G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation SC Algorithm Differential Path Message difference

Results

Collisions 2nd preimage NMAC Attack

Conclusion

Automatic Search of Differential Path in MD4

Pierre-Alain Fouque, Gaëtan Leurent, Phong Nguyen

Laboratoire d'Informatique de l'École Normale Supérieure, Département d'Informatique, 45 rue d'Ulm, 75230 Paris Cedex 05, France

Ecrypt Hash Workshop, May 2007

G. Leurent

Introduction

MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation SC Algorithm Differential Path Message difference

Results

Collisions 2nd preimage NMAC Attack

Conclusion

Motivation

Why do we need an algorithm?

- Understanding
- Improving
- New attacks

Results

• Some improvement of known attacks

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

э.

• New attack against NMAC-MD4

G. Leurent

Introduction

MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation SC Algorithm Differential Path Message difference

Results

Collisions 2nd preimage NMAC Attack

Conclusion

Outline

1

Introduction

- The MD4 hash function
- Wang's attack

Onderstand and automate

- Sufficient conditions
 - Step operation
 - SC Algorithm
- Differential Path
- Message difference

3 Results

- Collisions
- Second preimage

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

• NMAC Attack

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation SC Algorithm Differential Path Message difference

Results

Collisions 2nd preimage NMAC Attack

Conclusion

The MD4 hash function

General design

MD4 Design

- Merkle-Damgård
- Block size: 512 bits
- Internal state: 128 bits
- MD Strengthening

G. Leurent

Introduction MD4 Wang's attack

- Understand and automate
- Sufficient conditions Step operation SC Algorithm Differential Path Message difference

Results

- Collisions 2nd preimage NMAC Attack
- Conclusion

The MD4 hash function

Compression function

Compression Function Design

• Davies-Meyer with a Feistel-like cipher.

- Designed to be fast: 32 bit words, and operations available in hardware:
 - additions mod 2^{32} : \boxplus
 - boolean functions: Φ_i
 - or rotations
- Message expansion $M = \langle M_0, ... M_{15}
 angle \mapsto \langle m_0, ... m_{47}
 angle$
- 4 words of internal state Q_i updated in rounds of 16 steps

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation SC Algorithm Differential Path Message difference

Results

Collisions 2nd preimage NMAC Attack

Conclusion

The MD4 hash function

Compression function

MD4 Step Update

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation SC Algorithm Differential Path Message difference

Results

Collisions 2nd preimage NMAC Attack

Conclusion

MD4 Collisions

Wang in a nutshell

Precomputation:

- Choose a message difference.
- Compute a differential path.
- Derive a set of sufficient conditions.
- Ollision search:
 - Find a message that satisfies the set of conditions.

Main result

We know a difference Δ and a set of conditions on the internal state variables Q_i 's, such that:

If all the conditions are satisfied by the internal state variable in the computation of H(M), then $H(M) = H(M + \Delta)$.

What is a differential path?

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation SC Algorithm Differential Path Message difference

Results

Collisions 2nd preimage NMAC Attack

Conclusion

Description

- Specifies how the computations of H(M) and $H(M + \Delta)$ are related.
- The differences introduced in the message evolve in the internal state.
- Differential attack with the modular difference.
- Most of the work is modulo 2³², but we also need to control bit differences.

What is a differential path?

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation SC Algorithm Differential Path Message difference

Results

Collisions 2nd preimage NMAC Attack

Conclusion

Notations

- Modular difference: $\delta(x, y) = y \Box x$
- Wang's difference: $\partial(x,y) = \left\langle y^{[31]} x^{[31]}, ...y^{[0]} x^{[0]} \right\rangle$
- \blacktriangle and \blacktriangledown for +1 and -1.
- $x^{[k]}$ for the k + 1-st bit of x.
- Compact notation: $\left< \blacktriangle^{[0]}, \bigtriangledown \blacktriangle^{[3,4]}, \blacktriangle^{[30,31]} \right>$

Differential path notations

- We consider a message M. $M' = M \boxplus \Delta$.
- The differential path specifies $\partial Q_i = \partial (Q_i, Q'_i)$.
- The desired values are ∂_i .

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation SC Algorithm Differential Path Message difference

Results

Collisions 2nd preimage NMAC Attac

Conclusion

Understanding Wang

Question

How to compute the set of conditions?

- Derive a set of sufficient conditions from a differential path.
- **2** Compute a differential path from a message difference.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Choose a message difference.

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation SC Algorithm Differential Path Message difference

Results

Collisions 2nd preimage NMAC Attac

Conclusion

Introductio

The MD4 hash functionWang's attack

2 Understand and automate

- Sufficient conditions
 - Step operation
 - SC Algorithm
- Differential Path
- Message difference

Results

- Collisions
- Second preimage

(日)

э

• NMAC Attack

Conclusion

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions

Step operation SC Algorithm Differential Path Message difference

Results

Collisions 2nd preimage NMAC Attack

Conclusion

Sufficient conditions computations

Goal

- We are given a differential path $\langle \partial_i \rangle$.
- $\bullet\,$ We want to compute a set of conditions so that:

If Q(M) satisfies the conditions, then Q(M) and Q(M') follows the path.

