Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

Pierre-Alain Fouque, Gaëtan Leurent

École Normale Supérieure Paris, France

The IFSB Hash Function

The Cyclic attack

Hash Functions

$$F: \{0,1\}^* \mapsto \{0,1\}^n$$

Should behave "like a random oracle"...

Collision attack

Given *F*, find $M_1 \neq M_2$ s.t. $F(M_1) = F(M_2)$. Ideal security: $2^{n/2}$.

Second-preimage attack

Given F and M_1 , find $M_2 \neq M_1$ s.t. $F(M_1) = F(M_2)$. Ideal security: 2^n .

Preimage attack

Given F and \overline{H} , find M s.t. $F(M) = \overline{H}$. Ideal security: 2^n .

G. Leurent (ENS)

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

The IFSB Hash Function

The Cyclic attack

Hash Functions

$$F: \{0,1\}^* \mapsto \{0,1\}^n$$

Should behave "like a random oracle"...

Collision attack

Given F, find $M_1 \neq M_2$ s.t. $F(M_1) = F(M_2)$. Ideal security: $2^{n/2}$.

Second-preimage attack

Given F and M_1 , find $M_2 \neq M_1$ s.t. $F(M_1) = F(M_2)$. Ideal security: 2^n .

Preimage attack

Given F and
$$\overline{H}$$
, find M s.t. $F(M) = \overline{H}$.
Ideal security: 2^n .

G. Leurent (ENS)

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

The IFSB Hash Function

The Cyclic attack

Hash Function Design

Most hash functions are dedicated designs based on *symmetric crypto* concepts: *e.g.* MDx, SHA-x, Whirlpool, RadioGatún, Grindahl, ...

Some designs are based on a provable security approach: the security relies on a given hard problem (like *public key crypto*): *e.g.* FSB, LASH, SWIFFT, SQUASH, ...

Proof of security should be taken with caution

- Many of them are asymptotic proofs but the concrete function has a fixed size.
- Reduction to an NP-complete problem means that some instance are hard, but the fixed instance could be easy.
- Sometimes the attack model is too weak.

G. Leurent (ENS)

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

The IFSB Hash Function

The Cyclic attack

Hash Function Design

Most hash functions are dedicated designs based on *symmetric crypto* concepts: *e.g.* MDx, SHA-x, Whirlpool, RadioGatún, Grindahl, ...

Some designs are based on a provable security approach: the security relies on a given hard problem (like *public key crypto*): *e.g.* FSB, LASH, SWIFFT, SQUASH, ...

Proof of security should be taken with caution

- Many of them are asymptotic proofs but the concrete function has a fixed size.
- Reduction to an NP-complete problem means that some instance are hard, but the fixed instance could be easy.
- Sometimes the attack model is too weak.

G. Leurent (ENS)

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

The IFSB Hash Function

The Cyclic attack

Hash Function Design

Most hash functions are dedicated designs based on *symmetric crypto* concepts: *e.g.* MDx, SHA-x, Whirlpool, RadioGatún, Grindahl, ...

Some designs are based on a provable security approach: the security relies on a given hard problem (like *public key crypto*): *e.g.* FSB, LASH, SWIFFT, SQUASH, ...

Proof of security should be taken with caution

- Many of them are asymptotic proofs but the concrete function has a fixed size.
- Reduction to an NP-complete problem means that some instance are hard, but the fixed instance could be easy.
- Sometimes the attack model is too weak.

G. Leurent (ENS)

The IFSB Hash Function

The Cyclic attack

Hash Function Cryptanalysis

Many hash functions in use today are broken:

- 1990 MD4 design (Rivest)
- 1992 MD5 design (Rivest)
- 1995 SHA-1 design (NIST)
- 1996 MD4 collisions (Dobbertin)
- 2001 SHA-2 family design (NIST)
- 2004 MD5 collisions (Wang et al.)
- 2005 SHA-1 collision attack (Wang et al.)

