
Cryptanalysis of the “Kindle” Cipher

Alex Biryukov, Gaëtan Leurent, Arnab Roy

University of Luxembourg
alex.biryukov@uni.lu, gaetan.leurent@uni.lu, arnab.roy@uni.lu

Abstract. In this paper we study a 128-bit-key cipher called PC1 which
is used as part of the DRM system of the Amazon Kindle e-book reader.
This is the first academic cryptanalysis of this cipher and it shows that
PC1 is a very weak stream cipher, and can be practically broken in a
known-plaintext and even in a ciphertext-only scenario.
A hash function based on this cipher has also been proposed and is im-
plemented in the binary editor WinHex. We show that this hash function
is also vulnerable to a practical attack, which can produce meaningful
collisions or second pre-images.

Keywords: Cryptanalysis, Stream cipher, Hash function, Pukall Ci-
pher, PC1, PSCHF, MobiPocket, Amazon Kindle, E-book

1 Introduction

In this paper we study the stream cipher PC1, a 128-bit key cipher designed by
Pukall in 1991. The cipher was first described in a Usenet post [7] and imple-
mentations of the cipher can be found on the designer’s website [9]1. The PC1
cipher is a part of the DRM system of the MOBI e-book format, which is used
in the Amazon Kindle and in MobiPocket (a popular free e-book reader which
supports a variety of platforms). This fact makes this cipher into one of the most
widely deployed ciphers in the world with millions of users holding devices with
this algorithm inside. This cipher is also used in a hashing mode by WinHex [10],
an hexadecimal editor used for data recovery and forensics.

So far, no proper security analysis of PC1 is available in the academic liter-
ature. Thus it is interesting to study the security of PC1 due to its widespread
use and because it offers a nice challenge to cryptanalyst. Our results show prac-
tical attacks on the PC1 stream cipher. First, we show a known plaintext attack
which recovers the key in a few minutes with a few hundred kilobytes of en-
crypted text (one small book). Second, we show a ciphertext-only attack, using
a secret text encrypted under one thousand different keys. We can recover the
plaintext in less than one hour, and we can then use the first attack to extract
the keys if needed. Additionally, we show that the hashing mode is extremely
weak, by building a simple second-preimage attack with complexity 224, and a
more advanced attack using meaningful messages with a similar complexity. Our
results are summarized in Table 1.
1 Implementations of PC1 can also be found in various DRM removal tools.

1

2 Description of PC1

PC1 can be described as a self-synchronizing stream cipher, with a feedback
from the plaintext to the internal state. The cipher uses 16-bit integers, and
simple arithmetic operations: addition, multiplication and bitwise exclusive or
(xor). The round function produces one byte of keystream, and the plaintext is
encrypted byte by byte.

The internal state of the cipher can be described as a 16-bit integer s, and
an 8-bit integer π which is just the xor-sum of all the previous plaintext bytes
(πt = ⊕t−1i=0p

i). The round function PC1Round takes as input the 128 bit key k
and the state (s, π), and will produce one byte of keystream and a new value of
the state s.

In this paper we use the following notations:

p Plaintext + Addition modulo 216

c Ciphertext × Multiplication modulo 216

σ Keystream ⊕ Boolean exclusive or (xor)
ki 16-bit sub-keys: k = k0‖k1 . . . ‖k7
xt The value of x after t iterations of PC1Round
x[i] Bit i of x. We use x[i–j] or x[i, . . . , j] to denote bits i to j.
f(x) = x× 20021 + 1 gi(x) = (x+ i)× 20021
h(x) = x× 346 fold(x) = (x� 8)⊕ x (mod 28)

A schematic description of PC1 is shown in Figure 1, and pseudo-code is
given in Figure 2. We can divide the PC1 in two parts, as shown in the figure:

– The first part is independent of the state s and takes only the key and the
state π as input. We denote this part as KF (key function), and it produces
two outputs: w = KF1(π, k) is a set of 8 values used by the second part, and
σk = KF2(π, k) is used to create the keystream.

– The second part updates the state s from the previous value of s, and the
value of the w’s. We denote this part as SF (state function), and it produces
two outputs: SF1(s, w) is the new state s, and σs = SF2(s, w) is used to
create the keystream.

A high-level representation of PC1 using these functions is given in Figure 3.
An important property of PC1 is that the only operations in KF and SF are
modular additions, modular multiplications, and bitwise xors (the f , gi, and h
functions only use modular additions and multiplication). Therefore, KF and SF
are T-functions [5]: we can compute the i least significant bits of the outputs by
knowing only the i least significant bits of the inputs. The only operation that is
not a T-function in the PC1 design is the fold from 16 bits to 8 bits at the end.

Note that our description of PC1 does not follow exactly available code:
we use an equivalent description in order to make the state more explicit. In
particular, we put g0 at the end of the round in order to only have a 16-bit
state s, while the reference code keeps two variables and computes g0 and the
subsequent sum at the beginning of the round. We also use an explicit π state
instead of modifying the key in place.