Strategy

- We will iteratively add conditions for the current state, assuming the previous ones are satisfied.
 - First, study the step operation and the ∂-difference. (Differencial attack)

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions

Step operation SC Algorithm Differential Path Message difference

Results

Collisions 2nd preimage NMAC Attack

Conclusion

Remarks about the $\partial\text{-difference}$

The δ -difference and the ∂ -difference

- If we know $\partial(x, y)$, we can compute $\delta(x, y)$.
- If we know δ(x, y), many ∂(x, y) are possible.
 For instance, if δ(x, y) = 2^k, 33 − k possibilities:

 $\begin{array}{l} \left< \mathbf{V} \dots \mathbf{V} \right>^{[k,k+1,\dots 30,31]} \right> \rightarrow 2^{31} - 2^{30} - \dots - 2^k \\ \left< \mathbf{V} \dots \mathbf{V} \right>^{[k,k+1,\dots 30,31]} \right> \rightarrow 2^{32} - 2^{31} - \dots - 2^k \end{array}$

▲日▼▲□▼▲□▼▲□▼ □ のので

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions

Step operation SC Algorithm Differential Path Message difference

Results

Collisions 2nd preimage NMAC Attack

Conclusion

Remarks about the $\partial\text{-difference}$

Theorem

$$\partial(x,y) = \langle \varepsilon_{31}, \varepsilon_{30}, \dots \varepsilon_0 \rangle \Longleftrightarrow \begin{cases} \sum_{j=0}^{31} \varepsilon_j 2^j = \delta(x,y) \\ \forall j, \varepsilon_j \in \{-1, 0, +1\} \\ \forall j : \varepsilon_j = +1 \Longrightarrow x^{[j]} = 0 \\ \forall j : \varepsilon_j = -1 \Longrightarrow x^{[j]} = 1 \end{cases}$$

If we know δ(x, y), we can fix one ∂(x, y) by adding some conditions on x.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• We can switch between δ -difference and ∂ -difference.

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions

Step operation SC Algorithm Differential Path Message difference

Results

Collisions 2nd preimage NMAC Attac

v

Conclusion

Rotation and modular difference

Four cases

- We have an algebraic expression of the rotation: $u \ll s = \lfloor \frac{u}{2^{32-s}} \rfloor + (2^s u \mod 2^{32})$
- We can express $v = \delta(a \ll s, b \ll s)$ from $u = \delta(a, b)$

$$= \begin{cases} v_1 = (u \ll s) & \text{if } a + u < 2^{32} \text{ and} \\ (a \mod 2^{32-s}) + (u \mod 2^{32-s}) < 2^{32-s} \\ v_2 = (u \ll s) \boxplus 1 & \text{if } a + u < 2^{32} \text{ and} \\ (a \mod 2^{32-s}) + (u \mod 2^{32-s}) \ge 2^{32-s} \\ v_3 = (u \ll s) \boxplus 2^s & \text{if } a + u \ge 2^{32} \text{ and} \\ (a \mod 2^{32-s}) + (u \mod 2^{32-s}) < 2^{32-s} \\ v_4 = (u \ll s) \boxplus 2^s \boxplus 1 & \text{if } a + u \ge 2^{32} \text{ and} \\ (a \mod 2^{32-s}) + (u \mod 2^{32-s}) \ge 2^{32-s} \end{cases}$$

ightarrow bit conditions, probabilities

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions

Step operation SC Algorithm Differential Path Message difference

Results

Collisions 2nd preimage NMAC Attac

v

Conclusion

Rotation and modular difference

Four cases

- We have an algebraic expression of the rotation: $u \ll s = \lfloor \frac{u}{2^{32-s}} \rfloor + (2^s u \mod 2^{32})$
- We can express $v = \delta(a \ll s, b \ll s)$ from $u = \delta(a, b)$

$$= \begin{cases} v_1 = (u \lll s) & \text{if } a + u < 2^{32} \text{ and} \\ (a \mod 2^{32-s}) + (u \mod 2^{32-s}) < 2^{32-s} \\ v_2 = (u \lll s) \boxplus 1 & \text{if } a + u < 2^{32} \text{ and} \\ (a \mod 2^{32-s}) + (u \mod 2^{32-s}) \ge 2^{32-s} \\ v_3 = (u \lll s) \boxminus 2^s & \text{if } a + u \ge 2^{32} \text{ and} \\ (a \mod 2^{32-s}) + (u \mod 2^{32-s}) < 2^{32-s} \\ v_4 = (u \lll s) \boxminus 2^s \boxplus 1 & \text{if } a + u \ge 2^{32} \text{ and} \\ (a \mod 2^{32-s}) + (u \mod 2^{32-s}) \ge 2^{32-s} \end{cases}$$

 \rightarrow bit conditions, probabilities

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions

Step operation SC Algorithm Differential Path Message difference

Results

Collisions 2nd preimage NMAC Attack

Conclusion

Rotation and modular difference

Important remark

• The conditions are on the input (or output) of the rotation.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• In MD4, we will use this backwards:

 $\mathbf{Q}_{i+4} = (Q_i \boxplus \Phi_{i+4} \boxplus m_{i+4} \boxplus k_{i+4}) \lll s_{i+4}$

Path in MD4

- Step operation

Wang difference and Boolean functions

The Boolean function

- Bitwise Boolean functions:
 - First round:

$$F(x, y, z) = (x \land y) \lor (\neg x \land z)$$

- Second round:
- $G(x, y, z) = (x \land y) \lor (x \land z) \lor (y \land z)$
- Third round. $H(x, y, z) = x \oplus y \oplus z$
- For each bit, if we know the input differences we can add conditions to select one output difference.

▲日▼▲□▼▲□▼▲□▼ □ のので

Motivation for ∂-difference.

