Ciphertext only key-recovery

# Cryptanalysis of the "Kindle" Cipher

## Alex Biryukov, Gaëtan Leurent, Arnab Roy

University of Luxembourg

## SAC 2012

A. Biryukov, G. Leurent, A. Roy (uni.lu)

Cryptanalysis of the "Kindle" Cipher

SAC 2012 1/22

*Ciphertext only key-recovery* 000

Conclusion

# Cryptography: theory and practice

### In theory

- Random Oracle
- Ideal Cipher
- Perfect source of randomness



#### *In practice*

- Algorithms
  - AES
  - SHA-2
  - RSA
- Modes of operation
  - CBC
  - OAEP
  - ۰...
- Random Number Generators
  - Hardware RNG
  - PRNG

# *Cryptography in the real world*

### Several examples of flaws in industrial cryptography:

- Bad random source
  - SLL with 16-bit entropy (Debian)
  - ECDSA with fixed k (Sony)
- Bad key size
  - RSA-512 (TI)

Export restrictions...

- Bad mode of operation
  - CBC-MAC with the RC4 stream-cipher (Microsoft)
  - TEA with Davies-Meyer (Microsoft)
- Bad (proprietary) algorithm
  - A5/1 (GSM)
  - Crypto-1 (MIFARE/NXP)

- CSS (DVD forum)
- KeeLoq (Microchip)

PC1 000 Known-plaintext key-recovery 0000 Ciphertext only key-recovery

Conclusion

## Amazon Kindle



- E-book reader by Amazon
- Most popular e-book reader (≈ 50% share)
- 4 generations, 7 devices
- Software reader for 7 OS, plus *cloud* reader
- Several million devices sold
- Amazon sells more e-books than paper books
- Uses crypto for DRM (Digital Rights Management)

PC1 000 Known-plaintext key-recovery

Ciphertext only key-recovery 000

Conclusion

# Digital Rights Management

Alice

- Company sells media (music, video, ebook, game, ...)
- Wants to prevent sharing
  - Customer should read but not copy

#### **DRM** scheme

- Encipher media
- Give player to users
  - Hardware or software
- Player contains the key

PC1 000 Known-plaintext key-recovery

*Ciphertext only key-recovery* 000

Conclusion

# Digital Rights Management

Alice

- Company sells media (music, video, ebook, game, ...)
- Wants to prevent sharing
  - Customer should read but not copy

#### DRM scheme

- Encipher media
- Give player to users
  - Hardware or software
- Player contains the key

0

Known-plaintext key-recovery 0000 Ciphertext only key-recovery

Conclusion

# Breaking DRM

Copy the media while being played



Extract the key from the player, decipher media



Tamper-proof hardware? Obfuscation? White-box crypto?

- No need to break the crypto!
- Pirates break once, copy...

A. Biryukov, G. Leurent, A. Roy (uni.lu)

PC1 000 (nown-plaintext key-recovery

Ciphertext only key-recovery 000

Conclusion

# Digital Rights Management

## Legal User

- Can only use authorized player
  - Collection locked-in
- DRM can restrict user rights
  - Lending, reselling, ...
- No format shifting:
  - play DVD on tablet
  - read ebook w/ speech synth.

### Illegal User

- Can still find illegal copies
- Can do anything with the media



Known-plaintext key-recovery

Ciphertext only key-recovery 000

Conclusion

## DRM on the Kindle

- Kindle e-books use DRM
- Like any DRM system, it is bound to fail
- In practice, it is easy to extract the key (Google for details...)

### Overview

- In this talk, we study the cipher used in this DRM system We don't study the DRM system itself
- The DRM system uses a cipher called PC1
- It's a really weak cipher...

Known-plaintext key-rec 0000 *Ciphertext only key-recovery* 000

Conclusion

## Outline

### Introduction

Cryptography in the real world Digital Rights Management

### The PC1 Cipher

Description Weaknesses

### Known-plaintext key-recovery

PC1

Collision detection Key recovery

### Ciphertext only key-recovery

Bias with independent keys Recovering the plaintext

A. Biryukov, G. Leurent, A. Roy (uni.lu)

*PC1* ●○○ Known-plaintext key-recovery 0000 Ciphertext only key-recovery 000

Conclusion

# The PC1 Cipher

- Designed by Pukall in 1991
- Posted on Usenet
- Kindle DRM based on PC1
- Self-synchronizing stream cipher No IV!
- 16-bit arithmetic: add, mult, xor

Main loop (KF and SF)

for  $0 \le i < 8$  do  $w \leftarrow w \oplus k_i \oplus (\pi \times 257)$   $x \leftarrow 346 \times w$   $w \leftarrow 20021 \times w + 1$   $s \leftarrow s + x$   $\sigma \leftarrow \sigma \oplus w \oplus s$  $s \leftarrow 20021 \times (s + (i+1 \mod 8)) + x$ 



