 / 21

Offline Structure

(using u = s)

Optimal complexity

 $2^{\ell-s}$, for $s < \ell/6$

Minimum: $2^{5\ell/6}$

State-recovery for HMAC-HAIFA

Diamond filters

Short message attacks

- Building filers is a bottleneck.
- Can we amortize the cost of building many filters?

Diamond structure

[Kelsey & Kohno, EC'06]

Herd N initial states to a common state

- Try $\approx 2^{\ell/2} / \sqrt{N}$ msg from each state.
- Whp, the initial states can be paired
- Repeat... Total $\approx \sqrt{N} \cdot 2^{\ell/2}$

State-recovery for HMAC-HAIFA

Diamond filters

Short message attacks 0000

- Building filers is a bottleneck.
- Can we amortize the cost of building many filters?

Diamond structure

[Kelsey & Kohno, EC'06]

Herd N initial states to a common state

- Try $\approx 2^{\ell/2} / \sqrt{N}$ msg from each state.
- Whp, the initial states can be paired
- Repeat... Total $\approx \sqrt{N} \cdot 2^{\ell/2}$

Diamond filters

Short message attacks 0000

- Building filers is a bottleneck.
- Can we amortize the cost of building many filters?

Diamond filter

- Build a diamond structure
- 2 Build a collision filter for the final state
- Can also be built online
- Building N offline filters: $\sqrt{N} \cdot 2^{\ell/2}$ rather than $N \cdot 2^{\ell/2}$
- Building N online filters: $\sqrt{N} \cdot 2^{\ell/2+s}$ rather than $N \cdot 2^{\ell/2+s}$

С

 $S=2^{s}$

Cplx: $2^{s+u/2+\ell/2}$

Cplx: 2^{t+s}

Cplx: 2^{t+u}

Improved attack on HMAC-HAIFA

Chains of length 2^s, with a fixed message C

I. Dinur & G. Leurent (ENS & Inria)

Improved Generic Attacks Against Hash-based MACs and HAIFA Crupto 2014

16/21

 $s+t+u=\ell$

Short message attacks 0000

С

S-25

Offline Structure

Optimal complexity

 $2^{\ell-s}$, for $s < \ell/5$

Minimum: $2^{4\ell/5}$

(using u = s)

Improved attack on HMAC-HAIFA

Chains of length 2^s, with a fixed message C

Improved Generic Attacks Against Hash-based MACs and HAIFA

 2^t

State-recovery for HMAC-HAIFA

Short message attacks 0000

Introduction HMAC-GOST Recent work

State-recovery for HMAC-HAIFA Previous work New results

Short message attacks

State-recovery Universal forgery

Short message attacks $\bullet \circ \circ \circ$

Improved trade-offs for state-recovery attacks

I. Dinur & G. Leurent (ENS & Inria)

Improved Generic Attacks Against Hash-based MACs and HAIFA Crypto 2014 18 / 21

State-recovery for HMAC-HAIFA

Short message attacks 000

Improved universal forgery

- Previous universal forgery attacks require long message
- Using the techniques developed in this paper, we show attacks with short messages.

	Leng	g th		
Ref	Challenge	Queries	Complexity	Min
[PW14]	2 ^t	$2^{\ell/2} 2^{\ell/2}$	$2^{\ell-t}, t < \ell/6$	$2^{5\ell/6}$
[CPSW14]	2 ^t		$2^{\ell-t}, t < \ell/4$	$2^{3\ell/4}$
New	2 ^t	2 ^{2t}	$2^{\ell-t}, t < \ell/7$	2 ^{6ℓ/7}
New	2 ^{2t}	2 ^{2t}	$2^{\ell-t}, t < \ell/5$	2 ^{4ℓ/5}

Short message attacks 0000

Conclusion

1 Improved state-recovery attacks on HMAC with Merkle-Damgård

 Reduced complexity when the message length is limited e.g. SHA-1, SHA-2, HAVAL, Whirlpool, ...

2 Improved universal-forgery on HMAC with Merkle-Damgård

 Applicable with limited message length e.g. SHA-1, SHA-2, HAVAL, Whirlpool, ...