 Φ_i conditions

E(x, y, z) = IE(x, y, z)

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions

Step operation SC Algorithm Differential Path Message difference

Results

Collisions 2nd preimage NMAC Attac

Conclusion

				(x, y, z) = IF(z)			,z) = MA			$(y,z) = x \in$	
дх	с ду	∂z	$\partial F = 0$	$\partial F = 1$	-	$\partial G = 0$	$\partial G = 1$	$\partial G = -1$	$\partial H = 0$	$\partial H = 1$	$\partial H = -1$
0	0	0	\checkmark	X	X	\checkmark	X	X	\checkmark	X	X
0	0	+1	x = 1	<i>x</i> = 0	X	x = y	$x \neq y$	X	X	x = y	$x \neq y$
0	0	$^{-1}$	x = 1	X	<i>x</i> = 0	x = y	X	$x \neq y$	X	$x \neq y$	x = y
0	+1	0	<i>x</i> = 0	x = 1	X	x = z	$x \neq z$	X	X	x = z	$x \neq z$
0	-1	0	<i>x</i> = 0	X	<i>x</i> = 1	x = z	X	$x \neq z$	X	$x \neq z$	x = z
+1		0	y = z	y, z = 1, 0	y, z=0,1	y = z	$y \neq z$	X	X	y = z	$y \neq z$
-1	L 0	0	y = z	y, z = 0, 1	<i>y</i> , <i>z</i> = 1, 0	y = z	X	$y \neq z$	X	$y \neq z$	y = z
0	$^{+1}$	$^{+1}$	X	\checkmark	X	X	\checkmark	X	~	X	X
0	-1	+1	X	<i>x</i> = 0	<i>x</i> = 1	~	X	X	√	×	×
0	+1	$^{-1}$	X	x = 1	<i>x</i> = 0	√	X	X	√	X	X
0		$^{-1}$	×	X	~	X	×	~	√	×	X
+1		$^{+1}$	<i>y</i> = 0	y = 1	X	X	 ✓ 	X	\checkmark	X	X
-1		$^{+1}$	y = 1	<i>y</i> = 0	×	\checkmark	X	X	√	×	X
+1		$^{-1}$	y = 1	X	<i>y</i> = 0	v	X	X	\checkmark	X	X
-1	-	-1	<i>y</i> = 0	×	y = 1	×	×	 ✓ 	√	×	×
+1		0	z = 1	z = 0	X	X	V	X	\checkmark	X	X
-1		0	z = 0	z = 1	×	\checkmark	X	×	√	×	×
+1		0	z = 0	X	z = 1	 ✓ 	X	X	\checkmark	X	X
-1	l –1	0	z = 1	×	<i>z</i> = 0	×	×	~	√	×	×
+1		$^{+1}$	X	\checkmark	X	X	\checkmark	X	X	V	X
-1		+1	×	 ✓ 	×	X	\checkmark	X	X	×	√
+1		$^{+1}$	\checkmark	X	X	X	V	X	X	X	√
-1		+1	\checkmark	X	×	X	×	 ✓ 	X	 V 	×
+1		$^{-1}$	\checkmark	X	X	X	 ✓ 	X	X	×	V
-1		-1	√ ✓	×	×	×	X	√	×	√	×
+1		$^{-1}$	X	X	√	X	X	√	X	~	X
-1	L -1	$^{-1}$	X	X	√	X	X	√	X	X	\checkmark

C(x, y, z) = MAI(x, y, z)

 $H(x, y, z) = x \oplus y \oplus z$

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions

Step operation SC Algorithm Differential Path Message difference

Results Collisions

2nd preimage NMAC Attack

Conclusion

Step operations summary

For each operation, we can add conditions on Q_i to make it behave nicely.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

 \rightarrow Sufficient conditions algorithm.

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation SC Algorithm Differential Path Message difference

Results

Collisions 2nd preimage NMAC Attack

Conclusion

Computing sufficient conditions

Goal

At step i + 4, we have:

 $\begin{aligned} Q_{i+4} &= (Q_i \boxplus \Phi_{i+4}(Q_{i+1}, Q_{i+2}, Q_{i+3}) \boxplus m_{i+4} \boxplus k_{i+4}) \lll s_{i+4} \\ Q'_{i+4} &= (Q'_i \boxplus \Phi_{i+4}(Q'_{i+1}, Q'_{i+2}, Q'_{i+3}) \boxplus m'_{i+4} \boxplus k_{i+4}) \lll s_{i+4} \\ \text{We want } \partial(Q_i, Q'_i) &= \partial_i. \end{aligned}$

Part one: $\delta(Q_i, Q'_i) = \delta_i$

- Choose $\delta_{i+4}^{\gg} = \delta(Q_{i+4} \gg s_{i+4}, Q'_{i+4} \gg s_{i+4})$ that match $\delta_{i+4} = \delta(Q_{i+4}, Q'_{i+4})$. \rightarrow \ll -conditions on Q_{i+4} .
- We just need $\Phi'_{i+4} \boxminus \Phi_{i+4} = \delta_i \boxminus \delta_{i+4}^{\gg} \boxplus \Delta_{i+4}$. Choose $\partial(\Phi_{i+4}, \Phi'_{i+4})$. $\rightarrow \Phi$ -conditions on $Q_{i+1}, Q_{i+2}, Q_{i+3}$

Part two: $\partial(Q_i, Q'_i) = \partial_i$

 $\rightarrow \partial$ -conditions on Q_i

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation SC Algorithm Differential Path Message difference

Results

Collisions 2nd preimage NMAC Attack

Conclusion

Computing sufficient conditions

Goal

At step i + 4, we have:

 $\begin{aligned} & Q_{i+4} = (Q_i \boxplus \Phi_{i+4}(Q_{i+1}, Q_{i+2}, Q_{i+3}) \boxplus m_{i+4} \boxplus k_{i+4}) \lll s_{i+4} \\ & Q'_{i+4} = (Q'_i \boxplus \Phi_{i+4}(Q'_{i+1}, Q'_{i+2}, Q'_{i+3}) \boxplus m'_{i+4} \boxplus k_{i+4}) \lll s_{i+4} \\ & \text{We want } \partial(Q_i, Q'_i) = \partial_i. \end{aligned}$