2

KF

SF

k0

π

p

s

f

h

g1

k1

f

h

g2

k7

f

h

g0

×257
8

16

w0

×257
8

16

w1

×257
8

16

w7

×257 ×257 ×257

fold

c

16

8

8

8

Fig. 1. The PC1 stream cipher

2.1 Use in the Mobipocket e-book format and in the Kindle

A notable use of the PC1 stream cipher is in the MOBI e-book format [6].
This format allows optional encryption with PC1; this feature is used to build
the DRM scheme of MobiPocket and of the Amazon Kindle. An encrypted e-
book is composed of plaintext meta-data and several encrypted text segments.
Each segment contains 4 kB of text with HTML-like markup, and is optionally
compressed with LZ77. This implementation of LZ77 keeps most characters as-
is in the compressed stream, and use non-ASCII characters to encode length-
distance pairs. In practice there are still many repetitions in the compressed
stream, most of them coming from the formatting tags.

It is a well established fact the DRM system of both MobiPocket and the
Amazon Kindle are based on PC1. As a verification, we downloaded several
e-books from the Amazon store and they all followed this format.

Each text segment in a given e-book is encrypted with the same key, and
the PC1 stream cipher does not use any IV. Thanks to the plaintext feedback
the corresponding keystreams will not all be the same. Nonetheless the lack of
IV implies a significant weakness: the first byte of keystream will be the same
for all encrypted segments, so we can recover the first character of each segment
by knowing the first character of the file. Moreover we can detect when two
segments share a common prefix.

3

function PC1Round(k,π,s)
k → k0, k1, . . . , k7
σ ← 0
w ← 0
for 0 ≤ i < 8 do

w ← w ⊕ ki ⊕ (π × 257)
x← h(w) . h(x) = x× 346
w ← f(w) . f(x) = x× 20021 + 1
s← s+ x
σ ← σ ⊕ w ⊕ s
s← gi+1 mod 8(s) + x . gi(x) = (x+ i)× 20021

σ ← fold(σ) . fold(x) = (x� 8)⊕ x (mod 28)
return (σ, s)

function PC1Encrypt(k, p)
π ← 0; s← 0
for all pt do

(σ, s)← PC1Round(k, π, s)
ct ← pt ⊕ σ
π ← π ⊕ pt

return c

function PC1Decrypt(k, c)
π ← 0; s← 0
for all ct do

(σ, s)← PC1Round(k, π, s)
pt ← ct ⊕ σ
π ← π ⊕ pt

return p

Fig. 2. Pseudo-code of the PC1 stream cipher

Attacks on the DRM scheme. Like all DRM schemes, this system is bound
to fail because the key has to be present in the device and can be extracted by
the user. Indeed this DRM scheme has been reverse engineered, and software is
available to decrypt the e-books in order to read them with other devices [3].

In this paper, we do not look at the DRM part of the system, but we target
the stream cipher from a cryptanalysis point of view.

3 Previous Analysis

Two simple attacks on PC1 have already been described. Our new attacks will
exploit some of the same properties — which we rediscovered — and expand on
those ideas in order to build practical key-recovery attacks.

4

KF SF

sπ

16

8× 16

w

16

σk

16

σs

8

k
128

p
8

fold

16

8 σ

p c

πt+1 = πt ⊕ pt

wt = KF1(π
t, k)

st+1 = SF1(s
t, wt)

σt = fold(KF2(π
t, k)⊕ SF2(s

t, wt))

ct = pt ⊕ σt

Fig. 3. Overview of PC1. Grey boxes represent memory registers.

Table 1. Summary of the attacks on the PC1 stream cipher, and on the PSCHF hash
function.

Attacks on PC1 Complexity Data Reference

Distinguisher Chosen plaintext 216 216 [1]
Key recovery Known plaintext 272 24 [2]
Key recovery Known plaintext 231 220 Section 5
Key recovery Ciphertext only, 210 unrelated keys 235 217.210 Section 6

Attacks on PSCHF Complexity Reference

Second preimage with meaningful messages 224 Section 7

3.1 Key guessing

As described above, most of the computations of PC1 can be seen as a T-
function. Therefore, if we guess the low 9 bits of each sub-key, we can compute
the low 9 bits of KF and SF in a known plaintext attack. This gives one bit of
the keystream after the folding, and we can discard wrong guesses. We can then
guess the remaining key bits, and the full attack has a complexity of 272. This
was described in a Usenet post by Hellström [2].

3.2 State collisions

Our description clearly shows that the internal state of the stream cipher is very
small: 8 bits in π that do not depend of the key, and 16 bits in s. Therefore we
expect that there will be collisions in the state quickly. This was first reported by
Hellström on Usenet in [1], where he described a chosen-plaintext distinguisher:

5

given two messages x0‖y and x1‖y such that x0 and x1 have the same xor sum,
the encryption of y will be the same in both messages with probability 2−16.

A more efficient distinguisher can be built using the birthday paradox. We
consider 28 different prefixes xi with a fixed xor sum, and a fixed suffix y. When
encrypting the messages xi‖y, we expected that two of them will show the same
encryption of y when the state s collides after encrypting xi and xj .

4 Properties of PC1

Before describing our attacks, we study some useful properties of the design of
PC1.