A. Biryukov, G. Leurent, A. Roy (uni.lu)

Cryptanalysis of the "Kindle" Cipher

SAC 2012 10 / 22

PC1

Known-plaintext key-recovery

Ciphertext only key-recovery

Conclusion

# Weakness 1: T-functions



#### Weakness

### This is a T-function

- Low bits of the output depend only on the low bits of the input
- Add, mult, xor
- Guess 8 × 9 bits of the key
- Get 9 bits before the fold
- Get 1 bit after the fold
- Verify with known plaintext
- Complexity: 2<sup>72</sup> some bytes of known plaintext

A. Biryukov, G. Leurent, A. Roy (uni.lu)

Cryptanalysis of the "Kindle" Cipher

SAC 2012 11/22

PC1

Known-plaintext key-recovery

Ciphertext only key-recovery 000

Conclusion

# Weakness 2: small state



### Weakness

The state is very small

<mark>s</mark> 16-bit

 $\pi$  8-bit, key-independent

- Build a set of plaintexts x<sub>i</sub>||y, x<sub>i</sub>'s with fixed xor-sum
- With high probability the state collides after x<sub>i</sub> and x<sub>j</sub>
- Same encryption of y
- Complexity: 2<sup>8</sup> CP (distinguisher)

Known 0000

*Known-plaintext key-recovery* 

*Ciphertext only key-recovery* 000

Conclusion

# Outline

### Introduction

Cryptography in the real world Digital Rights Management

## The PC1 Cipher

Description Weaknesses

## Known-plaintext key-recovery Collision detection Key recovery

## Ciphertext only key-recovery

Bias with independent keys Recovering the plaintext

A. Biryukov, G. Leurent, A. Roy (uni.lu)

*Ciphertext only key-recovery* 000

Conclusion

## Collision detection

Can we use state collisions in a known-plaintext attack?

How much wood could a woodchuck chuck gfecuhaupmaqcdlvtognfgdhisqghugbrfqvc if a woodchuck could chuck wood? ghxadiaphjjxicwpidkasqghugbqsjbf

- ▶ In a natural language text, some words will be repeated.
- With some probability (p ≈ 2<sup>-24</sup>), two instances of a repeated word begin with the same state.
- ► This gives a repetition in the ciphertext.
- When we detect a repetition in the plaintext and ciphertext, we can assume that the state is colliding.

A. Biryukov, G. Leurent, A. Roy (uni.lu)

*Known-plaintext key-recovery* 

*Ciphertext only key-recovery* 000

Conclusion

## Collision detection

Can we use state collisions in a known-plaintext attack?

How much wood could a woodchuck chuck gfecuhaupmaqcdlvtognfgdhisqghugbrfqvc if a woodchuck could chuck wood? ghxadiaphjjxicwpidkasqghugbqsjbf

- In a natural language text, some words will be repeated.
- With some probability (p ≈ 2<sup>-24</sup>), two instances of a repeated word begin with the same state.
- This gives a repetition in the ciphertext.
- When we detect a repetition in the plaintext and ciphertext, we can assume that the state is colliding.

A. Biryukov, G. Leurent, A. Roy (uni.lu)

Cryptanalysis of the "Kindle" Cipher

SAC 2012 14 / 22

*Known-plaintext key-recovery* 

*Ciphertext only key-recovery* 000

Conclusion

## Collision detection

Can we use state collisions in a known-plaintext attack?

How much wood could a woodchuck chuck gfecuhaupmaqcdlvtognfgdhisqghugbrfqvc if a woodchuck could chuck wood? ghxadiaphjjxicwpidkasqghugbqsjbf

- In a natural language text, some words will be repeated.
- With some probability (p ≈ 2<sup>-24</sup>), two instances of a repeated word begin with the same state.
- This gives a repetition in the ciphertext.

When we detect a repetition in the plaintext and ciphertext, we can assume that the state is colliding.

A. Biryukov, G. Leurent, A. Roy (uni.lu)

*Known-plaintext key-recovery* 

*Ciphertext only key-recovery* 000

Conclusion

## Collision detection

Can we use state collisions in a known-plaintext attack?

How much wood could a woodchuck chuck gfecuhaupmaqcdlvtognfgdhisqghugbrfqvc if a woodchuck could chuck wood? ghxadiaphjjxicwpidkasqghugbqsjbf

- In a natural language text, some words will be repeated.
- With some probability (p ≈ 2<sup>-24</sup>), two instances of a repeated word begin with the same state.
- This gives a repetition in the ciphertext.
- When we detect a repetition in the plaintext and ciphertext, we can assume that the state is colliding.

