Automatic Search of Differential Path in MD4

Pierre-Alain Fouque, Gaëtan Leurent, Phong Nguyen
Laboratoire d'Informatique de l'École Normale Supérieure,
Département d'Informatique,
45 rue d'Ulm, 75230 Paris Cedex 05, France

Ecrypt Hash Workshop, May 2007

Automatic

Motivation

Why do we need an algorithm?

- Understanding
- Improving
- New attacks

Results

- Some improvement of known attacks
- New attack against NMAC-MD4

Automatic

Outline

(1) Introduction

- The MD4 hash function
- Wang's attack
(2) Understand and automate
- Sufficient conditions
- Step operation
- SC Algorithm
- Differential Path
- Message difference
(3) Results
- Collisions
- Second preimage
- NMAC Attack

4 Conclusion

Automatic Search of Differential Path in MD4
G. Leurent

Introduction MD4
Wang's attack
Understand
and automate
Sufficient

conditions

Step operation SC Algorithm
Differential Path
Message difference

Results
Collisions $2^{\text {nd }}$ preimage NMAC Attack

Conclusion

The MD4 hash function

General design

MD4 Design

- Merkle-Damgård
- Block size: 512 bits
- Internal state: 128 bits
- MD Strengthening

The MD4 hash function

Compression function

Compression Function Design

- Davies-Meyer with a Feistel-like cipher.

- Designed to be fast: 32 bit words, and operations available in hardware:
- additions mod2 ${ }^{32}$: \boxplus
- boolean functions: Φ_{i}
- rotations $\lll s_{i}$
- Message expansion $M=\left\langle M_{0}, \ldots M_{15}\right\rangle \mapsto\left\langle m_{0}, \ldots m_{47}\right\rangle$
- 4 words of internal state Q_{i} updated in rounds of 16 steps

Automatic

 Search of Differential Path in MD4G. Leurent

Introduction MD4
Wang's attack
Understand
and automate
Sufficient
conditions
Step operation
SC Algorithm
Differential Path
Message difference

Results
Collisions
$2^{\text {nd }}$ preimage NMAC Attack

Conclusion

The MD4 hash function
Compression function

MD4 Step Update

$$
\begin{aligned}
& Q_{i}=\left(Q_{i-4} \boxplus \Phi_{i}\left(Q_{i-1}, Q_{i-2}, Q_{i-3}\right) \boxplus m_{i} \boxplus k_{i}\right) \lll s_{i}
\end{aligned}
$$

MD4 Collisions

Wang in a nutshell

(1) Precomputation:

- Choose a message difference.
- Compute a differential path.
- Derive a set of sufficient conditions.
(2) Collision search:
- Find a message that satisfies the set of conditions.

Main result

We know a difference Δ and a set of conditions on the internal state variables Q_{i} 's, such that:

If all the conditions are satisfied by the internal state variable in the computation of $H(M)$, then $H(M)=H(M+\Delta)$.

What is a differential path?

Description

- Specifies how the computations of $H(M)$ and $H(M+\Delta)$ are related.
- The differences introduced in the message evolve in the internal state.
- Differential attack with the modular difference.
- Most of the work is modulo 2^{32}, but we also need to control bit differences.

What is a differential path?

Notations

Notations

- Modular difference: $\delta(x, y)=y \boxminus x$
- Wang's difference: $\partial(x, y)=\left\langle y^{[31]}-x^{[31]}, \ldots y^{[0]}-x^{[0]}\right\rangle$
- Δ and $\boldsymbol{\nabla}$ for +1 and -1 .
- $x^{[k]}$ for the $k+1$-st bit of x.
- Compact notation: $\left\langle\boldsymbol{\Delta}^{[0]}, \boldsymbol{\nabla}^{[3,4]}, \boldsymbol{\Lambda}^{[30,31]}\right\rangle$

Differential path notations

- We consider a message $M . M^{\prime}=M \boxplus \Delta$.
- The differential path specifies $\partial Q_{i}=\partial\left(Q_{i}, Q_{i}^{\prime}\right)$.
- The desired values are ∂_{i}.

Understanding Wang

Question

How to compute the set of conditions?
(1) Derive a set of sufficient conditions from a differential path.
(2) Compute a differential path from a message difference.
(3) Choose a message difference.

Automatic

(1) Introduction

- The MD4 hash function
- Wang's attack
(2) Understand and automate
- Sufficient conditions
- Step operation
- SC Algorithm
- Differential Path
- Message difference

(3) Results

- Collisions
- Second preimage
- NMAC Attack
(4) Conclusion
$11 / 37$

Sufficient conditions computations

Goal

- We are given a differential path $\left\langle\partial_{i}\right\rangle$.
- We want to compute a set of conditions so that: If $Q(M)$ satisfies the conditions, then $Q(M)$ and $Q\left(M^{\prime}\right)$ follows the path.