4.1 Simplified State Update

First, we can see that the SF1 function only uses modular additions and modular
multiplications by constants. Therefore, the state update can be written as a
degree 1 polynomial (the full coefficients are given in Appendix A):

st+1 = SF1(s
t, wt) =

7∑
i=0

(
ai × wti

)
+ b× st + c

If we integrate the computation of w =
∑7
i=0 ai×wi inside KF, we only have

to transmit 16 bits between KF and SF for the s update loop. This results in
the simplified state update of Figure 4 (we denote the resulting functions by KF′

and SF′).

KF′ SF′

sπ

16

16

w

8

k
128

p
8

wt = KF′(πt, k)

st+1 = SF′(st, wt)

= wt + b× st + c

Fig. 4. Simplified PC1 state update

In the following, we denote KF′(x, k) as wx for a given key k. In particular,
we have wt = wπt . One can see that knowing the values of wx for all possi-
ble x is sufficient to compute the state update without knowing the key itself.
Equivalently, we can see KF′ as a key-dependent 8× 16 bit S-Box.

6

4.2 Diffusion

All operations in KF and SF are T-function so the only diffusion is from the low
bits to the high bits. Moreover, several bits actually cancel out and only affect
output bits at higher indexes. We can learn how the key affects the state update
by looking at the coefficients ai. We notice an interesting property of the least
significant bits of the coefficients:

∀i, ai ≡ 4 mod 8 b ≡ −1 mod 8 c ≡ 4 mod 8

Therefore, if bits 0 to i of the key and plaintext are known, we can compute bits
0 to i of w, and bits 0 to i+ 2 of s. More precisely, we can write

7∑
i=0

ai × wi = 4×
7∑
i=0

wi + 8×
7∑
i=0

a′i × wi with ai = 8a′i + 4

st+1 ≡ 4×
7∑
i=0

wi − st + 4 (mod 8)

We also have
∑7
i=0 wi ≡

⊕
i=1,3,5,7 ki (mod 2) and s0 = 0, which leads to:

st ≡ 4× t×

1⊕
⊕

i=1,3,5,7

ki

 (mod 8)

In particular, this shows that st ≡ 0 mod 4 (the two least significant bits of st
are always zero), and we will always have st+2 = st mod 8. Collisions between
st and st

′
will be more likely if t and t′ have the same parity; more generally,

collisions are more likely when t− t′ is a multiple of large power of two, but the
exact relations are difficult to extract.

We can also see that keys with
⊕

i=1,3,5,7 ki = 1 will lead to more frequent
collisions, because 3 bits of s are fixed to zero. This defines a class of key keys
with regard to collision based attacks. More generally we can define classes of
increasingly weak keys for which more low bits of the state are fixed.

5 Collision-based Known Plaintext Attack

As mentioned above, collisions in the internal state are relatively likely due to the
small state size. We show how to use such collisions in an efficient key recovery
attack.

First, let us see how we can detect state collisions. If a collision happens
between steps t and t′ (i.e. st = st

′
and πt = πt

′
) this will result in σt = σt

′

and st+1 = st
′+1. Additionally, if the plaintexts at positions t and t′ match, we

will have ct = ct
′
and πt+1 = πt

′+1, which will in turn give σt+1 = σt
′+1 and

st+2 = st
′+2. Furthermore, if several bytes of the plaintext match, this will give a

7

match in several keystream bytes because the state transitions will be the same.
More formally, we have

st = st
′

πt = πt
′

pt,...,t+u−1 = pt
′,...,t′+u−1

=⇒

st+1,...,t+u+1 = st

′+1,...,t′+u+1

σt+1,...,t+u+1 = σt
′+1,...,t′+u+1

ct+1,...,t+u = ct
′+1,...,t′+u

A u-byte match in the plaintext results in a u-byte match in the ciphertext, plus
one byte in the keystream, provided that the state (s, π) also matches.

In order to exploit this in a key-recovery attack, we look for matches in the
plaintext and ciphertext, and we assume that they correspond to state collisions.
If we get enough colliding bytes we will have few false positives, and we will
learn that st = st

′
for some values of t and t′. This is very valuable because the

computation of s from k is a T-function. We can then recover the key bit by bit:
if we guess the least significant bits of k we can compute the least significant
bits of s and verify that they collide.

We now study some internal details of the cipher in order to speed-up this
key recovery and to make it more practical.

5.1 Detecting state collisions

We look for pairs of positions (t, t′) with:

πt = πt
′

and pt,...,t+u−1 = pt
′,...,t′+u−1 (A)

σt+1,...,t+u+1 = σt
′+1,...,t′+u+1 (B)

Condition (A) is a u+1-byte condition depending only on the plaintext (we have
πt =

⊕t−1
i=0 p

i), while condition (B) is a u+ 1-byte condition depending also on
the ciphertext. In our attack we use u = 2: we have a 3-byte filtering to detect
the two-byte event st = st

′
, and we expect few false positives.