Best collision attacks

MD4 Complexity 2¹ (Wang et al. – Sasaki et al.)
 MD5 Complexity 2²² (Wang et al. – Klima)
 SHA-1 Complexity 2^{60.x} (Wang et al. – Rechberger et al.)

Real impact is unclear, but new designs are welcome (cf. SHA-3).

G. Leurent (ENS)

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

The IFSB Hash Function

The Cyclic attack

Hash Function Cryptanalysis

Many hash functions in use today are broken:

- 1990 MD4 design (Rivest)
- 1992 MD5 design (Rivest)
- 1995 SHA-1 design (NIST)
- 1996 MD4 collisions (Dobbertin)
- 2001 SHA-2 family design (NIST)
- 2004 MD5 collisions (Wang et al.)
- 2005 SHA-1 collision attack (Wang et al.)

Best collision attacks

MD4 Complexity 2¹ (Wang et al. – Sasaki et al.)
MD5 Complexity 2²² (Wang et al. – Klima)
SHA-1 Complexity 2^{60.x} (Wang et al. – Rechberger et al.)

Real impact is unclear, but new designs are welcome (cf. SHA-3).

G. Leurent (ENS)

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

The IFSB Hash Function

The Cyclic attack

Hash Function Cryptanalysis

Many hash functions in use today are broken:

- 1990 MD4 design (Rivest)
- 1992 MD5 design (Rivest)
- 1995 SHA-1 design (NIST)
- 1996 MD4 collisions (Dobbertin)
- 2001 SHA-2 family design (NIST)
- 2004 MD5 collisions (Wang et al.)
- 2005 SHA-1 collision attack (Wang et al.)

Best collision attacks

MD4 Complexity 2¹ (Wang et al. – Sasaki et al.)
MD5 Complexity 2²² (Wang et al. – Klima)
SHA-1 Complexity 2^{60.x} (Wang et al. – Rechberger et al.)

Real impact is unclear, but new designs are welcome (cf. SHA-3).

G. Leurent (ENS)

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

The IFSB Hash Function

The Cyclic attack

Outline

The IFSB Hash Function

Description Previous cryptanalysis Wagner's Generalized Birthday Linearization Attack

The Cyclic attack

Using Periodic Messages Description of the attack Solving the cyclic equations Scope of the attack

G. Leurent (ENS)

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

The IFSB Hash Function

The Cyclic attack

Description of FSB x = 1 1 0 1 1 0 0 1 1 0 0 1 0 1 1

$F(x) = \mathcal{H} \times \varphi(x)$ \mathcal{H} : random $r \times n$ matrix φ : encodes *s* bits to *n* bits with weight *w*

G. Leurent (ENS)

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

The IFSB Hash Function •••••••

The Cyclic attack

$$F(x) = \mathcal{H} \times \varphi(x)$$

 \mathcal{H} : random $r \times n$ matrix
 φ : encodes *s* bits to *n* bits with weight *w*

G. Leurent (ENS)

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

The IFSB Hash Function

The Cyclic attack

G. Leurent (ENS)

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

The IFSB Hash Function

The Cyclic attack

G. Leurent (ENS)

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

The IFSB Hash Function

The Cyclic attack

Rationale of FSB

$$F(\mathbf{x}) = \mathcal{H} \times \varphi(\mathbf{x})$$

 \mathcal{H} : random $r \times n$ matrix

 φ : encodes *s* bits to *n* bits with weight *w*

- \mathcal{H} is the parity matrix of a linear code.
- $\varphi(x)$ is an error pattern.
- $\mathcal{H} \times \varphi(x)$ is a syndrome.
- Inversion and collision are related to coding theory problems (syndrome decoding) on H.