Strategy

- We will iteratively add conditions for the current state, assuming the previous ones are satisfied.
- First, study the step operation and the ∂-difference. (Differencial attack)

Automatic Search of Differential Path in MD4
G. Leurent

Introduction

MD4
Wang's attack
Understand and automate
Sufficient conditions
Step operation SC Algorithm Differential Path Message difference

Results

Collisions $2^{\text {nd }}$ preimage NMAC Attack

Remarks about the ∂-difference

The δ-difference and the ∂-difference

- If we know $\partial(x, y)$, we can compute $\delta(x, y)$.
- If we know $\delta(x, y)$, many $\partial(x, y)$ are possible. For instance, if $\delta(x, y)=2^{k}, 33-k$ possibilities:

$$
\begin{aligned}
\left\langle\Delta^{[k]}\right\rangle & \rightarrow 2^{k} \\
\left\langle\boldsymbol{\nabla} \Delta^{[k, k+1]}\right\rangle & \rightarrow 2^{k+1}-2^{k} \\
& \ldots \\
\left\langle\boldsymbol{\nabla} \ldots \Delta^{[k, k+1, \ldots 30,31]}\right\rangle & \rightarrow 2^{31}-2^{30}-\ldots-2^{k} \\
\left\langle\boldsymbol{\nabla} \ldots \boldsymbol{v}^{[k, k+1, \ldots 30,31]}\right\rangle & \rightarrow 2^{32}-2^{31}-\ldots-2^{k}
\end{aligned}
$$

Remarks about the ∂-difference

Theorem

$$
\partial(x, y)=\left\langle\varepsilon_{31}, \varepsilon_{30}, \ldots \varepsilon_{0}\right\rangle \Longleftrightarrow\left\{\begin{array}{l}
\sum_{j=0}^{31} \varepsilon_{j} j^{j}=\delta(x, y) \\
\forall j, \varepsilon_{j} \in\{-1,0,+1\} \\
\forall j: \varepsilon_{j}=+1 \Longrightarrow x^{[j]}=0 \\
\forall j: \varepsilon_{j}=-1 \Longrightarrow x^{[j]}=1
\end{array}\right.
$$

- If we know $\delta(x, y)$, we can fix one $\partial(x, y)$ by adding some conditions on x.
- We can switch between δ-difference and ∂-difference.

Automatic Search of Differential Path in MD4
G. Leurent

Introduction MD4
Wang's attack
Understand and automate Sufficient conditions
Step operation SC Algorithm Differential Path Message difference

Results
Collisions
$2^{\text {nd }}$ preimage
NMAC Attack
Conclusion

Rotation and modular difference

Four cases

- We have an algebraic expression of the rotation: $u \lll s=\left\lfloor\frac{u}{2^{32-s}}\right\rfloor+\left(2^{s} u \bmod 2^{32}\right)$
- We can express $v=\delta(a \lll s, b \lll s)$ from $u=\delta(a, b)$

$$
v=\left\{\begin{aligned}
& v_{1}=(u \lll s) \\
& v_{2}=(u \lll s) \boxplus 1 \\
& v_{3}=(u \lll s) \boxminus 2^{s} \\
& v_{4}=(u \lll s) \boxminus 2^{s} \boxplus 1
\end{aligned}\right.
$$

Automatic Search of Differential Path in MD4

Rotation and modular difference

Four cases

- We have an algebraic expression of the rotation:

$$
u \lll s=\left\lfloor\frac{u}{2^{32-s}}\right\rfloor+\left(2^{s} u \bmod 2^{32}\right)
$$

- We can express $v=\delta(a \lll s, b \lll s)$ from $u=\delta(a, b)$

$$
v=\left\{\begin{array}{cc}
v_{1}=(u \lll s) & \text { if } a+u<2^{32} \text { and } \\
\left(a \bmod 2^{32-s}\right)+\left(u \bmod 2^{32-s}\right)<2^{32-s} \\
v_{2}= & (u \lll s) \boxplus 1 \\
\left(a f a+u<2^{32}\right. \text { and } \\
v_{3}=(u \lll s) \boxminus 2^{s} & \left(a \bmod 2^{32-s}\right)+\left(u \bmod 2^{32-s}\right) \geq 2^{32-s} \\
\text { if } a+u \geq 2^{32} \text { and } \\
v_{4}=\left(u \bmod 2^{32-s}\right)<2^{32-s} \\
\text { if } a+u \geq 2^{32} \text { and } \\
\left(a 2^{32} \boxplus 1\right. & \left(a \bmod 2^{32-s}\right)+\left(u \bmod 2^{32-s}\right) \geq 2^{32-s}
\end{array}\right.
$$

\rightarrow bit conditions, probabilities

Rotation and modular difference

Important remark

- The conditions are on the input (or output) of the rotation.
- In MD4, we will use this backwards:

$$
Q_{i+4}=\left(Q_{i} \boxplus \Phi_{i+4} \boxplus m_{i+4} \boxplus k_{i+4}\right) \lll s_{i+4}
$$

Wang difference and Boolean functions

The Boolean function

- Bitwise Boolean functions:
- First round:

$$
F(x, y, z)=(x \wedge y) \vee(\neg x \wedge z)
$$

- Second round:

$$
G(x, y, z)=(x \wedge y) \vee(x \wedge z) \vee(y \wedge z)
$$

- Third round:

$$
H(x, y, z)=x \oplus y \oplus z
$$

- For each bit, if we know the input differences we can add conditions to select one output difference.
- Motivation for ∂-difference.