Part one: $\delta(Q_i, Q'_i) = \delta_i$

- Choose $\delta_{i+4}^{\gg} = \delta(Q_{i+4} \gg s_{i+4}, Q'_{i+4} \gg s_{i+4})$ that match $\delta_{i+4} = \delta(Q_{i+4}, Q'_{i+4})$. \rightarrow \ll -conditions on Q_{i+4} .
- We just need $\Phi'_{i+4} \boxminus \Phi_{i+4} = \delta_i \boxminus \delta_{i+4}^{\gg} \boxplus \Delta_{i+4}$. Choose $\partial(\Phi_{i+4}, \Phi'_{i+4})$. $\rightarrow \Phi$ -conditions on $Q_{i+1}, Q_{i+2}, Q_{i+3}$

Part two: $\partial(Q_i, Q'_i) = \partial_i$

 $\rightarrow \partial$ -conditions on Q_i

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation SC Algorithm Differential Path Message difference

Results

Collisions 2nd preimage NMAC Attack

Conclusion

Computing sufficient conditions

Goal

At step i + 4, we have:

 $\begin{aligned} Q_{i+4} &= (Q_i \boxplus \Phi_{i+4}(Q_{i+1}, Q_{i+2}, Q_{i+3}) \boxplus m_{i+4} \boxplus k_{i+4}) \lll s_{i+4} \\ Q'_{i+4} &= (Q'_i \boxplus \Phi_{i+4}(Q'_{i+1}, Q'_{i+2}, Q'_{i+3}) \boxplus m'_{i+4} \boxplus k_{i+4}) \lll s_{i+4} \\ \text{We want } \partial(Q_i, Q'_i) &= \partial_i. \end{aligned}$

Part one: $\delta(Q_i, Q'_i) = \delta_i$

- Choose $\delta_{i+4}^{\gg} = \delta(Q_{i+4} \gg s_{i+4}, Q'_{i+4} \gg s_{i+4})$ that match $\delta_{i+4} = \delta(Q_{i+4}, Q'_{i+4})$. \rightarrow conditions on Q_{i+4} .
- We just need $\Phi'_{i+4} \boxminus \Phi_{i+4} = \delta_i \boxminus \delta_{i+4}^{\gg} \boxplus \Delta_{i+4}$. Choose $\partial(\Phi_{i+4}, \Phi'_{i+4})$. $\rightarrow \Phi$ -conditions on $Q_{i+1}, Q_{i+2}, Q_{i+3}$

Part two: $\partial(Q_i, Q'_i) = \partial_i$

 $\rightarrow \partial$ -conditions on Q_i

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation SC Algorithm Differential Path Message difference

Results

Collisions 2nd preimage NMAC Attack

Conclusion

SC Algorithm

Result

- SC Algorithm works
- Next step: how to compute the differencial path?

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

æ

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation SC Algorithm Differential Path

difference

Results

Collisions 2nd preimage NMAC Attack

Conclusion

Absorbing the differences

Important observation

 $\begin{aligned} Q_{i} &= (Q_{i-4} \boxplus \Phi_{i} \ (Q_{i-1}, Q_{i-2}, Q_{i-3}) \boxplus m_{i} \ \boxplus k_{i} \) \lll s_{i} \\ Q_{i+1} &= (Q_{i-3} \boxplus \Phi_{i+1}(Q_{i} \ , Q_{i-1}, Q_{i-2}) \boxplus m_{i+1} \boxplus k_{i+1}) \lll s_{i+1} \\ Q_{i+2} &= (Q_{i-2} \boxplus \Phi_{i+2}(Q_{i+1}, Q_{i} \ , Q_{i-1}) \boxplus m_{i+2} \boxplus k_{i+2}) \lll s_{i+2} \\ Q_{i+3} &= (Q_{i-1} \boxplus \Phi_{i+3}(Q_{i+2}, Q_{i+1}, Q_{i} \) \boxplus m_{i+3} \boxplus k_{i+3}) \lll s_{i+3} \\ Q_{i+4} &= (Q_{i} \ \boxplus \Phi_{i+4}(Q_{i+3}, Q_{i+2}, Q_{i+1}) \boxplus m_{i+4} \boxplus k_{i+4}) \lll s_{i+4} \\ Q_{i+5} &= (Q_{i+1} \boxplus \Phi_{i+5}(Q_{i+4}, Q_{i+3}, Q_{i+2}) \boxplus m_{i+5} \boxplus k_{i+5}) \lll s_{i+5} \end{aligned}$

- We introduce a difference in Q_i .
- If Φ_i can absorb the difference, it will not multiply.

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨー

• It only appears every 4 round, with a rotation.

The trivial path

This is the basis for MD4 differential paths: absorb the message differences.