However, due to the structure of the cipher, the probability of having (B)
is bigger than 2−8(u+1), even when st 6= st

′
. First, the most significant bit of

s does not affect σ, because its effect is cancelled by the structure of additions
and xors. More generally, if we have st ≡ st

′
mod 2i (i.e. an i-bit match in s),

then i + 1 bits of σ will match, and this implies Pr(B) ≥ 2−(16−i−1)(u+1). For
instance, with u = 2, we have Pr(B) ≥ 2−2 when st ≡ st′ mod 214, which would
generate many false positives.

In our implementation of the attack, when we detect (B), we only assume
that this correspond to st ≡ st

′
mod 210. Experimentally, the probability of

detecting (B) with u = 2 is around 2−15 for random keys and random s states,
versus 2−24 if st 6≡ st′ mod 210. Therefore we have Pr

[
st 6≡ st′ mod 210

∣∣ (B)] ≈
2−24/2−15 = 2−9, and we expect to have no false positives when we use a dozen
collisions.

8

Since we only assume that 10 bits of s are colliding, we can only use these
collisions to recover the low 8 bits of the subkeys. For the upper 8 bits of the
key we use the output stream σ. If we know kj [0–7] and we guess kj [8], we can
compute σk[0–8] ⊕ σs[0–8] before the fold, and one bit of σ after the fold. We
can verify our guess by comparing this to the known least significant bit of c⊕p.

Note that most text documents have a relatively low entropy, therefore con-
dition (A) will be satisfied with probability significantly higher than 2−8(u+1).
In practice, with a sample book of 183 kB (after LZ77 compression), we have
120959 pairs of positions satisfying (A), and for a random encryption key we
usually detect between six and one hundred collisions.

5.2 Key recovery

The basic approach to use those collisions in a key recovery attack is to guess
the key bits one by one, and to compute the state in order to exclude wrong
guesses.

In a known plaintext attack if we guess kj [0–i] for all j then we can compute
wj [0–i] for all j, and also s[0, . . . , i+ 2]. We can verify a guess by comparing st

and st
′
up to the bit i+ 2.

However, this essentially requires us to perform a trial encryption of the full
text to test each key guess. To build a significantly more efficient attack we
consider how s is updated from the key. As explained in Section 4, we have
st+1 = wπt + b×st+ c, where the wx can be computed from the key. For a given
plaintext p, we can compute πt at each step, and each st can be written as a
linear combination of the wx:

st = Rt(w0, . . . , w255)

with the following relations:

Rt = wπt + b×Rt−1 + c R0 = 0

We can compute the coefficients of each Rt from the known plaintext, and every
state collision we detect can be translated to an equality Rt = Rt

′
. For each guess

of the least significant bits of the key, checking those equalities only requires to
compute the 256 values wx, and to evaluate linear combinations with 256 terms.

Moreover, we can look for sparse relations, so that we don’t have to evaluate
all the 256 values wx. First, note that we also have implicit relations due to the
structure of KF′: we know that KF is a T-function, and the coefficients ai used
to compute w are all multiple of 4; this gives wx ≡ wy mod 2i+2 for all x and y
with x ≡ y mod 2i. We use MAGMA to compute the vector space generated by
the collision relations, and we compute the quotient of this space by the implicit
relations. The basis of the quotient contains relatively sparse relations, and we
find very sparse ones (with only one or two terms) when we restrict the equations
to k[0–i] for a small i, by working in the ring Z/2iZ.

Using these relations, a key trial now costs less than 256 evaluations of the
round function. In practice this gives a speedup of about 100 times over the
staightforward approach.

9

5.3 Dealing with independent message segments

As mentionned in section 2.1, MOBI e-books are divided into several segments.
Each of these segments is encrypted with the same key starting with the initial
state (π, s) = (0, 0). The segments are too short to find collisions inside a given
segment, but we can use collisions between two different segments just as easily.

Let’s assume we detect a collision in the state s, π after enciphering the
plaintext p1 from the initial state and after enciphering the plaintext p2 from
the initial state. We can verify a guess of the least significant bits of the key by
enciphering p1 and p2 starting from the initial state, and verifying that the least
significant bits of the states match.

5.4 Complexity of the attack

6 7 8 16 32 64 128

216

220

224

228

232

Number of collisions

C
om

pl
ex
it
y

Experiments
Median

Fig. 5. Experimental results with an e-book of size 336kB (after LZ77 compression).
Complexity is shown as the number of key trials.

It is difficult to give the precise complexity of the attack because it depends
on the number of collisions found, and how much filtering they give. We did
some experiments to measure the actual complexity by enciphering a fixed book
with random keys, as reported by Figure 5. We found that when we have at least
9 collisions, the median complexity is less than 223 key trial, which take about
one minute. The attack is still practical with as low as six collisions, but in this
case we have to try around 230 key candidates, which takes a few hours with one
core of a typical PC.

10

With this sample e-book, the vast majority of keys result in more than 9 col-
lisions, and often a lot more. This results in a complexity of less that 223 key
trials. In general, this will be the case if the known plaintext is sufficiently long
(several hundred kilobytes, or a megabyte). Since each key trial costs less than
28 evaluation of the round function, the attack will cost less than 231 evaluations
of the round functions. In practice, it can be done in less than one minute.