Automatic Search of Differential Path in MD4
G. Leurent

Introduction MD4
Wang's attack
Understand and automate
Sufficient
conditions
Step operation SC Algorithm Differential Path
Message difference

Results
Collisions
$2^{\text {nd }}$ preimage NMAC Autack

Conclusion
Φ_{i} conditions

Automatic

Step operations summary

For each operation, we can add conditions on Q_{i} to make it behave nicely.
\rightarrow Sufficient conditions algorithm.

Automatic Search of Differential Path in MD4
G. Leurent

Introduction MD4
Wang's attack
Understand and automate Sufficient conditions
Step operation SC Algorithm Differential Path Message difference

Results
Collisions $2^{\text {nd }}$ preimage NMAC Attack Conclusion

Computing sufficient conditions

Goal

At step $i+4$, we have:
$Q_{i+4}=\left(Q_{i} \boxplus \Phi_{i+4}\left(Q_{i+1}, Q_{i+2}, Q_{i+3}\right) \boxplus m_{i+4} \boxplus k_{i+4}\right) \lll s_{i+4}$ $Q_{i+4}^{\prime}=\left(Q_{i}^{\prime} \boxplus \Phi_{i+4}\left(Q_{i+1}^{\prime}, Q_{i+2}^{\prime}, Q_{i+3}^{\prime}\right) \boxplus m_{i+4}^{\prime} \boxplus k_{i+4}\right) \lll s_{i+4}$ We want $\partial\left(Q_{i}, Q_{i}^{\prime}\right)=\partial_{i}$.

Part one: $\delta\left(Q_{i}, Q_{i}^{\prime}\right)=\delta_{i}$

- Choose $\delta_{i+4}^{\gg}=\delta\left(Q_{i+4} \ggg s_{i+4}, Q_{i+4}^{\prime} \ggg s_{i+4}\right)$ that match $\delta_{i+4}=\delta\left(Q_{i+4}, Q_{i+4}^{\prime}\right)$.
$\rightarrow \lll$-conditions on Q_{i+4}.
- We just need $\Phi_{i+4}^{\prime} \boxminus \Phi_{i+4}=\delta_{i} \boxminus \delta_{i+4}^{\gg} \boxplus \Delta_{i+4}$.

Choose $\partial\left(\Phi_{i+4}, \Phi_{i+4}^{\prime}\right)$.
$\rightarrow \Phi$-conditions on $Q_{i+1}, Q_{i+2}, Q_{i+3}$

Part two: $\partial\left(Q_{i}, Q_{i}^{\prime}\right)=\partial_{i}$

$\rightarrow \partial$-conditions on Q_{i}

Automatic Search of Differential Path in MD4
G. Leurent

Introduction MD4
Wang's attack
Understand and automate Sufficient conditions
Step operation SC Algorithm Differential Path Message difference

Results
Collisions $2^{\text {nd }}$ preimage NMAC Attack Conclusion

Computing sufficient conditions

Goal

At step $i+4$, we have:
$Q_{i+4}=\left(Q_{i} \boxplus \Phi_{i+4}\left(Q_{i+1}, Q_{i+2}, Q_{i+3}\right) \boxplus m_{i+4} \boxplus k_{i+4}\right) \lll s_{i+4}$ $Q_{i+4}^{\prime}=\left(Q_{i}^{\prime} \boxplus \Phi_{i+4}\left(Q_{i+1}^{\prime}, Q_{i+2}^{\prime}, Q_{i+3}^{\prime}\right) \boxplus m_{i+4}^{\prime} \boxplus k_{i+4}\right) \lll s_{i+4}$ We want $\partial\left(Q_{i}, Q_{i}^{\prime}\right)=\partial_{i}$.

Part one: $\delta\left(Q_{i}, Q_{i}^{\prime}\right)=\delta_{i}$

- Choose $\delta_{i+4}^{\gg}=\delta\left(Q_{i+4} \ggg s_{i+4}, Q_{i+4}^{\prime} \ggg s_{i+4}\right)$ that match $\delta_{i+4}=\delta\left(Q_{i+4}, Q_{i+4}^{\prime}\right)$.
$\rightarrow \lll$-conditions on Q_{i+4}.
- We just need $\Phi_{i+4}^{\prime} \boxminus \Phi_{i+4}=\delta_{i} \boxminus \delta_{i+4}^{\gg} \boxplus \Delta_{i+4}$.

Choose $\partial\left(\Phi_{i+4}, \Phi_{i+4}^{\prime}\right)$.
$\rightarrow \Phi$-conditions on $Q_{i+1}, Q_{i+2}, Q_{i+3}$

Part two: $\partial\left(Q_{i}, Q_{i}^{\prime}\right)=\partial_{i}$

$\rightarrow \partial$-conditions on Q_{i}

Automatic Search of Differential Path in MD4
G. Leurent

Introduction MD4
Wang's attack
Understand and automate Sufficient conditions
Step operation SC Algorithm Differential Path Message difference

Results
Collisions $2^{\text {nd }}$ preimage NMAC Attack

Conclusion

Computing sufficient conditions

Goal

At step $i+4$, we have:
$Q_{i+4}=\left(Q_{i} \boxplus \Phi_{i+4}\left(Q_{i+1}, Q_{i+2}, Q_{i+3}\right) \boxplus m_{i+4} \boxplus k_{i+4}\right) \lll s_{i+4}$ $Q_{i+4}^{\prime}=\left(Q_{i}^{\prime} \boxplus \Phi_{i+4}\left(Q_{i+1}^{\prime}, Q_{i+2}^{\prime}, Q_{i+3}^{\prime}\right) \boxplus m_{i+4}^{\prime} \boxplus k_{i+4}\right) \lll s_{i+4}$ We want $\partial\left(Q_{i}, Q_{i}^{\prime}\right)=\partial_{i}$.