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation SC Algorithm Differential Path

aifferenc

Collisions 2nd preimage NMAC Attacl

Conclusion

Absorbing the differences

Important observation

 $\begin{aligned} & Q_{i} = (Q_{i-4} \boxplus \Phi_{i} \ (Q_{i-1}, Q_{i-2}, Q_{i-3}) \boxplus m_{i} \ \boxplus k_{i} \) \ll s_{i} \\ & Q_{i+1} = (Q_{i-3} \boxplus \Phi_{i+1}(Q_{i} \ , Q_{i-1}, Q_{i-2}) \boxplus m_{i+1} \boxplus k_{i+1}) \ll s_{i+1} \\ & Q_{i+2} = (Q_{i-2} \boxplus \Phi_{i+2}(Q_{i+1}, Q_{i} \ , Q_{i-1}) \boxplus m_{i+2} \boxplus k_{i+2}) \ll s_{i+2} \\ & Q_{i+3} = (Q_{i-1} \boxplus \Phi_{i+3}(Q_{i+2}, Q_{i+1}, Q_{i} \) \boxplus m_{i+3} \boxplus k_{i+3}) \ll s_{i+3} \\ & Q_{i+4} = (Q_{i} \ \boxplus \Phi_{i+4}(Q_{i+3}, Q_{i+2}, Q_{i+1}) \boxplus m_{i+4} \boxplus k_{i+4}) \ll s_{i+4} \\ & Q_{i+5} = (Q_{i+1} \boxplus \Phi_{i+5}(Q_{i+4}, Q_{i+3}, Q_{i+2}) \boxplus m_{i+5} \boxplus k_{i+5}) \ll s_{i+5} \end{aligned}$

- We introduce a difference in Q_i .
- If Φ_i can absorb the difference, it will not multiply.

3

• It only appears every 4 round, with a rotation.

The trivial path

This is the basis for MD4 differential paths: absorb the message differences.

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation SC Algorithm Differential Path

Message difference

Results

Collisions 2nd preimage NMAC Attack

Conclusion

Absorbing the differences

Important observation

 $\begin{aligned} & Q_i = (Q_{i-4} \boxplus \Phi_i \quad (Q_{i-1}, Q_{i-2}, Q_{i-3}) \boxplus m_i \ \boxplus k_i \) \ll s_i \\ & Q_{i+1} = (Q_{i-3} \boxplus \Phi_{i+1}(Q_i \quad Q_{i-1}, Q_{i-2}) \boxplus m_{i+1} \boxplus k_{i+1}) \ll s_{i+1} \\ & Q_{i+2} = (Q_{i-2} \boxplus \Phi_{i+2}(Q_{i+1}, Q_i \quad Q_{i-1}) \boxplus m_{i+2} \boxplus k_{i+2}) \ll s_{i+2} \\ & Q_{i+3} = (Q_{i-1} \boxplus \Phi_{i+3}(Q_{i+2}, Q_{i+1}, Q_i \quad) \boxplus m_{i+3} \boxplus k_{i+3}) \ll s_{i+3} \\ & Q_{i+4} = (Q_i \ \boxplus \Phi_{i+4}(Q_{i+3}, Q_{i+2}, Q_{i+1}) \boxplus m_{i+4} \boxplus k_{i+4}) \ll s_{i+4} \\ & Q_{i+5} = (Q_{i+1} \boxplus \Phi_{i+5}(Q_{i+4}, Q_{i+3}, Q_{i+2}) \boxplus m_{i+5} \boxplus k_{i+5}) \ll s_{i+5} \end{aligned}$

- We introduce a difference in Q_i .
- If Φ_i can absorb the difference, it will not multiply.

イロト 不得 とくほ とくほ とうしょう

• It only appears every 4 round, with a rotation.

The trivial path

This is the basis for MD4 differential paths: absorb the message differences.

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation SC Algorithm Differential Path

Message difference

Results

Collisions 2nd preimage NMAC Attack

Conclusion

Absorbing the differences

Important observation

 $\begin{aligned} & Q_i = (Q_{i-4} \boxplus \Phi_i \quad (Q_{i-1}, Q_{i-2}, Q_{i-3}) \boxplus m_i \ \boxplus k_i \) \ll s_i \\ & Q_{i+1} = (Q_{i-3} \boxplus \Phi_{i+1}(Q_i \quad Q_{i-1}, Q_{i-2}) \boxplus m_{i+1} \boxplus k_{i+1}) \ll s_{i+1} \\ & Q_{i+2} = (Q_{i-2} \boxplus \Phi_{i+2}(Q_{i+1}, Q_i \quad Q_{i-1}) \boxplus m_{i+2} \boxplus k_{i+2}) \ll s_{i+2} \\ & Q_{i+3} = (Q_{i-1} \boxplus \Phi_{i+3}(Q_{i+2}, Q_{i+1}, Q_i \) \boxplus m_{i+3} \boxplus k_{i+3}) \ll s_{i+3} \\ & Q_{i+4} = (Q_i \quad \boxplus \Phi_{i+4}(Q_{i+3}, Q_{i+2}, Q_{i+1}) \boxplus m_{i+4} \boxplus k_{i+4}) \ll s_{i+4} \\ & Q_{i+5} = (Q_{i+1} \boxplus \Phi_{i+5}(Q_{i+4}, Q_{i+3}, Q_{i+2}) \boxplus m_{i+5} \boxplus k_{i+5}) \ll s_{i+5} \end{aligned}$

- We introduce a difference in Q_i .
- If Φ_i can absorb the difference, it will not multiply.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のの()

• It only appears every 4 round, with a rotation.

The trivial path

This is the basis for MD4 differential paths: absorb the message differences.