G. Leurent (ENS)

The IFSB Hash Function 0000000

The Cyclic attack

From FSB to IFSB

- Main problem: the matrix \mathcal{H} is huge...
- Use a quasi-cyclic matrix:

$$\mathcal{H} = \begin{bmatrix} \alpha_{0} & \alpha_{1} & \dots & \alpha_{r-2} & \alpha_{r-1} & \beta_{0} & \beta_{1} & \dots & \beta_{r-2} & \beta_{r-1} \\ \alpha_{r-1} & \alpha_{0} & \alpha_{1} & & \alpha_{r-2} & \beta_{r-1} & \beta_{0} & \beta_{1} & & \beta_{r-2} \\ \vdots & \alpha_{r-1} & \alpha_{0} & \ddots & \vdots & & \vdots & \beta_{r-1} & \beta_{0} & \ddots & \vdots \\ \alpha_{2} & & \ddots & \ddots & \alpha_{1} & \beta_{2} & & \ddots & \ddots & \beta_{1} \\ \alpha_{1} & \alpha_{2} & \dots & \alpha_{r-1} & \alpha_{0} & \beta_{1} & \beta_{2} & \dots & \beta_{r-1} & \beta_{0} \end{bmatrix}$$

G. Leurent (ENS)

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

The IFSB Hash Function

The Cyclic attack

The IFSB Hash Function

Previous cryptanalysis Wagner's Generalized Birthday Linearization Attack

The Cyclic attack

Using Periodic Messages Description of the attack Solving the cyclic equations Scope of the attack

G. Leurent (ENS)

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

The IESB Hash Function 000000000

Wagner's Generalized Birthday

- Solves the k-sum problem: find $l_1 \in L_1, ..., l_k \in L_k$ s.t. $\bigoplus_{i=1}^k l_k = 0$. • $L \bowtie_i L' = \{(l, l') \in L \times L' \mid (l \oplus l')^{[0.j-1]} = 0^j\}.$
- For *r* bits, start with 2^a lists of $2^{r/(a+1)}$ elements.

4 lists of $2^{r/3}$ elements

One element in L₁₂₃₄ is zero.

G. Leurent (ENS)

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

The IFSB Hash Function

The Cyclic attack

Wagner's Generalized Birthday

- Solves the *k*-sum problem: find *l*₁ ∈ *L*₁, ..., *l_k* ∈ *L_k* s.t. ⊕^k_{i=1} *l_k* = 0.
 L ⋈_i *L'* = {(*l*, *l'*) ∈ *L* × *L'* | (*l* ⊕ *l'*)^[0.j-1] = 0^j}.
- For r bits, start with 2^a lists of $2^{r/(a+1)}$ elements.

4 lists of $2^{r/3}$ elements

2 lists of $2^{r/3}$ elements with $2^{r/3}$ zeros

1 list of $2^{r/3}$ elements with $2^{2r/3}$ zeros

One element in L₁₂₃₄ is zero. Complexity: 7 sorts.

G. Leurent (ENS)

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

The IFSB Hash Function

The Cyclic attack

Wagner's Generalized Birthday

- Solves the *k*-sum problem: find l₁ ∈ L₁,..., l_k ∈ L_k s.t. ⊕^k_{i=1} l_k = 0.
 L ⋈_i L' = {(l, l') ∈ L × L' | (l ⊕ l')^[0.j-1] = 0^j}.
- For r bits, start with 2^a lists of $2^{r/(a+1)}$ elements.

4 lists of $2^{r/3}$ elements

2 lists of $2^{r/3}$ elements with $2^{r/3}$ zeros

1 list of $2^{r/3}$ elements with $2^{2r/3}$ zeros

One element in L₁₂₃₄ is zero. Complexity: 7 sorts.

G. Leurent (ENS)

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

The IFSB Hash Function

The Cyclic attack

Wagner's Generalized Birthday

- Solves the *k*-sum problem: find l₁ ∈ L₁, ..., l_k ∈ L_k s.t. ⊕^k_{i=1} l_k = 0.
 L ⋈_j L' = {(l, l') ∈ L × L' | (l ⊕ l')^[0.j-1] = 0^j}.
- For r bits, start with 2^a lists of $2^{r/(a+1)}$ elements.

4 lists of $2^{r/3}$ elements

2 lists of $2^{r/3}$ elements with $2^{r/3}$ zeros

1 list of $2^{r/3}$ elements with $2^{2r/3}$ zeros

One element in L₁₂₃₄ is zero.