Part one: $\delta\left(Q_{i}, Q_{i}^{\prime}\right)=\delta_{i}$

- Choose $\delta_{i+4}^{\gg}=\delta\left(Q_{i+4} \ggg s_{i+4}, Q_{i+4}^{\prime} \ggg s_{i+4}\right)$ that match $\delta_{i+4}=\delta\left(Q_{i+4}, Q_{i+4}^{\prime}\right)$.
$\rightarrow \lll$-conditions on Q_{i+4}.
- We just need $\Phi_{i+4}^{\prime} \boxminus \Phi_{i+4}=\delta_{i} \boxminus \delta_{i+4}^{\gg} \boxplus \Delta_{i+4}$.

Choose $\partial\left(\Phi_{i+4}, \Phi_{i+4}^{\prime}\right)$.
$\rightarrow \Phi$-conditions on $Q_{i+1}, Q_{i+2}, Q_{i+3}$

Part two: $\partial\left(Q_{i}, Q_{i}^{\prime}\right)=\partial_{i}$

$\rightarrow \partial$-conditions on Q_{i}

Automatic

Result

- SC Algorithm works
- Next step: how to compute the differencial path?

SC Algorithm

Automatic Search of Differential Path in MD4
G. Leurent

Introduction MD4
Wang's attack
Understand and automate Sufficient conditions
Step operation SC Algorithm Differential Path Message difference

Results

Collisions $2^{\text {nd }}$ preimage NMAC Attack

Conclusion

Absorbing the differences

Important observation

$Q_{i} \quad=\left(Q_{i-4} \boxplus \Phi_{i} \quad\left(Q_{i-1}, Q_{i-2}, Q_{i-3}\right) \boxplus m_{i} \quad \boxplus k_{i} \quad\right) \lll s_{i}$

- We introduce a difference in Q_{i}.
- If Φ_{i} can absorb the difference, it will not multiply.
- It only appears every 4 round, with a rotation.

The trivial path
This is the basis for MD4 differential paths: absorb the message differences.

Automatic Search of Differential Path in MD4
G. Leurent

Introduction MD4
Wang's attack
Understand and automate Sufficient conditions
Step operation SC Algorithm Differential Path Message difference

Results

Collisions $2^{\text {nd }}$ preimage NMAC Attack

Conclusion

Absorbing the differences

Important observation

$Q_{i} \quad=\left(Q_{i-4} \boxplus \Phi_{i} \quad\left(Q_{i-1}, Q_{i-2}, Q_{i-3}\right) \boxplus m_{i} \quad \boxplus k_{i} \quad\right) \lll s_{i}$

- We introduce a difference in Q_{i}.
- If Φ_{i} can absorb the difference, it will not multiply.
- It only appears every 4 round, with a rotation.

The trivial path

This is the basis for MD4 differential paths: absorb the message differences.

Automatic Search of Differential Path in MD4
G. Leurent

Introduction MD4
Wang's attack
Understand and automate Sufficient conditions
Step operation SC Algorithm Differential Path Message difference

Results
Collisions
$2^{\text {nd }}$ preimage NMAC Attack

Absorbing the differences

Important observation

$Q_{i} \quad=\left(Q_{i-4} \boxplus \Phi_{i} \quad\left(Q_{i-1}, Q_{i-2}, Q_{i-3}\right) \boxplus m_{i} \quad \boxplus k_{i} \quad\right) \lll s_{i}$
$Q_{i+1}=\left(Q_{i-3} \boxplus \Phi_{i+1}\left(Q_{i}, Q_{i-1}, Q_{i-2}\right) \boxplus m_{i+1} \boxplus k_{i+1}\right) \lll s_{i+1}$
$Q_{i+2}=\left(Q_{i-2} \boxplus \Phi_{i+2}\left(Q_{i+1}, Q_{i} \quad, Q_{i-1}\right) \boxplus m_{i+2} \boxplus k_{i+2}\right) \lll s_{i+2}$
$Q_{i+3}=\left(Q_{i-1} \boxplus \Phi_{i+3}\left(Q_{i+2}, Q_{i+1}, Q_{i}\right) \boxplus m_{i+3} \boxplus k_{i+3}\right) \lll s_{i+3}$

- We introduce a difference in Q_{i}.
- If Φ_{i} can absorb the difference, it will not multiply.
- It only appears every 4 round, with a rotation.

The trivial path
This is the basis for MD4 differential paths: absorb the message differences.