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation SC Algorithm Differential Path

Message difference

Results

Collisions 2nd preimage NMAC Attack

Conclusion

Absorbing the differences

Important observation

 $\begin{aligned} & Q_i = (Q_{i-4} \boxplus \Phi_i \ (Q_{i-1}, Q_{i-2}, Q_{i-3}) \boxplus m_i \boxplus k_i \) \ll s_i \\ & Q_{i+1} = (Q_{i-3} \boxplus \Phi_{i+1}(Q_i \ , Q_{i-1}, Q_{i-2}) \boxplus m_{i+1} \boxplus k_{i+1}) \ll s_{i+1} \\ & Q_{i+2} = (Q_{i-2} \boxplus \Phi_{i+2}(Q_{i+1}, Q_i \ , Q_{i-1}) \boxplus m_{i+2} \boxplus k_{i+2}) \ll s_{i+2} \\ & Q_{i+3} = (Q_{i-1} \boxplus \Phi_{i+3}(Q_{i+2}, Q_{i+1}, Q_i \) \boxplus m_{i+3} \boxplus k_{i+3}) \ll s_{i+3} \\ & Q_{i+4} = (Q_i \ \boxplus \Phi_{i+4}(Q_{i+3}, Q_{i+2}, Q_{i+1}) \boxplus m_{i+4} \boxplus k_{i+4}) \ll s_{i+4} \\ & Q_{i+5} = (Q_{i+1} \boxplus \Phi_{i+5}(Q_{i+4}, Q_{i+3}, Q_{i+2}) \boxplus m_{i+5} \boxplus k_{i+5}) \ll s_{i+5} \end{aligned}$

- We introduce a difference in Q_i .
- If Φ_i can absorb the difference, it will not multiply.

<ロ> <問> <問> < 回> < 回>

3

• It only appears every 4 round, with a rotation.

The trivial path

This is the basis for MD4 differential paths: absorb the message differences.

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation SC Algorithm

Differential Path

Message difference

Results

Collisions 2nd preimage NMAC Attacl

Conclusion

Absorbing the differences

MD4 Boolean functions

$F(x, y, z) = (x \land y) \lor (\neg x \land z)$

MD4 Boolean function F can absorb one input difference:

F(x, y, z) = IF(x, y, z)								
дx	дy	∂z	$\partial F = 0$	$\partial F = 1$	$\partial F = -1$			
0	0	0	\checkmark	×	×			
0	0	+1	<i>x</i> = 1	<i>x</i> = 0	×			
0	0	-1	x = 1	×	<i>x</i> = 0			
0	+1	0	<i>x</i> = 0	x = 1	×			
0	-1	0	<i>x</i> = 0	×	x = 1			
+1	0	0	y = z	y, z = 1, 0	y, z = 0, 1			
-1	0	0	y = z	y, z = 0, 1	y, z = 1, 0			

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation SC Algorithm Differential Path

Message difference

Results

Collisions 2nd preimage NMAC Attack

Conclusion

Absorbing the differences

MD4 Boolean functions

$G(x, y, z) = (x \land y) \lor (x \land z) \lor (y \land z)$

MD4 Boolean function G can absorb one input difference:

			G(x, y, z) = MAJ(x, y, z)					
∂x	дy	∂z	$\partial G = 0$	$\partial G = 1$	$\partial G = -1$			
0	0	0	\checkmark	X	X			
0	0	+1	x = y	$x \neq y$	X			
0	0	-1	x = y	×	$x \neq y$			
0	+1	0	x = z	$x \neq z$	X			
0	-1	0	x = z	×	$x \neq z$			
+1	0	0	y = z	$y \neq z$	X			
-1	0	0	y = z	×	$y \neq z$			

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation

Differential Path

Message difference

Results

Collisions 2nd preimage NMAC Attack

Conclusion

Absorbing the differences

MD4 Boolean functions

$H(x,y,z) = x \oplus y \oplus z$

MD4 Boolean function H can not absorb one input difference:

		$H(x,y,z)=x\oplus y\oplus z$							
[∂x	дy	∂z	$\partial H = 0$	$\partial H = 1$	$\partial H = -1$			
[0	0	0	\checkmark	×	X			
ſ	0	0	+1	×	x = y	$x \neq y$			
	0	0	-1	×	$x \neq y$	x = y			
	0	+1	0	×	x = z	$x \neq z$			
	0	-1	0	×	$x \neq z$	x = z			
ſ	+1	0	0	×	y = z	$y \neq z$			
	-1	0	0	×	$y \neq z$	y = z			

Note: Wang use a local collision in round 3, no need to search path.

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation SC Algorithm Differential Path

Message difference

Results

Collisions 2nd preimage NMAC Attack

Conclusion

Differential Path Search

Basic Idea

- Follow the sufficient conditions algorithm.
- $Q_{i+4} = (Q_i \boxplus \Phi_{i+4} \boxplus m_{i+4} \boxplus k_{i+4}) \lll s_{i+4}$ $Q'_{i+4} = (Q'_i \boxplus \Phi'_{i+4} \boxplus m'_{i+4} \boxplus k_{i+4}) \lll s_{i+4}$
- We do not know ∂Q_i , so we assume $\Phi'_i = \Phi_i$, *ie.* absorb the difference. $\rightarrow \delta_{i+4}^{\gg} = \delta_i$.
- Goes from the last step to the first.
- When we have a path up to the first round, there might be a difference in the IV, we will fix it later.

Differential Path

Differential Path Search

Turning pseudo-collision path into collision path

- We run the algorithm again, using the previous path as a hint for the values of δΦ_i.
- We try to modify the path on the bits that will become the IV differences.

Path representation

• During the computation, the path is represented by $\partial_i{}'s.$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• To modify the path later, we will rather use the $\delta \Phi_i$'s.