Complexity: 7 sorts

G. Leurent (ENS)

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

The IFSB Hash Function

The Cyclic attack

Wagner's Generalized Birthday

- Solves the *k*-sum problem: find *l*₁ ∈ *L*₁, ..., *l_k* ∈ *L_k* s.t. ⊕^k_{i=1} *l_k* = 0.
 L ⋈_i *L'* = {(*l*, *l'*) ∈ *L* × *L'* | (*l* ⊕ *l'*)^[0.j-1] = 0^j}.
- For *r* bits, start with 2^a lists of $2^{r/(a+1)}$ elements.

4 lists of $2^{r/3}$ elements

2 lists of $2^{r/3}$ elements with $2^{r/3}$ zeros

1 list of $2^{r/3}$ elements with $2^{2r/3}$ zeros

- One element in L_{1234} is zero.
- Complexity: 7 sorts.

G. Leurent (ENS)

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

The IFSB Hash Function 00000000

The Cyclic attack

Wagner's Generalized Birthday

Application to FSB is straightforward: preimage and collision.

G. Leurent (ENS)

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

The IFSB Hash Function 00000000

The Cyclic attack

Wagner's Generalized Birthday

Application to FSB is straightforward: preimage and collision.

G. Leurent (ENS)

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

The IFSB Hash Function 00000000

The Cyclic attack

Linearization Attack

$$= F(a^w) \oplus F(b^w)$$

- Each *a* can be changed to *b*. And *c* to *d*.
- Everything stays linear; 2*w* degrees of freedom.

G. Leurent (ENS)

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

The IFSB Hash Function 00000000

The Cyclic attack

Linearization Attack

• Choose a, b, c, d. Start with
$$x = a^w$$
 and $x' = c^w$.

 $= \mathop{\textit{F}}(a^w) \oplus \mathop{\textit{F}}(b^w) \\ \oplus \mathop{\textit{K}}_{ab1}$

- Each *a* can be changed to *b*. And *c* to *d*.
- Everything stays linear; 2w degrees of freedom.

G. Leurent (ENS)

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

The IFSB Hash Function 00000000

The Cyclic attack

Linearization Attack

$$= F(a^w) \oplus F(b^w) \\ \oplus K_{ab1} \oplus K_{cd3}$$

• Each *a* can be changed to *b*. And *c* to *d*.

• Everything stays linear; 2*w* degrees of freedom.

G. Leurent (ENS)

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

The IFSB Hash Function 000000000

The Cyclic attack

Linearization Attack

 $= F(a^w) \oplus F(b^w) \\ \oplus K_{ab1} \oplus K_{cd3}$

- Each *a* can be changed to *b*. And *c* to *d*.
- Everything stays linear; 2w degrees of freedom.

G. Leurent (ENS)

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

The IFSB Hash Function 0000000

The Cyclic attack

Linearization attack against IFSB

- We reduce the message space: $x \in \{ab\}^*$, $x' \in \{cd\}^*$.
- ▶ We search a vector in the kernel of a *r* × 2*w* matrix.
- If $r \leq 2w$ we expect to find one.
- ► This is the case for IFSB...

G. Leurent (ENS)

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

The IFSB Hash Function 0000000

The Cyclic attack

Linearization attack against IFSB

- We reduce the message space: $x \in \{ab\}^*$, $x' \in \{cd\}^*$.
- ▶ We search a vector in the kernel of a *r* × 2*w* matrix.
- If $r \leq 2w$ we expect to find one.
- This is the case for IFSB...

G. Leurent (ENS)

The IFSB Hash Function 0000000

State of the art

The Cyclic attack

- The original FSB needs a huge matrix and is slow
- The parameters of IFSB are bad
- No structural attack against IFSB
- No attack known if r/w is big enough

G. Leurent (ENS)

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

The IFSB Hash Function

Outline

The IFSB Hash Function

Description Previous cryptanalysis Wagner's Generalized Birthday Linearization Attack

The Cyclic attack

Using Periodic Messages Description of the attack Solving the cyclic equations Scope of the attack

G. Leurent (ENS)

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

The IFSB Hash Function

The Cyclic attack

Cyclic code and periodicity

Property

If \mathcal{H} is cyclic and $\varphi(M)$ is periodic, then $\mathcal{H} \times \varphi(M)$ is periodic.