Automatic Search of Differential Path in MD4

Absorbing the differences

Important observation

$$
\begin{aligned}
& Q_{i}=\left(Q_{i-4} \boxplus \Phi_{i} \quad\left(Q_{i-1}, Q_{i-2}, Q_{i-3}\right) \boxplus m_{i} \boxplus k_{i}\right) \lll s_{i} \\
& \left.Q_{i+1}=\left(Q_{i-3} \boxplus \Phi_{i+1}\left(Q_{i}, Q_{i-1}, Q_{i-2}\right) \boxplus m_{i+1} \boxplus k_{i+1}\right) \lll s_{i+1}\right) \\
& Q_{i+2}=\left(Q_{i-2} \boxplus \Phi_{i+2}\left(Q_{i+1}, Q_{i}, Q_{i-1}\right) \boxplus m_{i+2} \boxplus k_{i+2}\right) \lll s_{i+2} \\
& Q_{i+3}=\left(Q_{i-1} \boxplus \Phi_{i+3}\left(Q_{i+2}, Q_{i+1}, Q_{i}\right) \boxplus m_{i+3} \boxplus k_{i+3}\right) \lll s_{i+3} \\
& Q_{i+4}=\left(Q_{i} \boxplus \Phi_{i+4}\left(Q_{i+3}, Q_{i+2}, Q_{i+1}\right) \boxplus m_{i+4} \boxplus k_{i+4}\right) \lll s_{i+4} \\
& Q_{i+5}=\left(Q_{i+1} \boxplus \Phi_{i+5}\left(Q_{i+4}, Q_{i+3}, Q_{i+2}\right) \boxplus m_{i+5} \boxplus k_{i+5}\right) \lll s_{i+5}
\end{aligned}
$$

- We introduce a difference in Q_{i}.
- If Φ_{i} can absorb the difference, it will not multiply.
- It only appears every 4 round, with a rotation.
\square
This is the basis for MD4 differential paths: absorb the message differences.

Automatic Search of Differential Path in MD4

Absorbing the differences

Important observation

$$
\begin{aligned}
Q_{i} & =\left(Q_{i-4} \boxplus \Phi_{i} \quad\left(Q_{i-1}, Q_{i-2}, Q_{i-3}\right) \boxplus m_{i} \boxplus k_{i}\right) \\
Q_{i+1} & =\left(Q_{i-3} \boxplus \Phi_{i+1}\left(Q_{i}, Q_{i-1}, Q_{i-2}\right) \boxplus m_{i+1} \boxplus s_{i+1}\right) \lll s_{i+1} \\
Q_{i+2} & =\left(Q_{i-2} \boxplus \Phi_{i+2}\left(Q_{i+1}, Q_{i}, Q_{i-1}\right) \boxplus m_{i+2} \boxplus k_{i+2}\right) \lll s_{i+2} \\
Q_{i+3} & =\left(Q_{i-1} \boxplus \Phi_{i+3}\left(Q_{i+2}, Q_{i+1}, Q_{i}\right) \boxplus m_{i+3} \boxplus k_{i+3}\right) \lll s_{i+3} \\
Q_{i+4} & \left.=\left(Q_{i} \boxplus \Phi_{i+4}\left(Q_{i+3}, Q_{i+2}, Q_{i+1}\right) \boxplus m_{i+4} \boxplus k_{i+4}\right) \lll s_{i+4}\right) \\
Q_{i+5} & =\left(Q_{i+1} \boxplus \Phi_{i+5}\left(Q_{i+4}, Q_{i+3}, Q_{i+2}\right) \boxplus m_{i+5} \boxplus k_{i+5}\right) \lll s_{i+5}
\end{aligned}
$$

- We introduce a difference in Q_{i}.
- If Φ_{i} can absorb the difference, it will not multiply.
- It only appears every 4 round, with a rotation.

The trivial path

This is the basis for MD4 differential paths: absorb the message differences.

Automatic Search of Differential Path in MD4
G. Leurent

Introduction
MD4
Wang's attack
Understand and automate Sufficient conditions
Step operation
SC Algorithm
Differential Path Message difference

Results
Collisions
$2^{\text {nd }}$ preimage NMAC Attack

Conclusion

Absorbing the differences

MD4 Boolean functions

$$
F(x, y, z)=(x \wedge y) \vee(\neg x \wedge z)
$$

MD4 Boolean function F can absorb one input difference:

$F(x, y, z)=\operatorname{IF}(x, y, z)$					
∂x	∂y	∂z	$\partial F=0$	$\partial F=1$	$\partial F=-1$
0	0	0	\checkmark	\boldsymbol{X}	\boldsymbol{X}
0	0	+1	$x=1$	$x=0$	\boldsymbol{X}
0	0	-1	$x=1$	\boldsymbol{X}	$x=0$
0	+1	0	$x=0$	$x=1$	\boldsymbol{X}
0	-1	0	$x=0$	\boldsymbol{X}	$x=1$
+1	0	0	$y=z$	$y, z=1,0$	$y, z=0,1$
-1	0	0	$y=z$	$y, z=0,1$	$y, z=1,0$

Automatic Search of Differential Path in MD4
G. Leurent

Introduction MD4
Wang's attack
Understand and automate Sufficient conditions
Step operation
SC Algorithm
Differential Path Message difference