A. Biryukov, G. Leurent, A. Roy (uni.lu)

Knc 0

*Known-plaintext key-recovery* •••• Ciphertext only key-recovery

Conclusion

## Collision Based Key-recovery



- Use state collisions to test key guess
- Skip output part

#### Weakness

This is a T-function

- Guess 8 × 1 bits of the key
- Compute 1 bit of s, check collisions in s
- Repeat with 2<sup>nd</sup> bit, ...

Known-plaintext key-recovery

Ciphertext only ke

Conclusion

## Collision Based Key-recovery



- Use state collisions to test key guess
- Skip output part

#### Weakness

### This is a T-function

- Guess 8 × 1 bits of the key
- Compute 1 bit of s, check collisions in s
- Repeat with 2<sup>nd</sup> bit, ...

*Ciphertext only key-recovery* 000

Conclusion

# Improving the Complexity

Simplified state update:  $s^{t+1} = \overline{w}^t + b \times s^t + c$ 

$$\overline{W} = W + D \times S^{2} + C$$

$$\overline{W} \triangleq \sum_{i=1}^{7} (a_{i} \times w_{i})$$

• key-dep. S-box KF' : 
$$\pi \to \overline{w}_{\pi}$$

- Iterate the state update:
   s<sup>t</sup> = R<sup>t</sup>(w
  <sub>0</sub>,...,w
  <sub>255</sub>) linear
   Explicit with known π<sup>t</sup>
- State collisions give linear relations of w<sub>x</sub>: R<sup>t</sup> = R<sup>u</sup>
  - Look for sparse relations
- For each (partial) key guess, compute w<sub>x</sub> & check relations
  - Faster than computing s



*Known-plaintext key-recovery* 

Ciphertext only key-recovery

Conclusion



Practical key-recovery attack

Complexity  $\approx 2^{31}$  with  $\approx 2^{20}$  bytes of (low entropy) known plaintext *Key trial costs less than 256 instead of full encryption* 

A. Biryukov, G. Leurent, A. Roy (uni.lu)

Cryptanalysis of the "Kindle" Cipher

SAC 2012 17 / 22

Known-plaintext key-reco

*Ciphertext only key-recovery* 000

Conclusion

## Outline

#### Introduction

Cryptography in the real world Digital Rights Management

### The PC1 Cipher

Description Weaknesses

### Known-plaintext key-recovery

Collision detection Key recovery

### Ciphertext only key-recovery

Bias with independent keys Recovering the plaintext

A. Biryukov, G. Leurent, A. Roy (uni.lu)

*Ciphertext only key-recovery* •00

Conclusion

## *Ciphertext Only Attack*

#### Main idea

If the state  $(s, \pi)$  collides, then the output stream  $\sigma$  is the same. Note that s depend on the key, but  $\pi = \bigoplus p^i$ Consider two positions t, u and a random key:

$$\Pr_{\mathsf{K}}\left[\sigma^{t} = \sigma^{u} \quad \right] \approx \begin{cases} 2^{-8} & \text{if } \pi^{t} \neq \pi^{u} \\ 2^{-8} + \Pr\left[s^{t} = s^{t'}\right] & \text{if } \pi^{t} = \pi^{u} \end{cases}$$

 $\boldsymbol{c}^t \oplus \boldsymbol{c}^u = \boldsymbol{\sigma}^t \oplus \boldsymbol{p}^t \oplus \boldsymbol{\sigma}^u \oplus \boldsymbol{p}^u$ 

- Consider several copies of a given text, encrypted with different, unrelated keys (collusion).
- Look at the distribution of  $c^t \oplus c^u$ :
  - If flat,  $\pi^t \neq \pi^u$
  - If one peak, then  $\pi^t = \pi^u$ , and get  $p^t \oplus p^u$

A. Biryukov, G. Leurent, A. Roy (uni.lu)

*Ciphertext only key-recovery* •00

Conclusion

## Ciphertext Only Attack

### Main idea

If the state  $(s, \pi)$  collides, then the output stream  $\sigma$  is the same. Note that s depend on the key, but  $\pi = \bigoplus p^i$ Consider two positions t, u and a random key:

$$\Pr_{\mathsf{K}}\left[c^{t} \oplus c^{u} = \mathsf{X}\right] \approx \begin{cases} 2^{-8} & \text{if } \pi^{t} \neq \pi^{u} \\ 2^{-8} + \Pr\left[s^{t} = s^{t'}\right] & \text{if } \pi^{t} = \pi^{u}, \mathsf{X} = p^{t} \oplus p^{u} \end{cases}$$

 $\boldsymbol{c}^t \oplus \boldsymbol{c}^u = \boldsymbol{\sigma}^t \oplus \boldsymbol{p}^t \oplus \boldsymbol{\sigma}^u \oplus \boldsymbol{p}^u$ 