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

The IFSB Hash Function

Quasi-cyclic code and periodicity

Property

If \mathcal{H} is quasi-cyclic and $\varphi(M)$ is piecewise-periodic, then $\mathcal{H} \times \varphi(M)$ is periodic.

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

The IFSB Hash Function

The Periodic attack

Basic idea of the attack

- Use a piecewise-periodic $\varphi(M)$
- Cancel one period of the output.
- We can use Wagner's attack to cancel one period.
- a' is a or a 1, but smaller matrix:

Attack	Complexity	Remarks
Wagner	$r2^{a'} \cdot 2^{r/(a+1)}$	<i>r</i> is typically 1024
Cyclic + Wagner	$\frac{n}{2w}2^{a'}\cdot 2^{\frac{n}{2w}/(a'+1)}$	<i>n</i> /4 <i>w</i> is typically 128

The IFSB Hash Function

The Cyclic attack

Is there some more structure that we can use?

Yes: for each cyclic block, the outputs are still related:

• Collision iff $\bigoplus_{i=0}^{p-1} H_i \ll \mu_i = 0$

G. Leurent (ENS)

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

RSACONFERENCE2008

The Cyclic attack

The IFSB Hash Function

The Cyclic attack

The Cyclic attack

- Is there some more structure that we can use?
- > Yes: for each cyclic block, the outputs are still related:

G. Leurent (ENS)

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

The IFSB Hash Function

The Cyclic attack

The Cyclic attack

- Is there some more structure that we can use?
- > Yes: for each cyclic block, the outputs are still related:

• Collision iff $\bigoplus_{i=0}^{p-1} H_i \ll \mu_i = 0$

G. Leurent (ENS)

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

The IFSB Hash Function

Solve $\bigoplus_{i=0}^{p-1} H_i \ll \mu_i = 0$

- $\blacktriangleright \mathcal{H} = \mathcal{H}^L || \mathcal{H}^R$
- Solve for $\mathcal{H}^L \oplus \mathcal{H}^R$
- Apply the rotation to H
- The MSB of μ_i exchanges H_i^L and H_i^R
- Linear system for $\bigoplus H_i^L \ll \mu_i = 0$
- Then $\bigoplus H_i^R \ll \mu_i = 0$

G. Leurent (ENS)

The IFSB Hash Function

Solve $\bigoplus_{i=0}^{p-1} H_i \ll \mu_i = 0$

- $\blacktriangleright \mathcal{H} = \mathcal{H}^{L} || \mathcal{H}^{R}$
- Solve for $\mathcal{H}^L \oplus \mathcal{H}^R$
- Apply the rotation to H
- The MSB of μ_i exchanges H_i^L and H_i^R
- Linear system for $\bigoplus H_i^L \ll \mu_i = 0$
- Then $\bigoplus H_i^R \ll \mu_i = 0$

G. Leurent (ENS)

The IFSB Hash Function

The Cyclic attack

Solve $\bigoplus_{i=0}^{p-1} H_i \ll \mu_i = 0$

= 0

- $\blacktriangleright \mathcal{H} = \mathcal{H}^{L} || \mathcal{H}^{R}$
- Solve for $\mathcal{H}^L \oplus \mathcal{H}^R$
- Apply the rotation to H
- The MSB of μ_i exchanges H_i^L and H_i^R
- Linear system for $\bigoplus H_i^L \ll \mu_i = 0$
- Then $\bigoplus H_i^R \ll \mu_i = 0$

