
Introduction Brute-force Differential Truncated differential Conclusion

Quantum Differential and Linear Cryptanalysis

Marc Kaplan1,2 Gaëtan Leurent3

Anthony Leverrier3 María Naya-Plasencia3

1LTCI, Télécom ParisTech

2School of Informatics, University of Edinburgh

3Inria Paris

FSE 2017

Kaplan, Leurent, Leverrier & Naya-Plasencia Quantum Differential and Linear Cryptanalysis FSE 2017 1 / 25



Introduction Brute-force Differential Truncated differential Conclusion

Motivation

What would be the impact of quantum computers
on symmetric cryptography?

I Some physicists think they can build quantum computers

I NSA thinks we need quantum-resistant crypto (or do they?)
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Introduction Brute-force Differential Truncated differential Conclusion

Expected impact of quantum computers
I Some problems can be solved much faster with quantum computers

I Up to exponential gains
I But we don’t expect to solve all NP problems

Impact on public-key cryptography

I RSA, DH, ECC broken by Shor’s algorithm
I Breaks factoring and discrete log in polynomial time
I Large effort to develop quantum-resistant algorithms (e.g. NIST)

Impact on symmetric cryptography

I Exhaustive search of a k-bit key in time 2k/2 with Grover’s algorithm
I Common recommendation: double the key length (AES-256)

I Encryption modes are secure [Unruh & al, PQC’16]
I Authentication modes broken by superposition queries [Crypto ’16]
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Overview of the talk
Main question

Is AES secure in a quantum setting?

I Symmetric design are evaluated with cryptanalysis:
I Differential (truncated, impossible, ...)
I Linear
I Integral
I Algebraic
I ...

I We should study quantum cryptanalysis!

I Start with classical techniques
I Do we get a quadratic speedup?
I Do we need a quantum encryption oracle?
I How are different cryptanalysis techniques affected?
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Security notions: Classical
I PRF security: given access to P/P−1, distinguishing E from random
I Classical setting: classical computations
I Classical security: classical queries
I Cipher broken by adversary with

I data� 2n
I time� 2k
I success > 3/4 P,P−1

x y

cipher / random
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Security notions: Quantum Q1
I PRF security: given access to P/P−1, distinguishing E from random
I Quantum setting: quantum computations
I Classical security: classical queries
I Cipher broken by adversary with

I data� 2n
I time� 2k/2

I success > 3/4 P,P−1

x y

cipher / random

Q
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Security notions: Quantum Q2
I PRF security: given access to P/P−1, distinguishing E from random
I Quantum setting: quantum computations
I Quantum security: quantum (superposition) queries
I Cipher broken by adversary with

I data� 2n
I time� 2k/2

I success > 3/4 P,P−1

∑x ψx|x〉|0〉 ∑x ψx|x〉|P(x)〉

cipher / random

Q

Kaplan, Leurent, Leverrier & Naya-Plasencia Quantum Differential and Linear Cryptanalysis FSE 2017 7 / 25



Introduction Brute-force Differential Truncated differential Conclusion

About the models
Q1 model: classical queries

I Build a quantum circuit from classical values
I Example: breaking RSA with Shor’s algorithm

Q2 model: superposition queries

I Access quantum circuit implementing the primitive with a secret key
I Example: breaking CBC-MAC with Simon’s algorithm

I The Q2 model is very strong for the adversary
I Simple and clean generalisation of classical oracle
I Aim for security in the strongest (non-trivial) model
I A Q2-secure block cipher is useful for security proofs of modes
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Grover’s algorithm
I Search for a marked element in a set X
I Set of marked elements M, with |M| ≥ ε · |X|

Classical algorithm

1: loop
2: x← SETUP() . Pick a random element in X, cost S
3: if CHECK(x) then . Check if it is marked, cost C
4: return x

I 1/ε repetitions expected
I Complexity (S+ C)/ε
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Grover’s algorithm
I Search for a marked element in a set X
I Set of marked elements M, with |M| ≥ ε · |X|