3 State-recovery attack on HMAC with HAIFA

- Key-recovery against HMAC-Streebog-512 with complexity 2⁴¹⁹
- State-recovery for BLAKE, Skein, ...

Short message attacks

Attack complexity

				State-recovery		Universal forgery		
Function	Mode	ℓ	S	[LPW13]	New	[CSPW14]	New	
SHA-1	MD	160	2 ⁵⁵	2 ¹²⁰	2 ¹⁰⁷	N/A	2 ¹³²	
SHA-256	MD	256	2 ⁵⁵	2 ²⁰¹	2 ¹⁹²	N/A	2 ²²⁸	
SHA-512	MD	512	2 ¹¹⁸	2 ³⁹⁴	2 ³⁸⁴	N/A	2 ⁴⁵³	
HAVAL	MD	256	2 ⁵⁴	2 ²⁰²	2 ¹⁹²	N/A	2 ²²⁹	
WHIRLPOOL	MD	512	2 ²⁴⁷	2 ³⁸⁴	2 ²⁸³	N/A	2 ⁴⁴⁶	
BLAKE-256	HAIFA	256	2 ⁵⁵	N/A	2 ²¹³	N/A	N/A	
BLAKE-512	HAIFA	512	2 ¹¹⁸	N/A	2 ⁴¹⁹	N/A	N/A	
Skein-512	HAIFA	512	2 ⁹⁰	N/A	2 ⁴¹⁹	N/A	N/A	
						Key recovery		
						[LPW13]	New	
Streebog	HAIFA+ σ	512	∞	N/A	2 ⁴¹⁹	N/A	2 ⁴¹⁹	
I. Dinur & G. Leurent (ENS & Inria) Improved Generic Attacks Against Hash-based MACs and HAIFA Crupto 2014 21/21								

Extra Slides

Collisions as special states

Short message attack on HMAC-HAIFA

Collisions as special states

Observation: collision finding algorithms return biased collisions.

- For a fixed function, using chains of length 2^s, the entropy of collisions decreases as 2^{ℓ-2s}
 - Conjectured in [LPW14], proven here

► For a sequence of independent functions, using chains of length 2^s, the entropy of collisions decreases as 2^{ℓ-s} the entropy of collisions at a fixed index decreases as 2^{ℓ-2s}

Lemma (Entropy of HAIFA collision with messages of length 2^s)

Let (x, x') and (y, y') be two pairs of chains, colliding at the same step *i*, with $\hat{x} = x_i = x'_i$, $\hat{y} = y_i = y'_i$. Then $\Pr[\hat{x} = \hat{y}] = \Theta(2^{2s-\ell})$

Collisions as special states

Observation: collision finding algorithms return biased collisions.

- For a fixed function, using chains of length 2^s, the entropy of collisions decreases as 2^{ℓ-2s}
 - Conjectured in [LPW14], proven here
- ► For a sequence of independent functions, using chains of length 2^s, the entropy of collisions decreases as 2^{ℓ-s} the entropy of collisions at a fixed index decreases as 2^{ℓ-2s}

Lemma (Entropy of HAIFA collision with messages of length 2^s)

Let (x, x') and (y, y') be two pairs of chains, colliding at the same step *i*, with $\hat{x} = x_i = x'_i$, $\hat{y} = y_i = y'_i$. Then $\Pr[\hat{x} = \hat{y}] = \Theta(2^{2s-\ell})$

Short message attack on HMAC-HAIFA

Chains of length 2^s, with a fixed message C

I. Dinur & G. Leurent (ENS & Inria)

Improved Generic Attacks Against Hash-based MACs and HAIFA Crypto 2014 24 / 21

Short message attack on HMAC-HAIFA

• Chains of length 2^s, with a fixed message C

Online Structure

- Locate 2^{c1} collisions online Build diamond filter
- 2 Locate 2^{c2} collisions offline Test with filters

I. Dinur & G. Leurent (ENS & Inria)

Improved Generic Attacks Against Hash-based MACs and HAIFA Crypto 2014