6 Ciphertext Only Attack using Many Unknown Keys

We now describe a ciphertext-only attack, assuming that the attacker has access
to several encryptions of the same text under many different and unrelated keys.
If a DRM scheme is based on PC1, this would be a collusion attack where several
users buy a copy of a protected work and they share the encrypted data. This
attack is based on the observation that the keystream generated by a random
key at two differents positions σ1 = PC1(k, s1, π1) and σ2 = PC1(k, s2, π2) are
biased when π1 = π2.

For each plaintext position t, we build a vector Ct with the corresponding
ciphertext under each available key. If we consider a pair of positions t and t′

the vectors Ct and Ct
′
will be correlated if πt = πt

′
. If we manage to detect

this correlations efficiently, we can “color” the text positions with 256 colors
corresponding to the values of πt. Then we only have to recover the actual value
of πt corresponding to each color. We can use some known part of the text, the
low entropy of the human language, or some extra information recovered when
detecting the bias.

Bias in σ[0]. Let us first study the bias between the Ct vectors. The main
bias is in the least significant bit, and is present when πt[0–6] = πt

′
[0–6]. Let us

consider a given plaintext p encrypted under a random key, and two positions t,
t′ with this property. Because of cancellation effects in the structure of KF and
SF, π[7] does not affect bits 0–8 of σk = KF2(π, k) and σl = SF2(s, w). Moreover,
with some probability we have st[0–8] = st

′
[0–8]. If this if the case, we will have

σtl [0–8] = σt
′

l [0–8], and σ
t[0] = σt

′
[0] after the fold.

This results in a bias in ct[0]⊕ ct′ [0]:

Pr
[
ct[0] = ct

′
[0]
∣∣∣ πt[0–6] = πt

′
[0–6]

]
= Pr

[
pt[0]⊕ σt[0] = pt

′
[0]⊕ σt

′
[0]
∣∣∣ πt[0–6] = πt

′
[0–6]

]
= Pr

[
σt[0]⊕ σt

′
[0] = pt[0]⊕ pt

′
[0]
∣∣∣ πt[0–6] = πt

′
[0–6]

]
≈ 1/2± Pr

[
st[0–8] = st

′
[0–8]

]
The bias is positive if pt[0] = pt

′
[0] and negative otherwise. As noted in Sec-

tion 4.2, two bits of s are fixed to zero, which results in Pr [st[0–8] = st′ [0–8]] ≥
2−7. We even have three fixed bits if t′ ≡ t (mod 2), which give a stronger bias

11

of 2−6. Moreover, we can get even stronger biases for classes of weak keys, and
when using positions such that t− t′ is a multiple of a larger power of 2.

Bias with more bits of σ. There are similar biases with more outputs bits
when πt = πt

′
. For instance, we have st[0–9] = st

′
[0–9], with some probability.

This implies σtl [0–9] = σt
′

l [0–9], and σ
t[0–1] = σt

′
[0–1] after the fold. This results

in a bias in ct[0–1]⊕ ct′ [0–1]:

Pr
[
ct[0–1]⊕ ct

′
[0–1] = pt[0–1]⊕ pt

′
[0–1]

∣∣∣ πt = πt
′
]
≈ 1

4
+ Pr

[
st[0–9] = st

′
[0–9]

]
6.1 Clustering

These biases are quite strong and most colors can be recovered if we have access
to a fixed text encrypted under 220 different keys. In order to reduce the number
of keys needed, we use a more elaborate algorithm.

First, we work on sets of positions with the same remainder modulo 8: Ti =
{t | t ≡ i mod 8}. Positions in the same set will show a stronger bias on σ[0]:
Pr [st[0–8] = st′ [0–8] | t ≡ t′ (mod 8)] is about 2−6 for strong keys, but it can
be as high as 2−4 for weaker keys (one key in 8 is weak). This allows to detect
some relations with only one thousand keys. Each relation also gives the value
of pt[0]⊕ pt′ [0] from the sign of the bias.

Then we use a clustering algorithm to detect positions wich share the same
color. Initially, we assign a different color to each position, and we merge pairs
of colors when we detect a significant bias (we use a priority queue to start
with the strongest bias, and we recompute the bias as the clusters grow). When
comparing clusters with more than one position, we effectively have a larger
sample size, and we can detect weaker biases. Note that we need to correct the
signs of the biases using the values of pt[0]⊕pt′ [0] that we recover when merging
colors.

The first phase of the algorithm stops when have identified 128 large colors.
We assume that these correspond to the 128 values of π[0–6], which generate the
bias in σ[0]. We then remove false positives from each cluster by verifying that
each position is strongly correlated to the rest of the cluster, and we go through
all the unassigned positions and assign them to the cluster with the stongest
correlation (again, we use a priority queue to start with the strongest bias).

At this point each Ti has been partitioned in 128 colors, corresponding to
the value of π[0–6]. We then match the colors of different Ti’s by choosing the
strongest correlation (we first merge Ti and Ti+4 because this allows bigger biases,
then Ti and Ti+2, and finally Ti and Ti+1).