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation SC Algorithm Differential Path

Message difference

Results Collisions

2nd preimage NMAC Attac

Conclusion

Pseudo-code

- 1: **function** PATHFIND
- 2: $\mathcal{P} \leftarrow \{\epsilon\}$
- 3: **loop**
- 4: extract P from \mathcal{P}
- 5: PATHSTEP($P,\epsilon,48$)
- 6: function PATHSTEP(P_0, P, i)
- 7: **if** *i* < 0 **then**
 - add P in ${\mathcal P}$
- 9: **else**

8:

- 10: **for all** possible choice P' **do**
- 11: PATCHTARGET(P_0, P', i)
- 12: function PATCHTARGET(P_0, P, i)
- 13: for all possible choice P' do
- 14: PATCHCARRIES(P_0, P', i)
- 15: function PATCHCARRIES(P_0, P, i)

-

- 16: **for all** possible choice P' **do**
- 17: PATHSTEP $(P_0, P', i 1)$

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation SC Algorithm Differential Path

Message difference

Results

Collisions 2nd preimage NMAC Attack

Conclusion

Pseudo-code

- 1: function PATHFIND
- 2: $\mathcal{P} \leftarrow \{\epsilon\}$
- 3: **loop**
- 4: extract P from \mathcal{P}
- 5: PATHSTEP($P, \epsilon, 48$)
- 6: function PATHSTEP(P_0, P, i)
- 7: **if** *i* < 0 **then**
 - add P in ${\mathcal P}$
- 9: else

8:

- 10: for all possible choice P' do
- 11: PATCHTARGET(P_0, P', i)
- 12: function PATCHTARGET(P_0, P, i)
- 13: **for all** possible choice P' **do**
- 14: PATCHCARRIES(P_0, P', i)
- 15: function PATCHCARRIES(P_0, P, i)
- 16: for all possible choice P' do
- 17: PATHSTEP $(P_0, P', i 1)$

PATHFIND

- Starts with the trivial path
- Pick a path and try to improve it

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation SC Algorithm Differential Path

Message difference

Results

Collisions 2nd preimage NMAC Attack

Conclusion

Pseudo-code

- 1: **function** PATHFIND
- 2: $\mathcal{P} \leftarrow \{\epsilon\}$
- 3: **loop**
- 4: extract P from \mathcal{P}
- 5: PATHSTEP($P,\epsilon,48$)
- 6: **function PATHSTEP**(P_0, P, i)
- 7: **if** i < 0 **then**
 - add P in ${\mathcal P}$
- 9: **else**

8:

10:

- for all possible choice P' do
- 11: PATCHTARGET(P_0, P', i)
- 12: function PATCHTARGET(P_0 ,
- 13: **for all** possible choice P' **c**
- 14: PATCHCARRIES(P_0, P'
- 15: function PATCHCARRIES(P_0 ,
- 16: **for all** possible choice P' **c**
- 17: PATHSTEP $(P_0, P', i 1)$

PATHSTEP

- Choose δ_{i+4}^{\gg} from δ_{i+4} and $\partial \Phi_{i+4}$ from $\delta \Phi_{i+4}$
- Compute δQ_i from δ_{i+4}^{\gg} and $\partial \Phi_{i+4}$

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation SC Algorithm Differential Path

Message difference

Results

Collisions 2nd preimage NMAC Attack

Conclusion

Pseudo-code

- 1: **function** PATHFIND
- 2: $\mathcal{P} \leftarrow \{\epsilon\}$
- 3: **loop**
- 4: extract P from \mathcal{P}
- 5: PATHSTEP($P, \epsilon, 48$)
- 6: function PATHSTEP(P_0, P, i)
- 7: **if** *i* < 0 **then**
 - add P in ${\mathcal P}$
- 9: **else**

8:

- 10: for all possible choice P' do
- 11: PATCHTARGET(P_0, P', i)
- 12: function PATCHTARGET(P_0, P, i)
- 13: for all possible choice P' do
- 14: PATCHCARRIES(P_0, P', i)
- 15: function PATCHCARRIES(P_0, P, i)
- 16: **for all** possible choice P' **do**
- 17: PATHSTEP $(P_0, P', i-1)$

PATCHTARGET

・ロト ・ 同ト ・ ヨト ・ ヨト

- Modify $\partial \Phi_i$
 - from the path P.

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation SC Algorithm Differential Path

Message difference

Results

2nd preimage NMAC Attack

Conclusion

Pseudo-code

- 1: **function** Pathfind
- 2: $\mathcal{P} \leftarrow \{\epsilon\}$
- 3: **loop**
- 4: extract P from \mathcal{P}
- 5: PATHSTEP($P, \epsilon, 48$)
- 6: function PATHSTEP(P_0, P, i)
- 7: **if** *i* < 0 **then**
 - add P in ${\mathcal P}$
- 9: **else**

8:

10:

- for all possible choice P' do
- 11: PATCHTARGET(P_0, P', i)
- 12: function PATCHTARGET(P_0, P, i)
- 13: for all possible choice P' do
- 14: PATCHCARRIES(P_0, P', i)
- 15: function PATCHCARRIES(P_0, P, i)
- 16: for all possible choice P' do
- 17: PATHSTEP $(P_0, P', i 1)$

PATCHCARRIES

• Choose
$$\partial Q_i$$

from δQ_i

・ ロ ト ・ 同 ト ・ 三 ト ・

Differential Path

Correcting the differences

Direct correction

- $Q_i = (Q_{i-4} \boxplus \Phi_i \boxplus m_i \boxplus k_i) \ll s_i$
- Differences do not multiply: each difference in the IV has to be fixed in exactly one place.
- Possible places: every 4 rounds.
- We use Φ_i to modify the bit.

Indirect Corrections

- $Q_{i+a} = (Q_{i+a-4} \boxplus \Phi_{i+a}(Q_i) \boxplus m_i \boxplus k_i) \ll s_i$
- $Q_i = (Q_{i-4} \boxplus \Phi_i \boxplus m_i \boxplus k_i) \ll s_i$
- We use Q_i to modify Q_{i+a-4} .
- This indroduces a new difference in Q_{i-4} .
- Hopefully, the new difference is easier to remove...