Grover Algorithm (as a quantum walk)

Quantum algorithm to find a marked element using:
I SETUP: builds a uniform superposition of inputs in X
I CHECK: applies a control-phase gate to the marked elements

I Only 1/
√

ε repetitions needed
I Complexity (S+ C)/

√
ε

I Can produce a uniform superposition of M
I Can provide an oracle without measuring (nesting)
I Variant to measure ε (quantum counting)
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Brute-force attack

I We can use Grover’s algorithm for a quantum brute-force key search

1 Capture a few known plaintext/ciphertext: Ci = Eκ∗(Pi)

2 SETUP: builds a uniform superposition of {0, 1}k S = 1
3 CHECK(κ): test whether Ci = Eκ(Pi) ε = 2−k,C = 1

I Complexity O(2k/2)
I Quadratic gain

I Uses the Q1 model
I Classical data (Ci,Pi)
I Quantum circuit independant of the secret key κ∗
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Differential distinguisher: classical

I Assume a differential δin, δout given, with

h := − log Pr
x
[E(x⊕ δin) = E(x)⊕ δout]� n,

Classical algorithm: search for right pairs

1: for 0 ≤ i < 2h do
2: x← RAND()
3: if E(x⊕ δin) = E(x)⊕ δout then
4: return cipher
5: return random

I Complexity O(2h)
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Differential distinguisher: quantum

I Assume a differential δin, δout given, with

h := − log Pr
x
[E(x⊕ δin) = E(x)⊕ δout]� n,

Quantum algorithm: Grover search for right pair

1 SETUP: builds a uniform superposition of {0, 1}n S = 1
2 CHECK(x): test whether E(x⊕ δin) = E(x)⊕ δout ε = 2−h,C = 1

I Complexity O(2h/2)
I Quadratic gain

I Uses the Q2 model
I Superposition queries to E with secret key
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Last-Round attack: classical

p = 2−h

p = 2−hout

δin

δout

Dfin

Classical algorithm

1: for 0 ≤ i < 2h do
2: x← RAND()
3: . Filter possible output differences
4: if E(x)⊕ E(x⊕ δin) ∈ Dfin then
5: Find last key candidates for (x, x⊕ δin)
6: Try all possibilities for remaining key bits

I Finding partial key candidates costs Ckout

I Between 1 and 2kout

I T = 2h + 2h−n+∆fin ·
(
Ckout + 2k−hout

)
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Last-Round attack: quantum Q2

p = 2−h

p = 2−hout

δin

δout

Dfin

Quantum algorithm: Grover search for right pair

1 SETUP: builds a uniform superposition of
X = {x : E(x)⊕ E(x⊕ δin) ∈ Dfin}
using nested Grover algorithm S = 2(n−∆fin)/2

2 CHECK(x): Find last key cand. for (x, x⊕ δin)
Run nested Grover over remaining key bits

ε = 2n−h−∆fin ,C = C∗kout
+ 2(k−hout)/2

I Repeat key recovery with right pair

I Finding partial key candidates costs C∗kout

I Between 1 and 2kout/2

I T = 2h/2 + 2(h−n+∆fin)/2 ·
(
C∗kout

+ 2(k−hout)/2
)
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Last-Round attack: quantum Q1

p = 2−h

p = 2−hout

δin

δout

Dfin

I Previous attack uses superposition queries
I Alternatively, make 2h classical queries

I Interesting if 2h < 2k/2

I E.g. AES-256

Quantum algorithm: Grover search for right pair

1 SETUP: builds superposition of classical data
using quantum memory S = 1

2 CHECK(x): same as Q2
ε = 2n−h−∆fin ,C = C∗kout

+ 2(k−hout)/2

I T = 2h + 2(h−n+∆fin)/2 ·
(
C∗kout

+ 2(k−hout)/2
)
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Truncated differential distinguisher: classical

