Characteristics 000

Differentials 0000 Forgery Attack

Differential Forgery Attack against LAC

Gaëtan Leurent

Inria, France

SAC 2015

G. Leurent (Inria)

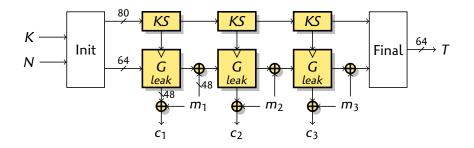
Differential Forgery Attack against LAC

SAC 2015 1/14

Characteristi

Differentials 0000 Forgery Attack

Authenticated encryption


Cryptography has two main objectives:
Confidentiality keeping the message secret
Authenticity making sure the message is authentic

- Authenticated encryption scheme provides both
 - Combines a cipher and a MAC
- CAESAR competition
 - Ongoing competition to design new AE schemes
 - 57 submissions in March 2014
 - 29 selected for second-round in July 2015
 - Important cryptanalysis effort

Characteristics 000

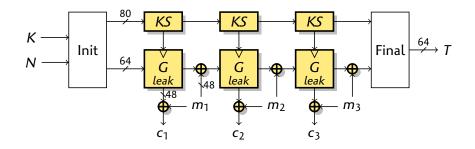
Differentials 0000 Forgery Attack

Description of LAC

CAESAR candidate, designed at Chinese Academy of Science

- by Lei Zhang, Wenling Wu, Yanfeng Wang, Shengbao Wu, Jian Zhang
- Follows the structure of ALE
 - G based on modified LBlock (LBlock-s)
 - 80-bit key, 64-bit state, 48-bit leak

G. Leurent (Inria)


Differential Forgery Attack against LAC

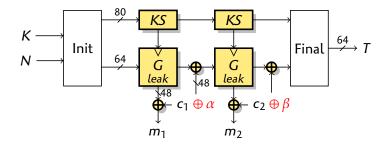
[Bogdanov & al., FSE '13]

Characteristics 000

Differentials 0000 Forgery Attack

Description of LAC

Security claims


- Confidentiality: 80 bits
- Integrity: 64 bits

"any forgery attack with an unused tuple has a success probability at most 2^{-64} ."

Characteristics 000

Differentials 0000 Forgery Attack

Differential Forgery Attack

1 Find a differential $\alpha \rightsquigarrow \beta$ in G with probability p

•
$$p = \Pr_{k,x} \left[G_k(x \oplus \alpha) = G_k(x) \oplus \beta \right]$$

- **2** Get a valid ciphertext (*N*, *c*₁ || *c*₂, *τ*)
- 3 $(N, c_1 \oplus \alpha || c_2 \oplus \beta, \tau)$ is a forge with probability p

Characteristics ●○○ Differentials 0000 Forgery Attack

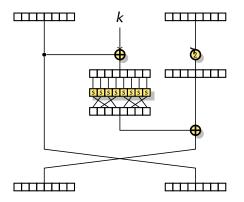
Differentials and characteristics

Differential $\alpha \rightsquigarrow \beta$ Characteristic $\alpha_0 \rightarrow \alpha_1 \rightarrow \cdots \alpha_n = \beta$ $p = \Pr_{k,x}[G_k(x \oplus \alpha) = G_k(x) \oplus \beta]$ $p = \Pr_{k,x}[x_i' = x_i \oplus \alpha_i | x_0' = x_0 \oplus \alpha]$

The probability of a differential is hard to evaluate

Common assumption:

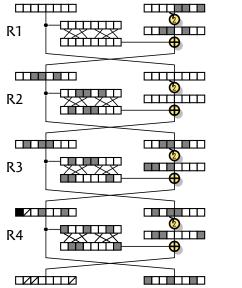
A single characteristic dominates the differential