Finally, we have to split each color: we have the value of π[0–6], but we want
to recover the full value of π[0–7]. We use the bias on σ[0–1] to detect when two
positions correspond to the same π[0–7] (note that we already know the value
of pt[0] ⊕ pt′ [0]). For every color, we first pick two random points to create the
new colors, and we assign the remaining points to the closest group. We repeat
this with new random choices until the same partition is found three times.

The full attack is given as pseudo-code in Algorithms 1 and 2.

12

Algorithm 1 Pseudo-code of the clustering algorithm
for all i do . Initially, assign a different color to every position

Color[i]← i

for 0 ≤ x < 8 do . For each Tx
repeat . Merge colors with the strongest correlation

for all i, j ≡ x (mod 8), s.t. Color[i] 6= Color[j] do
b←ComputeBias(Get(Color[i]), Get(Color[j]))
if b > bmax then

bmax ← b; ci ← Color[i]; cj ← Color[j]

for all k ∈ Get(ci) do
Color[k]← cj

until 128 large colors have been identified . Store in MainColor[x]

for all i ≡ x (mod 8) do . Remove false positives
if ComputeBias({i}, Get(Color[i]) \ {i}) > ε then

Color[i]← NewColor()

for all i ≡ x (mod 8) do . Assign remaining points to the closest color
for 0 ≤ j < 128 do

b←ComputeBias({i}, Get(MainColor[x][j]))
if b > bmax then

bmax ← b; c← MainColor[x][j]

Color[i]← c

Merge(0,4); Merge(1,5); Merge(2,6); Merge(3,7);
Merge(0,2); Merge(1,3); Merge(0,1); . Merge colors from different Tx
for 0 ≤ i < 128 do . Split colors from π[0–6] to π[0–7]

Split(Get(MainColor[0][i]))
return Color

6.2 Experiments

We performed experiments with a sample text of a few kilobytes that we en-
crypted with PC1 under 210 different keys. In this setting, our clustering algo-
rithm can recover the colors in half an hour with a desktop PC. To associate
the correct π value to each color, we can use the fact the MOBI format encrypts
each chunk independently, and that the first character of a book is always a tag
opening character “<”. This allows to recover the first byte of each segment, and
to identify the colors. In the end, we can decipher the full text with only a few
errors. From that point, we can use the known-plaintext attack of Section 5 to
recover the keys, and to produce a clean plaintext.

One of the most expensive steps of the attack is to compute the bias between
each pair of positions in the plaintext. In our implementation, we use 217 bytes
of text, divided in 8 sets Ti of size 214. Therefore we have to compute 8 × 227

biases, and each computation requires 210 bit operations, or 25 word operations.
Therefore the complexity of the attack is about 235 word operations.

13

Algorithm 2 Functions used by the clustering algorithm

function Split(S) . Split color from π[0–6] to π[0–7]
repeat

a, b←Random(S); A ← {a}; B ← {b}
for all i ∈ S do

if ComputeBias2({i} ,A) > ComputeBias2({i} ,B) then
A ← A∪ {i}

else
B ← B ∪ {i}

until the same partition A,B is found three times
c← NewColor()
for all i ∈ A do

Color[i]← c

function Merge(x, y) . Merge colors from different Tx
for 0 ≤ j < 128 do

for 0 ≤ i < 128 do
b←ComputeBias(Get(MainColor[x][i]), Get(MainColor[y][j]))
if b > bmax then

bmax ← b; c← MainColor[x][i]

for all k ∈ Get(MainColor[y][j]) do
Color[k]← c

function Get(c) . Returns the set of positions currently in color c
return {i | Color[i] = c}

function ComputeBias(S, S ′) . Evaluates the bias in σ[0] between S and S ′

function ComputeBias2(S, S ′) . Evaluates the bias in σ[0–1] between S and S ′

7 PSCHF: A Hash Function Based on PC1

A hash function based on PC1 has also been proposed by Pukall [8], and it
is used in the WinHex hexadecimal editor to check the integrity of a file. The
PSCHF hash function operates in two steps:

– First the message is encrypted with PC1 using a fixed key kh, and the en-
crypted message is cut into chunks of 256 bits which are xor-ed together to
produce an intermediate 256-bit value h.

– Second, a finalization function is computed from the final value of the state
(s, π), h and the message length α (mod 32).

The pseudo-code for the hash function is given in Figure 6.

7.1 Second Preimage attack

To conclude our analysis, we describe a second preimage attack against this
hash function. We ignore the finalization, and target the values h, s, π, α after
the main loop.

14

h[0, . . . , 31]← 0
s← 0, π ← 0
α← 0
. The first loop reads the input message
for all pt do

(σ, s)← PC1Round(kh, π, s)
h[α]← h[α]⊕ σ ⊕ pt
π ← π ⊕ pt
α← α+ 1 mod 32

. The second loop is a finalization whose input are h, s, π, and α
for 0 ≤ j < 10× (`+ 1) do

(σ, s)← PC1Round(kh, π, s)
π ← π ⊕ h[α]
h[α]← σ
α← α+ 1 mod 32

return h

Fig. 6. Pseudo-code of the PSCHF hash function. The key kh is a fixed constant, and `
is used to compute the number of blank rounds in the finalization. WinHex uses ` = 10
and kh = 0xF6C72495179F3F03C6DEF156F82A8538.