- Consider several copies of a given text, encrypted with different, unrelated keys (collusion).
- Look at the distribution of  $c^t \oplus c^u$ :
  - If flat,  $\pi^t \neq \pi^u$
  - If one peak, then  $\pi^t = \pi^u$ , and get  $p^t \oplus p^u$

A. Biryukov, G. Leurent, A. Roy (uni.lu)

Ciphertext only key-recovery

Conclusion

## Ciphertext Only Attack

### Main idea

If the state  $(s, \pi)$  collides, then the output stream  $\sigma$  is the same. Note that s depend on the key, but  $\pi = \bigoplus p^i$ Consider two positions t, u and a random key:

$$\Pr_{\mathsf{K}}\left[c^{t} \oplus c^{u} = \mathsf{X}\right] \approx \begin{cases} 2^{-8} & \text{if } \pi^{t} \neq \pi^{u} \\ 2^{-8} + \Pr\left[s^{t} = s^{t'}\right] & \text{if } \pi^{t} = \pi^{u}, \mathsf{X} = p^{t} \oplus p^{u} \end{cases}$$

 $\boldsymbol{c}^t \oplus \boldsymbol{c}^u = \boldsymbol{\sigma}^t \oplus \boldsymbol{p}^t \oplus \boldsymbol{\sigma}^u \oplus \boldsymbol{p}^u$ 

- Consider several copies of a given text, encrypted with different, unrelated keys (collusion).
- Look at the distribution of  $c^t \oplus c^u$ :
  - If flat,  $\pi^t \neq \pi^u$
  - If one peak, then  $\pi^t = \pi^u$ , and get  $p^t \oplus p^u$

000

Ciphertext only key-recovery

## *Tricks to Improve the Bias*

#### There are similar bias with the low bits of $\sigma$ :



Use bias in low bit of  $c^t \oplus c^u$ : if  $\pi^t = \pi^u$  and  $X \equiv p^t \oplus p^u \mod 2$ , then

$$\Pr_{\mathsf{K}}\left[c^{t} \oplus c^{u} \equiv \mathsf{X} \mod 2\right] \approx 2^{-1} + \Pr\left[s^{t} \equiv s^{t'} \mod 2^{9}\right]$$

2 Use positions with  $t \equiv u \mod 8$ 

• This gives a bias of  $2^{-6}$  to  $2^{-4}$  (cancellations in the state update)

A. Birvukov, G. Leurent, A. Roy (uni.lu)

*Ciphertext only key-recovery* 00

# *Clustering algorithm*

## Finding relations

- Look at the distribution of  $c^t \oplus c^u \mod 2$ :
  - If flat, then  $\pi^t \neq \pi^u$
  - If one peak, then  $\pi^t = \pi^u$
- Use a clustering algorithm to recover  $\pi^t$ :
  - Initially, all positions are assigned a different color.
  - When  $\pi^t = \pi^u$  is detected, merge colors.
- Easier to detect bias with larger clusters
  - Combine the biases  $c^{t_i} \oplus c^{t_j}$
- At the end, 256 colors correspond to the 256 values of  $\pi^t$ 
  - Recover the value of π<sup>t</sup> using some known plaintext.
  - Recover p.

## Practical with 2<sup>10</sup> keys, and 2<sup>17</sup> data

| Introduction | PC1 | Known-plaintext key-recovery | Ciphertext only key-recovery | Conclusion |
|--------------|-----|------------------------------|------------------------------|------------|
|              |     |                              |                              |            |

## Conclusion

#### Don't use an untested cipher!

| Attacks on PC1                            |                                                                                                      | Complexity                                                                      | Data                                                                            | Ref.                           |
|-------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------|
| Dist.<br>Key rec.<br>Key rec.<br>Key rec. | Chosen plaintext<br>Known plaintext<br>Known plaintext<br>Ciphertext only, 2 <sup>10</sup> unrelated | 2 <sup>16</sup><br>2 <sup>72</sup><br>2 <sup>31</sup><br>I keys 2 <sup>35</sup> | 2 <sup>16</sup><br>2 <sup>4</sup><br>2 <sup>20</sup><br>2 <sup>17</sup> per key | Usenet<br>Usenet<br>New<br>New |
| Attacks on PSCHF Complexity               |                                                                                                      |                                                                                 |                                                                                 | Ref.                           |
| 2 <sup>nd</sup> pre.                      | with meaningful messages                                                                             | 2 <sup>24</sup>                                                                 |                                                                                 | New                            |

#### Impact for the Kindle?

Pirates can just extract the key... They don't need to break the cipher to break the DRM scheme.

A. Biryukov, G. Leurent, A. Roy (uni.lu)