I Assume vector spaces Din,Dout given (dim. ∆ in,∆out), with

h := − log Pr
x,δ∈Din

[E(x⊕ δ)⊕ E(x) ∈ Dout]� n−∆out,

Classical algorithm (using structures)

1: for 0 ≤ i < 2h−2∆ in do
2: x← RAND()
3: L← {E(x⊕ δ) : δ ∈ Din}
4: if ∃ y1, y2 ∈ L s.t. y1 ⊕ y2 ∈ Dout then
5: return cipher
6: return random

I Complexity O(2h−∆ in)
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Truncated differential distinguisher: quantum

I Assume vector spaces Din,Dout given (dim. ∆ in,∆out), with

h := − log Pr
x,δ∈Din

[E(x⊕ δ)⊕ E(x) ∈ Dout]� n−∆out,

Quantum algorithm: Grover search for structure with right pair

1 SETUP: builds a uniform superposition of {0, 1}n S = 1
2 CHECK(x): test whether ∃ y1, y2 ∈ x⊕Din s.t. y1 ⊕ y2 ∈ Dout

ε = 2−h+2∆ in ,C = ?

I Complexity O(2h/2−∆ in/3) — less than quadratic speedup
I Uses the Q2 model

I Superposition queries to E with secret key
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Finding collisions
I Fiding y1, y2 ∈ L s.t. y1 ⊕ y2 ∈ Dout: truncate and find collisions

Classical algorithm

1: SORT(L)
2: for 0 < i < |L| do
3: if L[i] = L[i+ 1] then return L[i]
4: return ⊥

I Complexity Õ(N)

Quantum algorithmic: Ambainis’ element distinctness

I Quantum walk algorithm to find collisions
I Complexity O(N2/3) — less than quadratic speedup!
I Uses memory O(N2/3)
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Truncated differential distinguisher: quantum

I Assume vector spaces Din,Dout given (dim. ∆ in,∆out), with

h := − log Pr
x,δ∈Din

[E(x⊕ δ)⊕ E(x) ∈ Dout]� n−∆out,

Quantum algorithm: Grover search for structure with right pair

1 SETUP: builds a uniform superposition of {0, 1}n S = 1
2 CHECK(x): test whether ∃ y1, y2 ∈ x⊕Din s.t. y1 ⊕ y2 ∈ Dout

ε = 2−h+2∆ in ,C = 22∆ in/3

I Complexity O(2h/2−∆ in/3) — less than quadratic speedup
I Uses the Q2 model

I Superposition queries to E with secret key
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Last-Round attack: classical

p = 2−h

p = 2−hout

Din

Dout

Dfin

Classical algorithm

1: for 0 ≤ i < 2h−2∆ in do
2: x← RAND()
3: L← {E(x⊕ δ) : δ ∈ Din}
4: . Filter possible output differences
5: if ∃ y1, y2 ∈ L s.t. y1 ⊕ y2 ∈ Dout then
6: Find last key candidates for (y1, y2)
7: Try all possibilities for remaining key bits

I Finding partial key candidates costs Ckout

I Between 1 and 2kout

I T = 2h−∆ in + 2h−n+∆fin ·
(
Ckout + 2k−hout

)
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Last-Round attack: quantum Q2

p = 2−h

p = 2−hout

Din

Dout

Dfin

Assume each structure has pairs with difference inDfin

Q2 algo: Grover search for structure with right pair

1 SETUP: unif. superposition S = 1, ε = 22∆ in−h

2 CHECK(x): Grover search over pairs in x⊕Din
1 SETUP: Ambainis to find pairs

with output in Dfin S′ = 2(n−∆fin)/3

2 CHECK(x1, x2): Find last key candidates
Run nested Grover over remaining key bits,

ε′ = 2−2∆ in+(n−∆fin),C′ = C∗kout
+ 2(k−hout)/2

C = 2∆ in−(n−∆fin)/6 + 2∆ in+(∆fin−n)/2
(
C∗kout

+ 2(k−hout)/2
)