We use E(M, s, π) to denote the encryption of a message block M with the
key kh, starting from state (s, π). The intermediate value h can be written as:

h = E(M0, π
0, s0)⊕ E(M1, π

32, s32)⊕ · · · ⊕ E(Ml, π
t, st),

where the st, πt values are implicitly computed by the previous E calls. The
message blocks are 32-byte long, but the last one might be incomplete.

We can easily build a second preimage attack due to the small internal state of
the cipher. We consider a given message M , and the corresponding target state
h, s, π, α before the finalization function. First, let us assume that the length
of M is a multiple of 32 bytes, i.e. α = 0. We consider a two-block message
M =M0,M1, and we want to reach the pre-specified value h:

h = E(M0, π
0, s0)⊕ E(M1, π

32, s32) = h,

or equivalently:
E(M1, π

32, s32) = h⊕ E(M0, π
0, s0).

We can find solutions by pickingM0 randomly and just computeM1 by decrypt-
ing h⊕E(M0, π

0, s0), starting from the state (π32, s32) reached after encrypting
M0. Note that we have α = 0 because we use a message of length 64 bytes. How-
ever, we also need to reach the pre-specified internal state i.e. s64 = s, π64 = π.
For a random choice of M0 this should be satisfied with probability 2−21 (the
probability is higher than 2−24 because at least three bits of s are fixed to zero).

If the length of the given message M is not a multiple of 32 we can still
mount a similar attack. We use a message M made of three parts: M0 of length

15

α, M1 of length 32− α, and M2 of length α. A preimage has to satisfy:

h =
(
E(M0, π

0, s0)‖E(M1, π
α, sα)

)
⊕
(
E(M2, π

32, s32)‖032−α
)
= h(

E(M2, π
32, s32)‖E(M1, π

α, sα)
)
=
(
E(M0, π

0, s0)‖032−α
)
⊕ h

Like in the previous case, we can choose a random M0, and obtain M1 by de-
crypting h[α + 1, . . . , 31] (starting from the state (πα, sα) found after M0) and
M2 by decrypting E(M0, π

0, s0)⊕ h[0, . . . , α] (starting from the state (π32, s32)
found after computing M1). At the end, we have π32+α = π and s32+α = s with
probability 2−21.

We can also use the attack with a chosen prefix. Given a target message M
and a chosen prefix N , we can build M such that H(N‖M) = H(M).

This attack has been verified and examples of second preimage are given in
Table 2. These examples are preimages of the empty message; they can be used
as a prefix to any chosen message M and will provide a message P‖M with the
same hash value. In this setting, it is also possible to build a meaningful message:
if the message block M0 is meaningful and goes to the state s = 0, π = 0, then
the decryption of M0 will give M1 =M0 and the full message is meaningful.

Table 2. Examples of second preimage of the empty message. We use the same key as
in WinHex: kh = 0xF6C72495179F3F03C6DEF156F82A8538

Random Message
D5 06 35 27 03 5C 71 E0 F6 D8 49 9B C9 ED 95 B2
FE 38 1E A0 A5 26 1A 80 91 F8 53 2E EF 5D 54 C4
FC 8B F0 09 D2 5C 5A 36 08 D6 41 F8 34 F5 50 5D
96 F6 C5 30 56 4A 9C 0D E2 DA 29 FD 4C 4A F0 62

Meaningful Message (hex)
2A 20 20 44 4F 20 6E 4F 74 20 52 45 41 44 20 74
68 69 73 20 6D 65 73 73 61 67 65 20 21 20 20 0A
2A 20 20 44 4F 20 6E 4F 74 20 52 45 41 44 20 74
68 69 73 20 6D 65 73 73 61 67 65 20 21 20 20 0A

Meaningful Message (ASCII)
*␣␣DO␣nOt␣READ␣this␣message␣!␣␣
*␣␣DO␣nOt␣READ␣this␣message␣!␣␣

H(M) = H(∅)

51 DE 77 DF 24 04 D0 37 18 DE 7C 53 9E 8A 62 75
FA 48 B0 3C E3 C1 5F 31 4D 58 F8 D8 FF 3B 19 8D

7.2 Meaningful Preimages

More generally, we can build arbitrary preimage where we control most of the
text, using Joux’s multi-collision structure [4], and a linearization technique.

First, we consider 28 meaningful blocks with the same xor-sum, and we com-
pute the state after encrypting them. We expect that two block m0,0 and m0,1

16

will lead to the same state s32, π32. We repeat this from the state s32, π32 to find
two messages m1,0 and m1,1 that lead to the same state s64, π64, and we build
a multi-collision structure with 256 pairs mi,0,mi,1 iteratively. This structure
contains 2256 different messages all leading to the same state s8192, π8192. Each
step needs 28 calls to PC1Round, so the full structure will be built for a cost of
216.

We then add a final block m256 of size α and whose xor-sum is π ⊕ π8192, in
order to connect the state s8192, π8192 to the target state s, π. This require 216

trials. We now have 2256 messages all going to the correct s, π and α, and we
will select one that goes to the correct h using a linearization technique.