G. Leurent (ENS)

The IFSB Hash Function

The Cyclic attack

 μ_i

= 0

- $\blacktriangleright \mathcal{H} = \mathcal{H}^{L} || \mathcal{H}^{R}$
- Solve for $\mathcal{H}^L \oplus \mathcal{H}^R$
- ► Apply the rotation to *H*
- The MSB of μ_i exchanges H_i^L and H_i^R
- Linear system for $\bigoplus H_i^L \ll \mu_i = 0$
- Then $\bigoplus H_i^R \ll \mu_i = 0$

G. Leurent (ENS)

The IFSB Hash Function

The Cyclic attack

 μ_i

- $\blacktriangleright \mathcal{H} = \mathcal{H}^{L} || \mathcal{H}^{R}$
- Solve for $\mathcal{H}^L \oplus \mathcal{H}^R$
- Apply the rotation to H
- The MSB of μ_i exchanges H_i^L and H_i^R
- Linear system for $\bigoplus H_i^L \ll \mu_i = 0$
- Then $\bigoplus H_i^R \ll \mu_i = 0$

G. Leurent (ENS)

The IFSB Hash Function

The Cyclic attack

- $\blacktriangleright \mathcal{H} = \mathcal{H}^{L} || \mathcal{H}^{R}$
- Solve for $\mathcal{H}^L \oplus \mathcal{H}^R$
- Apply the rotation to H
- The MSB of μ_i exchanges H_i^L and H_i^R
- Linear system for $\bigoplus H_i^L \ll \mu_i = 0$
- Then $\bigoplus H_i^R \ll \mu_i = 0$

G. Leurent (ENS)

The IFSB Hash Function

The Cyclic attack

- $\blacktriangleright \mathcal{H} = \mathcal{H}^{L} || \mathcal{H}^{R}$
- Solve for $\mathcal{H}^L \oplus \mathcal{H}^R$
- Apply the rotation to H
- The MSB of μ_i exchanges H_i^L and H_i^R
- Linear system for $\bigoplus H_i^L \ll \mu_i = 0$
- Then $\bigoplus H_i^R \ll \mu_i = 0$

G. Leurent (ENS)

The IFSB Hash Function

The Cyclic attack

Overview

The full attack looks like periodic + linearization.

Linearization attack

Conditions	Complexity	Remarks
$r \leq 2w$	r ³	<i>r</i> is typically 1024
if <i>r</i> is bigger	$(4/3)^{r-2w} \cdot r^3$	$\log_2(4/3) \approx 0.415$

Cyclic attack

Conditions	Complexity	Remarks
$r \leq 4w$	$(n/4w)^3$	<i>n</i> /4 <i>w</i> is typically 64
if <i>r</i> is bigger	$2^{\frac{n(r-4w)}{4wr}} \cdot (n/4w)^3$	<i>n</i> /4 <i>wr</i> is typically 1/16

G. Leurent (ENS)

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

The IFSB Hash Function

The Cyclic attack

Scope of the Attack

In this talk, we assume that all the parameters are powers of 2.

- We need a small divisor *d* of *r* for the periodic attack.
- d must be a power of 2 for the cyclic attack.

Actually one of the parameter set of IFSB uses a prime r...

This is due to a result about quasi-cyclic codes:

Theorem

If r is a prime such that 2 is primitive modulo n, Then the matrix generated by a word of odd weight is invertible, and the code has the same kind of properties than a random code.

This does not prove the security of IFSB with a good r...

Our attack complements this result: if *r* has a small divisor, it is easy to invert periodic syndromes.

G. Leurent (ENS)

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

The IFSB Hash Function

The Cyclic attack

Scope of the Attack

In this talk, we assume that all the parameters are powers of 2.

- We need a small divisor *d* of *r* for the periodic attack.
- d must be a power of 2 for the cyclic attack.

Actually one of the parameter set of IFSB uses a prime r...

This is due to a result about quasi-cyclic codes:

Theorem

If r is a prime such that 2 is primitive modulo n, Then the matrix generated by a word of odd weight is invertible, and the code has the same kind of properties than a random code.

This does not prove the security of IFSB with a good r...

Our attack complements this result: if *r* has a small divisor, it is easy to invert periodic syndromes.