Results
Collisions
$2^{\text {nd }}$ preimage NMAC Attack

Conclusion

Absorbing the differences

MD4 Boolean functions

$$
G(x, y, z)=(x \wedge y) \vee(x \wedge z) \vee(y \wedge z)
$$

MD4 Boolean function G can absorb one input difference:

$G(x, y, z)=\operatorname{MAJ}(x, y, z)$					
∂x	∂y	∂z	$\partial G=0$	$\partial G=1$	$\partial G=-1$
0	0	0	\checkmark	\boldsymbol{X}	\boldsymbol{X}
0	0	+1	$x=y$	$x \neq y$	\boldsymbol{X}
0	0	-1	$x=y$	\boldsymbol{x}	$x \neq y$
0	+1	0	$x=z$	$x \neq z$	\boldsymbol{X}
0	-1	0	$x=z$	\boldsymbol{x}	$x \neq z$
+1	0	0	$y=z$	$y \neq z$	\boldsymbol{X}
-1	0	0	$y=z$	\boldsymbol{x}	$y \neq z$

Automatic Search of Differential Path in MD4
G. Leurent

Introduction MD4 Wang's attack

Understand and automate Sufficient conditions
Step operation SC Algorithm Differential Path Message difference

Results
Collisions
$2^{\text {nd }}$ preimage NMAC Attack

Conclusion

Absorbing the differences

MD4 Boolean functions

$$
H(x, y, z)=x \oplus y \oplus z
$$

MD4 Boolean function H can not absorb one input difference:

$H(x, y, z)=x \oplus y \oplus z$						
∂x	∂y	∂z	$\partial H=0$	$\partial H=1$	$\partial H=-1$	
0	0	0	\checkmark	X	X	
0	0	+1	X	$x=y$	$x \neq y$	
0	0	-1	X	$x \neq y$	$x=y$	
0	+1	0	X	$x=z$	$x \neq z$	
0	-1	0	X	$x \neq z$	$x=z$	
+1	0	0	X	$y=z$	$y \neq z$	
-1	0	0	X	$y \neq z$	$y=z$	

Note: Wang use a local collision in round 3, no need to search path.

Differential Path Search

Basic Idea

- Follow the sufficient conditions algorithm.
- $Q_{i+4}=\left(Q_{i} \boxplus \Phi_{i+4} \boxplus m_{i+4} \boxplus k_{i+4}\right) \lll s_{i+4}$ $Q_{i+4}^{\prime}=\left(Q_{i}^{\prime} \boxplus \Phi_{i+4}^{\prime} \boxplus m_{i+4}^{\prime} \boxplus k_{i+4}\right) \lll s_{i+4}$
- We do not know ∂Q_{i}, so we assume $\Phi_{i}^{\prime}=\Phi_{i}$, $i e$. absorb the difference. $\rightarrow \delta_{i+4}^{\gg}=\delta_{i}$.
- Goes from the last step to the first.
- When we have a path up to the first round, there might be a difference in the IV, we will fix it later.

Differential Path Search

Turning pseudo-collision path into collision path

- We run the algorithm again, using the previous path as a hint for the values of $\delta \Phi_{i}$.
- We try to modify the path on the bits that will become the IV differences.

Path representation

- During the computation, the path is represented by ∂_{i} 's.
- To modify the path later, we will rather use the $\delta \Phi_{i}$'s.

Pseudo-code

1: function Pathfind

$$
\begin{array}{ll}
\text { 2: } & \mathcal{P} \leftarrow\{\epsilon\} \\
\text { 3: } & \text { loop } \\
\text { 4: } & \text { extract } P \text { from } \mathcal{P} \\
\text { 5: } & \text { PATHSTEP }(P, \epsilon, 48)
\end{array}
$$

6: function Pathstep $\left(P_{0}, P, i\right)$
7: \quad if $i<0$ then
8: \quad add P in \mathcal{P}
9: else
10: \quad for all possible choice P^{\prime} do
11: PatchTarget $\left(P_{0}, P^{\prime}, i\right)$
12: function PatchTarget $\left(P_{0}, P, i\right)$
13: \quad for all possible choice P^{\prime} do
14: \quad PatchCarries $\left(P_{0}, P^{\prime}, i\right)$
15: function PatchCarries $\left(P_{0}, P, i\right)$
16: for all possible choice P^{\prime} do
17
$\operatorname{Pathstep}\left(P_{0}, P^{\prime}, i-1\right)$

Pseudo-code

1: function Pathfind

2: $\quad \mathcal{P} \leftarrow\{\epsilon\}$
3: loop
4: \quad extract P from \mathcal{P}
5: $\quad \operatorname{Pathstep}(P, \epsilon, 48)$
6: function Pathstep $\left(P_{0}, P, i\right)$
7: \quad if $i<0$ then
8: \quad add P in \mathcal{P}
9: else
10: \quad for all possible choice P^{\prime} do
11: PatchTarget $\left(P_{0}, P^{\prime}, i\right)$
12: function PatchTarget $\left(P_{0}, P, i\right)$
13: for all possible choice P^{\prime} do
14: \quad PatchCarries $\left(P_{0}, P^{\prime}, i\right)$
15: function PatchCarries $\left(P_{0}, P, i\right)$
16: for all possible choice P^{\prime} do
17: \quad Pathstep $\left(P_{0}, P^{\prime}, i-1\right)$