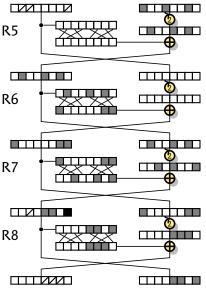

- Modifying one step leads to a significantly different characteristic
- Security analysis bounds probability of characteristics
- Not always true for byte-wise SPN
 - Given a truncated characteristic, there are many instantiations with the same input/out differences
 - If S-Box differential table is flat, many of them are good

G. Leurent (Inria)

Differential Forgery Attack against LAC

Characteristics ○●○ Differentials 0000 Forgery Attack

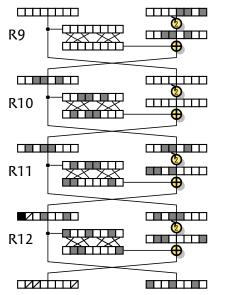

Inside LBlock-s

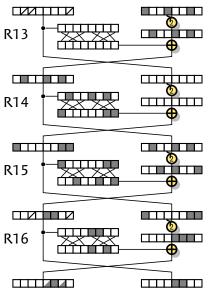


- Feistel structure
 - Nibble-oriented (4-bit words)
- 16 rounds
 - Key addition
 - Nibble S-box
 - Nibble permutation
- Best characteristics
 - 35 active S-boxes
 - $\delta(S) = 2^{-2}$
 - ▶ Proba ≤ 2⁻⁷⁰

Characteristics ○○● Differentials 0000 Forgery Attack

Truncated differential characteristics




G. Leurent (Inria)

Differential Forgery Attack against LAC

Characteristics ○○● Differentials 0000 Forgery Attack

Truncated differential characteristics

G. Leurent (Inria)

Differential Forgery Attack against LAC

Characteristic

Differentials ●000 Forgery Attack

Differentials and characteristics

 $\begin{array}{ll} \text{Differential} \ \alpha \rightsquigarrow \beta & p = \Pr_{k,x}[G_k(x \oplus \alpha) = G_k(x) \oplus \beta] \\ \text{Characteristic} \ \alpha_0 \rightarrow \alpha_1 \rightarrow \cdots \alpha_n = \beta & p = \Pr_{k,x}[x'_i = x_i \oplus \alpha_i | x'_0 = x_0 \oplus \alpha] \end{array}$

The probability of a differential is hard to evaluate

Common assumption:

A single characteristic dominates the differential

- Modifying one step leads to a significantly different characteristic
- Security analysis bounds probability of characteristics

Not always true for byte-wise SPN

- Given a truncated characteristic, there are many instantiations with the same input/out differences
- If S-Box differential table is flat, many of them are good

Estimating of the probability of differentials

• For security proofs: upper bounds on the probability of differentials

- Few results known...
- Notable exception: AES

[Keliher & Sui]

For cryptanalysis: lower bound on the probability of differentials

- Sum characteristics with the same input/output differences
- Recent work: using MILP to find characteristics [Sun & al.]
- Our approach: use a truncated characteristic
 - Consider the set of all characteristics following the same truncated characteristic
 - Fix input/output differences, vary internal differences
 - Large number of characteristics, many with good probability

Forgery Attack

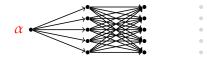
Computing the aggregation

- Consider a fixed truncated characteristic D
 - D_i is the first i rounds of D
 - $\Pr[D: \alpha \rightsquigarrow \beta]$ probability that $\alpha \rightsquigarrow \beta$ following D
- Compute the probabilities of all 1-round transitions following D

	•	•	•
	•	•	
α•	•	•	•
		•	
	•	•	•

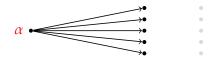
Differentials 00●0 Forgery Attack

Computing the aggregation


- Consider a fixed truncated characteristic D
 - D_i is the first i rounds of D
 - $\Pr[D: \alpha \rightsquigarrow \beta]$ probability that $\alpha \rightsquigarrow \beta$ following D
- Compute the probabilities of all 1-round transitions following D