G. Leurent (ENS)

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

The IFSB Hash Function

The Cyclic attack

Scope of the Attack

In this talk, we assume that all the parameters are powers of 2.

- We need a small divisor *d* of *r* for the periodic attack.
- d must be a power of 2 for the cyclic attack.

Actually one of the parameter set of IFSB uses a prime r...

This is due to a result about quasi-cyclic codes:

Theorem

If r is a prime such that 2 is primitive modulo n, Then the matrix generated by a word of odd weight is invertible, and the code has the same kind of properties than a random code.

This does not prove the security of IFSB with a good r...

Our attack complements this result: if *r* has a small divisor, it is easy to invert periodic syndromes.

G. Leurent (ENS)

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

The IFSB Hash Function

The Cyclic attack

Scope of the Attack

In this talk, we assume that all the parameters are powers of 2.

- We need a small divisor *d* of *r* for the periodic attack.
- d must be a power of 2 for the cyclic attack.

Actually one of the parameter set of IFSB uses a prime r...

This is due to a result about quasi-cyclic codes:

Theorem

If r is a prime such that 2 is primitive modulo n, Then the matrix generated by a word of odd weight is invertible, and the code has the same kind of properties than a random code.

This does not prove the security of IFSB with a good r...

Our attack complements this result: if *r* has a small divisor, it is easy to invert periodic syndromes.

G. Leurent (ENS)

The IFSB Hash Function

The Cyclic attack

On Provable Security

Regular Syndrome Decoding is NP-hard but...

- There is an efficient algorithm for small matrix: Wagner attack.
- ▶ It is easy when *r* ≤ 2*w*: *linearization attack*.

Quasi-Cyclic Regular Syndrome Decoding is hard but...

► For some parameters, it is easy to decode a periodic syndrome: *cyclic attack*.

The IFSB Hash Function

The Cyclic attack

On Provable Security

Regular Syndrome Decoding is NP-hard but...

- There is an efficient algorithm for small matrix: Wagner attack.
- ▶ It is easy when *r* ≤ 2*w*: *linearization attack*.

Quasi-Cyclic Regular Syndrome Decoding is hard but...

For some parameters, it is easy to decode a periodic syndrome: cyclic attack.

The IFSB Hash Function

The Cyclic attack

On Provable Security

Regular Syndrome Decoding is NP-hard but...

- There is an efficient algorithm for small matrix: Wagner attack.
- ▶ It is easy when *r* ≤ 2*w*: *linearization attack*.

Quasi-Cyclic Regular Syndrome Decoding is hard but...

► For some parameters, it is easy to decode a periodic syndrome: *cyclic attack*.

The IFSB Hash Function

The Cyclic attack

On Provable Security

Regular Syndrome Decoding is NP-hard but...

- There is an efficient algorithm for small matrix: Wagner attack.
- ▶ It is easy when *r* ≤ 2*w*: *linearization attack*.

Quasi-Cyclic Regular Syndrome Decoding is hard but...

► For some parameters, it is easy to decode a periodic syndrome: *cyclic attack*.

The IFSB Hash Function

The Cyclic attack

On Provable Security

Regular Syndrome Decoding is NP-hard but...

- There is an efficient algorithm for small matrix: Wagner attack.
- ▶ It is easy when *r* ≤ 2*w*: *linearization attack*.

Quasi-Cyclic Regular Syndrome Decoding is hard but...

For some parameters, it is easy to decode a periodic syndrome: cyclic attack.

G. Leurent (ENS)

The IFSB Hash Function

IFSB Status

The Cyclic attack

- The original FSB needs a huge matrix and is slow
- The parameters of IFSB are really bad
- Structural attack against IFSB with a bad r
- No attack known if r is carefully chosen and r/w is big enough

G. Leurent (ENS)

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes

The IFSB Hash Function

The Cyclic attack

Thank you for your attention.

G. Leurent (ENS)

Cryptanalysis of a Hash Function Based on Quasi-Cyclic Codes