PATHFIND

- Starts with the trivial path
- Pick a path and try to improve it

Pseudo-code

1: function Pathfind

2: $\quad \mathcal{P} \leftarrow\{\epsilon\}$
3: loop
4: \quad extract P from \mathcal{P}
5: $\quad \operatorname{Pathstep}(P, \epsilon, 48)$
6: function Pathstep $\left(P_{0}, P, i\right)$
7: \quad if $i<0$ then
8: \quad add P in \mathcal{P}
9: else
10:
11
for all possible choice P^{\prime} do PatchTarget $\left(P_{0}, P^{\prime}, i\right)$
12: function PatchTarget (P_{0}, Pathstep
13: for all possible choice P^{\prime} c
14: \quad PatchCarries $\left(P_{0}, P^{\prime}\right.$
15: function PatchCarries (P_{0},
16: for all possible choice P^{\prime} c
17: $\quad \operatorname{Pathstep}\left(P_{0}, P^{\prime}, i-1\right.$,

- Choose δ_{i+4}^{\gg} from δ_{i+4} and $\partial \Phi_{i+4}$ from $\delta \Phi_{i+4}$
- Compute δQ_{i} from δ_{i+4}^{\gg} and $\partial \Phi_{i+4}$

Pseudo-code

1: function Pathfind

2: $\quad \mathcal{P} \leftarrow\{\epsilon\}$
3: loop
4: \quad extract P from \mathcal{P}
5: $\quad \operatorname{Pathstep}(P, \epsilon, 48)$
6: function Pathstep $\left(P_{0}, P, i\right)$
7: \quad if $i<0$ then
8: \quad add P in \mathcal{P}
9: else
10: \quad for all possible choice P^{\prime} do
11: PatchTarget $\left(P_{0}, P^{\prime}, i\right)$
12: function PatchTarget $\left(P_{0}, P, i\right)$
13: for all possible choice P^{\prime} do
14: \quad PatchCarries $\left(P_{0}, P^{\prime}, i\right)$
15: function PatchCarries $\left(P_{0}, P, i\right)$
16: for all possible choice P^{\prime} do
17: $\quad \operatorname{Pathstep}\left(P_{0}, P^{\prime}, i-1\right)$

Pseudo-code

1: function Pathfind
2: $\quad \mathcal{P} \leftarrow\{\epsilon\}$
3: loop
4: \quad extract P from \mathcal{P}
5: $\quad \operatorname{Pathstep}(P, \epsilon, 48)$
6: function Pathstep $\left(P_{0}, P, i\right)$
7: \quad if $i<0$ then
8: \quad add P in \mathcal{P}
9: else
10: \quad for all possible choice P^{\prime} do
11: PatchTarget $\left(P_{0}, P^{\prime}, i\right)$
12: function PatchTarget $\left(P_{0}, P, i\right)$
13: \quad for all possible choice P^{\prime} do
14: \quad PatchCarries $\left(P_{0}, P^{\prime}, i\right)$
15: function PatchCarries $\left(P_{0}, P, i\right)$
16: for all possible choice P^{\prime} do
17: $\quad \operatorname{Pathstep}\left(P_{0}, P^{\prime}, i-1\right)$

Automatic

Correcting the differences

Direct correction

- $Q_{i}=\left(Q_{i-4} \boxplus \Phi_{i} \boxplus m_{i} \boxplus k_{i}\right) \lll s_{i}$
- Differences do not multiply: each difference in the IV has to be fixed in exactly one place.
- Possible places: every 4 rounds.
- We use Φ_{i} to modify the bit.

Indirect Corrections

- $Q_{i+a}=\left(Q_{i+a-4} \boxplus \Phi_{i+a}\left(Q_{i}\right) \boxplus m_{i} \boxplus k_{i}\right) \lll s_{i}$
- $Q_{i}=\left(Q_{i-4} \boxplus \Phi_{i} \boxplus m_{i} \boxplus k_{i}\right) \lll s_{i}$
- We use Q_{i} to modify Q_{i+a-4}.
- This indroduces a new difference in Q_{i-4}.
- Hopefully, the new difference is easier to remove...

Automatic

Message difference

Message difference

- We can try many message differences and run the algorithm
- Interesting message differences depend on the application...

Overview of the algorithm

Advantages of indirect corrections

- No need to manually add some differences.
- Use freedom in Φ rather than carry expensions.
- Fewer conditions.

Adaptation to MD5?

- $Q_{i}=Q_{i-1} \boxplus\left(Q_{i-4} \boxplus \Phi_{i}\left(Q_{i-1}, Q_{i-2}, Q_{i-3}\right) \boxplus m_{i} \boxplus k_{i}\right) \lll s_{i}$
- No easy way to stop difference multiplications. Use den Boer-Bosselaers's path?
- No easy way to express the rotation conditions.