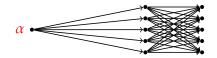
Differentials 00●0 Forgery Attack

Computing the aggregation


- Consider a fixed truncated characteristic D
 - D_i is the first i rounds of D
 - $\Pr[D: \alpha \rightsquigarrow \beta]$ probability that $\alpha \rightsquigarrow \beta$ following D
- Compute the probabilities of all 1-round transitions following D

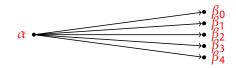
Differentials 00●0 Forgery Attack

Computing the aggregation


- Consider a fixed truncated characteristic D
 - D_i is the first i rounds of D
 - $\Pr[D: \alpha \rightsquigarrow \beta]$ probability that $\alpha \rightsquigarrow \beta$ following D
- Compute the probabilities of all 1-round transitions following D

Differentials 00●0 Forgery Attack

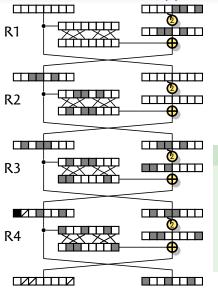
Computing the aggregation


- Consider a fixed truncated characteristic D
 - D_i is the first i rounds of D
 - $\Pr[D: \alpha \rightsquigarrow \beta]$ probability that $\alpha \rightsquigarrow \beta$ following D
- Compute the probabilities of all 1-round transitions following D

Differentials 00●0 Forgery Attack

Computing the aggregation

- Consider a fixed truncated characteristic D
 - D_i is the first i rounds of D
 - $\Pr[D: \alpha \rightsquigarrow \beta]$ probability that $\alpha \rightsquigarrow \beta$ following D
- Compute the probabilities of all 1-round transitions following D



Introduction

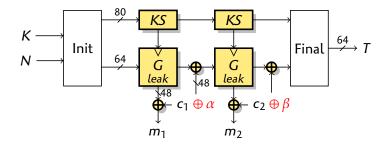
Characteristics 000

Forgery Attack

Application to LAC

- At most 6 active nibbles
 - Storage 2²⁴
- At most 3 active S-Boxes
 - At most 2⁹ transitions
 - Time $16 \cdot 2^{24} \cdot 2^9 = 2^{37}$

Results


Best differential found: $p \ge 2^{-61.52}$

- Collection of 302116704 characteristics
- ▶ 17512 differentials with *p* > 2⁻⁶⁴

Characteristics 000

Differentials 0000 Forgery Attack

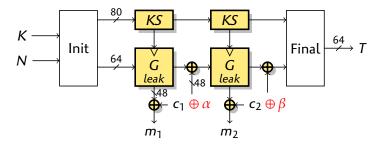
Differential Forgery Attack

1 Get a valid ciphertext (*N*, *c*₁ || *c*₂, *τ*)

2 $(N, c_1 \oplus \alpha \parallel c_2 \oplus \beta, \tau)$ is a forge with probability $\geq 2^{-61.52}$

• Corresponding plaintext: $m_1 \oplus \alpha \parallel m_2 \oplus \beta$, because the leak is not affected

G. Leurent (Inria)


Differential Forgery Attack against LAC

SAC 2015 12 / 14

Characteristics 000

Differentials 0000 Forgery Attack

Differential Forgery Attack

Limitations

- Probability slightly higher than security claims (2^{-61.52} vs. 2⁻⁶⁴)
- Need new data to repeat... (cannot increase success probability)
 - Or use several differentials
 - Limit to 2⁴⁰ data per key

Conclusion

- Lower bound on the probability of some differential
 - Collection of characteristics following a truncated characteristic
 - Good estimate of the probability of a differential
- Breaks the security claims of LAC
 - ▶ Pr[characteristic] ≤ 2⁻⁷⁰
 - ▶ Pr[best differential] ≥ 2^{-61.52}
- Designers should check if applicable

Characteristic

Differentials 0000 Forgery Attack

G. Leurent (Inria)

Differential Forgery Attack against LAC

SAC 2015 14 / 14