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation SC Algorithm Differential Path Message difference

Results

Collisions 2nd preimage NMAC Attack

Conclusion

Message difference

Message difference

- We can try many message differences and run the algorithm
- Interesting message differences depend on the application...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ... □

Path in MD4

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation SC Algorithm Differential Path

Message difference

Results Collisions 2nd preimag

Conclusion

Overview of the algorithm

Advantages of indirect corrections

- No need to manually add some differences.
- Use freedom in Φ rather than carry expensions.
- Fewer conditions.

Adaptation to MD5?

- $Q_i = Q_{i-1} \boxplus (Q_{i-4} \boxplus \Phi_i (Q_{i-1}, Q_{i-2}, Q_{i-3}) \boxplus m_i \boxplus k_i) \ll s_i$
- No easy way to stop difference multiplications. Use den Boer-Bosselaers's path?
- No easy way to express the rotation conditions.

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation SC Algorithm Differential Path Message difference

Results

Collisions 2nd preimage NMAC Attac

Conclusion

Introductio

- The MD4 hash function
- Wang's attack

Understand and automate

- Sufficient conditions
 - Step operation
 - SC Algorithm
- Differential Path
- Message difference

3 Results

- Collisions
- Second preimage

(日)

э

• NMAC Attack

4 Conclusion

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation SC Algorithm Differential Path Message difference

Results

Collisions 2nd preimage NMAC Attack

Conclusion

Collisions

Collision path

- We want to minimize the search complexity
- Few conditions in 3rd (and 2nd) round: local collision.
- Our algorithm works with Wang's message difference, not (yet?) with Sasaki *et al.*'s.

Comparison of collision paths								
Number of conditions	round 1	round 2	round 3	total				
With Wang's message difference:								
Wang <i>et al.</i>	96	25	2	123				
Schläffer and Oswald	122	22	2	146				
Our path	72	16	2	90				
With Sasaki's message difference:								
Sasaki <i>et al.</i>	167	9	1	177				

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation SC Algorithm Differential Path Message difference

Results Collisions 2nd preimage NMAC Attack

Conclusion

Second preimage

Second preimage paths

- Second preimage for weak message
- If c conditions, a message is weak with probabilty 2^{-c}
- We want to minimize the number of conditions

Results on Yu's path

- Yu et al. gave a path with one bit difference in m_4
- Authors claim 32 path using rotations of the path. Actually, only 28 paths (fails on bit 17,20,26 and 28).
- Using bit 25, only 58 conditions instead of 62.
 Good if you need only one path with very few conditions (eg. Contini Yin HMAC-MD4 attacks).

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation SC Algorithm Differential Path Message difference

Results

Collisions 2nd preimage NMAC Attack

Conclusion

A New NMAC Attack

Main idea

• We search for a differential path with the message difference in *m*₀:

step	Si	δm _i	$\partial \Phi_i$	∂Q_i	conditions
0	3	$\langle \mathbf{A}^{[0]} \rangle$		$\langle \mathbf{A}^{[3]} \rangle$	
1	7				$Q_{-1}^{[3]} = Q_{-2}^{[3]}$ (X)
2	11				$Q_1^{[3]} = 0$
3	19				$Q_2^{[3]} = 1$
4	3			$\langle \mathbf{A}^{[6]} \rangle$	

- The beginning of the path depends on a condition (X) of the IV.
- $\Pr[H(M) = H(M + \Delta)|X] = p \gg 2^{-128}$.
- $\Pr[H(M) = H(M + \Delta) | \neg X] \approx 2^{-128}$.
- We learn one bit of the IV with about 2/p message pairs.

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation SC Algorithm Differential Path Message difference

Results Collisions

2nd preimage NMAC Attack

Conclusion

A New NMAC Attack

How to recover the outer key

NMAC Description

- $\mathsf{NMAC}_{k_1,k_2}(M) = H_{k_1}(H_{k_2}(M))$
- To recover k_1 , we have to control $H_{k_2}(M)$.
- We need about 2/p message pairs such that $H_{k_2}(M_2) = H_{k_2}(M_1) + \Delta$.
- Δ must be only in the first 128 bits.
- We can use the birthday paradox: we need to hash about 2^{n-log p}/₂ messages.

Advantage

- In Contini-Yin attack, you need to control the value of H_{k2}(M) (related messages).
- We only need to control the differences of $H_{k_2}(M)$.

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation SC Algorithm Differential Path Message difference

Results Collisions 2nd preimage NMAC Attack

Conclusion

A New NMAC Attack

How to recover the outer key

Efficient computation of message pairs

- We start with one message pair (R_1, R_2) such that $H_{k_2}(R_2) = H_{k_2}(R_1) + \Delta$ (birthday paradox).
- We compute second blocks (M_1, M_2) such that $H_{k_2}(R_2||M_2) = H_{k_2}(R_1||M_1) + \Delta$
- This is essentially a collision search with the padding inside the block.

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation SC Algorithm Differential Path Message difference

Results Collision

2nd preimage NMAC Attack

Conclusion

The Attack against NMAC-MD4

Differential paths

- We need paths with a difference in m_0 and no difference in $m_4...m_{15}$.
- We found 22 paths with one bit difference in m_0 and $p \approx 2^{-79}$.
- Unlikely to find such paths in MD5.

Complexity

- We can recover the full NMAC key (k_1, k_2)
- 2^{88} online request to the NMAC oracle.
- 2¹⁰⁵ offline hash computations.

 2^{94} by using more than one bit of information per path.

G. Leurent

Introduction MD4 Wang's attack

Understand and automate

Sufficient conditions Step operation SC Algorithm Differential Path Message difference

Results

Collisions 2nd preimage NMAC Attack

Conclusion

Future work

Improving the algorithm

• Using ideas from Stevens et al. and Sasaki et al....

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

3

Other uses

• Try to find new kind of attack based on new types of path...