Automatic Search of Differential Path in MD4
G. Leurent

Introduction MD4
Wang's attack
Understand and automate
Sufficient
conditions
Step operation
SC Algorithm
Differential Path
Message
difference
Results
Collisions
$2^{\text {nd }}$ preimage
NMAC Attack
Conclusion
(1) Introduction

- The MD4 hash function
- Wang's attack
(2) Understand and automate
- Sufficient conditions
- Step operation
- SC Algorithm
- Differential Path
- Message difference
(3) Results
- Collisions
- Second preimage
- NMAC Attack

4 Conclusion
$30 / 37$

Automatic Search of Differential Path in MD4
G. Leurent

Introduction MD4
Wang's attack
Understand and automate Sufficient conditions
Step operation SC Algorithm Differential Path
Message difference

Results
Collisions
$2^{\text {nd }}$ preimage NMAC Attack

Conclusion

Collisions

Collision path

- We want to minimize the search complexity
- Few conditions in $3^{\text {rd }}$ (and $2^{\text {nd }}$) round: local collision.
- Our algorithm works with Wang's message difference, not (yet?) with Sasaki et al.'s.

Comparison of collision paths

Number of conditions $\begin{aligned} & \text { round } 1 \text { round } 2 \text { round } 3 \text { total }\end{aligned}$
With Wang's message difference:

Wang et al.	96	25	2	123
Schläffer and Oswald	122	22	2	146
Our path	72	16	2	90

With Sasaki's message difference:

Sasaki et al.	167	9	1	177

Automatic

Second preimage

Second preimage paths

- Second preimage for weak message
- If c conditions, a message is weak with probabilty 2^{-c}
- We want to minimize the number of conditions

Results on Yu's path

- Yu et al. gave a path with one bit difference in m_{4}
- Authors claim 32 path using rotations of the path. Actually, only 28 paths (fails on bit 17,20,26 and 28).
- Using bit 25 , only 58 conditions instead of 62 .

Good if you need only one path with very few conditions (eg. Contini Yin HMAC-MD4 attacks).

Automatic

A New NMAC Attack

Main idea

- We search for a differential path with the message difference in m_{0} :

step	s_{i}	δm_{i}	$\partial \Phi_{i}$	∂Q_{i}	conditions
0	3	$\left\langle\Delta^{[0]}\right\rangle$		$\left\langle\Delta^{[3]}\right\rangle$	
1	7				$Q_{-1}^{[3]}=Q_{-2}^{[3]}(\mathrm{X})$
2	11				$Q_{1}^{[3]}=0$
3	19				$Q_{2}^{[3]}=1$
4	3			$\left\langle\Delta^{[6]}\right\rangle$	

- The beginning of the path depends on a condition (X) of the IV.
- $\operatorname{Pr}[H(M)=H(M+\Delta) \mid X]=p \gg 2^{-128}$.
- $\operatorname{Pr}[H(M)=H(M+\Delta) \mid \neg X] \approx 2^{-128}$.
- We learn one bit of the IV with about $2 / p$ message pairs.

Automatic Search of Differential Path in MD4
G. Leurent

Introduction MD4
Wang's attack
Understand and automate Sufficient conditions
Step operation SC Algorithm Differential Path Message difference

A New NMAC Attack

How to recover the outer key

NMAC Description

- $\operatorname{NMAC}_{k_{1}, k_{2}}(M)=H_{k_{1}}\left(H_{k_{2}}(M)\right)$
- To recover k_{1}, we have to control $H_{k_{2}}(M)$.
- We need about $2 / p$ message pairs such that $H_{k_{2}}\left(M_{2}\right)=H_{k_{2}}\left(M_{1}\right)+\Delta$.
- Δ must be only in the first 128 bits.
- We can use the birthday paradox:
we need to hash about $2 \frac{n-\log p}{2}$ messages.

Advantage

- In Contini-Yin attack, you need to control the value of $H_{k_{2}}(M)$ (related messages).
- We only need to control the differences of $H_{k_{2}}(M)$.

A New NMAC Attack

How to recover the outer key

Efficient computation of message pairs

- We start with one message pair $\left(R_{1}, R_{2}\right)$ such that $H_{k_{2}}\left(R_{2}\right)=H_{k_{2}}\left(R_{1}\right)+\Delta$ (birthday paradox).
- We compute second blocks $\left(M_{1}, M_{2}\right)$ such that $H_{k_{2}}\left(R_{2} \| M_{2}\right)=H_{k_{2}}\left(R_{1} \| M_{1}\right)+\Delta$
- This is essentially a collision search with the padding inside the block.

Differential paths

- We need paths with a difference in m_{0} and no difference in $m_{4} \ldots m_{15}$.
- We found 22 paths with one bit difference in m_{0} and $p \approx 2^{-79}$.
- Unlikely to find such paths in MD5.

Complexity

- We can recover the full NMAC key $\left(k_{1}, k_{2}\right)$
- 2^{88} online request to the NMAC oracle.
- 2^{105} offline hash computations.
2^{94} by using more than one bit of information per path.

Automatic

 Search of Differential Path in MD4G. Leurent

Introduction
MD4
Wang's attack
Understand
and automate
Sufficient
conditions
Step operation
SC Algorithm
Differential Path
Message difference

Results
Collisions
$2^{\text {nd }}$ preimage
NMAC Attack
Conclusion

Future work

Improving the algorithm

- Using ideas from Stevens et al. and Sasaki et al....

Other uses

- Try to find new kind of attack based on new types of path...