Let us define ci,x = E(mi,x, π
32i, s32i) and c256 = E(m256, π

8192, s8192). We
can then express h as a function of 256 unknown xi’s:

h = c0,x0
⊕ c1,x1

⊕ · · · ⊕ c255,x255
⊕ c256

= c256 ⊕
255⊕
i=0

ci,xi

= c256 ⊕
255⊕
i=0

ci,0 ⊕
255⊕
i=0

xi · (ci,0 ⊕ ci,1)

= C ⊕X ·D,

where C = c256 ⊕
⊕255

i=0 c0, D is a matrix whose row are the ci,0 ⊕ ci,1, and X is
a row vector of the xi’s. We can then solve h = C ⊕X ·D using linear algebra,
and we find a message that is a preimage of M . This technique will produce
meaningful second preimages of length around 256 block, i.e. 8 kilobytes, with
a complexity of 224.

8 Conclusion

In this work, the study the cipher PC1, which is used in the Amazon Kindle
as part of the DRM scheme. Our analysis target the cipher itself, and not the
full DRM scheme. We show devastating attacks against the PC1 cipher, and
the PSCHF hash function: a known-plaintext key-recovery attack, a ciphertext
only attack using a thousand unrelated keys, and a meaningful second-preimage
attack on the hash function. All these attacks are practical and have been im-
plemented. While trying to make our attacks more efficient, we have used crypt-
analytic techniques which could be of independent interest.

Our attack scenarios are practical: if a DRM scheme is based on PC1, collud-
ing users can recover the plaintext from a thousand ciphertexts encrypted with
different keys. This analysis shows that PC1 is very weak and probably made its
way into popular products due to the lack of academic cryptanalysis, which we
provide in this paper. However, the practical impact on existing DRM schemes
is limited, because there are already easy ways to circumvent them.

The main problem in the design of PC1 is the very small internal state, which
allows attacks based on internal collisions. Additionnaly, our attacks exploit the

17

fact that several components of PC1 are T-functions, i.e. the diffusion is only
from the low bits to the high bits.

Acknowledgment. Gaëtan Leurent is supported by the AFR grant PDR-10-
022 of the FNR Luxembourg.

References

1. Hellström, H.: Re: Good stream cipher (other than ARC-
FOUR). Usenet post on sci.crypt (18 Jan 2002) Message id:
<S8K18.14572$l93.3141016@newsb.telia.net>.

2. Hellström, H.: Re: stream cipher mode. Usenet post on sci.crypt (3 Feb 2002)
Message id: <3C5CA721.9080905@streamsec.se>.

3. i♥cabbages: Circumventing Kindle For PC DRM (updated). Blog en-
try (20 Dec 2009) http://i-u2665-cabbages.blogspot.com/2009/12/
circumventing-kindle-for-pc-drm.html.

4. Joux, A.: Multicollisions in iterated hash functions. application to cascaded con-
structions. In Franklin, M.K., ed.: CRYPTO. Volume 3152 of Lecture Notes in
Computer Science., Springer (2004) 306–316

5. Klimov, A., Shamir, A.: A new class of invertible mappings. In Jr., B.S.K., Çetin
Kaya Koç, Paar, C., eds.: CHES. Volume 2523 of Lecture Notes in Computer
Science., Springer (2002) 470–483

6. MobileRead: MobileRead Wiki — MOBI (2012) [Online; accessed 14-Mai-2012]
http://wiki.mobileread.com/w/index.php?title=MOBI&oldid=30301.

7. Pukall, A.: crypto algorithme PC1. Usenet post on fr.misc.cryptologie (3 Oct 1997)
Message id: <01bcd098$56267aa0$LocalHost@jeushtlk>.

8. Pukall, A.: Description of the PSCHF hash function. Usenet post on sci.crypt (9
Jun 1997) Message id: <01bc74aa$ae412ae0$1aa54fc2@dmcwnjdz>.

9. Pukall, A.: The PC1 Encryption Algorithm – Very High Security with 128 or
256-bit keys (2004) http://membres.multimania.fr/pc1/.

10. WinHex: WinHex webpage http://www.x-ways.net/winhex/.

A Details of the state update polynomial

st+1 = SF1(s
t, wt)

= 8460× wt0 − 20900× wt1 − 3988× wt2 − 21444× wt3 + 13004× wt4
− 20196× wt5 + 16428× wt6 − 19204× wt7 − 15007× st − 29188

18

http://i-u2665-cabbages.blogspot.com/2009/12/circumventing-kindle-for-pc-drm.html
http://i-u2665-cabbages.blogspot.com/2009/12/circumventing-kindle-for-pc-drm.html
http://wiki.mobileread.com/w/index.php?title=MOBI&oldid=30301
http://membres.multimania.fr/pc1/
http://www.x-ways.net/winhex/

	Cryptanalysis of the ``Kindle'' Cipher
	Introduction
	Description of PC1
	Previous Analysis
	Properties of PC1
	Collision-based Known Plaintext Attack
	Ciphertext Only Attack using Many Unknown Keys
	PSCHF: A Hash Function Based on PC1
	Conclusion
	Details of the state update polynomial