I T = 2h/2−(n−∆fin)/6 +
2(h−n+∆fin)/2

(
C∗kout

+ 2(k−hout)/2
)
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Last-Round attack: quantum Q1

p = 2−h

p = 2−hout

Din

Dout

Dfin

I Alternatively, use classical queries
I Filter pairs with output in Dfin classically

Q1 algo: Grover search for structure with right pair

1 SETUP: builds superposition of classical data
using quantum memory S = 1

2 CHECK(x1, x2): Find last key candidates
Run nested Grover over remaining key bits

ε = 2n−h−∆fin ,C = C∗kout
+ 2(k−hout)/2

I T = 2h−∆ in + 2(h−n+∆fin)/2
(
C∗kout

+ 2(k−hout)/2
)

Kaplan, Leurent, Leverrier & Naya-Plasencia Quantum Differential and Linear Cryptanalysis FSE 2017 22 / 25



Introduction Brute-force Differential Truncated differential Conclusion

Summary: simplified complexities
I Simple differential distinguisher

DC = 2h DQ1 = 2h = DC DQ2 = 2h/2 =
√
DC

TC = 2h TQ1 = 2h = TC TQ2 = 2h/2 =
√
TC

I Simple differential LR attack
DC = 2h DQ1 = 2h = DC DQ2 = 2h/2 =

√
DC

TC = 2h + Ck TQ1 = 2h + C∗k TQ2 = 2h/2 + C∗k ≈
√
TC

I Truncated differential distinguisher
DC = 2h−∆ in DQ1 = 2h−∆ in = DC DQ2 = 2h/2−∆ in/3 >

√
DC

TC = 2h−∆ in TQ1 = 2h−∆ in = TC TQ2 = 2h/2−∆ in/3 >
√
TC

I Truncated differential LR attack Assuming > 1 filtered pairs / structure

DC = 2h−∆ in DQ1 = 2h−∆ in = DC DQ2 = 2h/2−(n−∆fin)/6 >
√
DC

TC = 2h−∆ in + Ck TQ1 = 2h−∆ in + C∗k TQ2 = 2h/2−(n−∆fin)/6 + C∗k >
√
TC
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Concrete examples

I Truncated differential attacks have less than quadratic speedup
I Can become worse than Grover key search (not an attack)
I The best quantum attack is not always

a quantum version of the best classical attack

LAC (reduced LBlock, n = 64)

I Differential with probability 2−61.5

I Classical distinguisher with complexity 262.5

I Quantum distinguisher with complexity 231.75

I Truncated differential with ∆ in = 12,∆out = 20, 2h = 2−44 + 2−55.3

I Classical distinguisher with complexity 260.9

I Quantum distinguisher with complexity 233.4
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Concrete examples

I Truncated differential attacks have less than quadratic speedup
I Can become worse than Grover key search (not an attack)
I The best quantum attack is not always

a quantum version of the best classical attack

KLEIN-64 (n = 64)

I Truncated differential with h = 69.5, ∆ in = 16, ∆fin = 32, k = 64,
kout = 32, hout = 45

I Classical attack with complexity 258.2

I Quantum attack with complexity > 232
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Concrete examples

I Truncated differential attacks have less than quadratic speedup
I Can become worse than Grover key search (not an attack)
I The best quantum attack is not always

a quantum version of the best classical attack

KLEIN-96 (n = 64)

I Truncated differential with h = 78, ∆ in = 32, ∆fin = 32, k = 96,
kout = 48, hout = 52

I Classical attack with complexity 290

I Q2 attack with complexity 247.3

I Q1 attack with complexity 247.96
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Conclusions

I We fixed some mistakes from the ToSC version
I Updated version on arXiv:1510.05836

I Quantification of classical attacks using Grover and Ambainis
I Differential, truncated differential and linear cryptanalysis

I “It’s complicated”
I Up to quadratic speedup

I If key search is the best classical attack,
Grover key search is the best quantum attack

I Data complexity can only be reduced using quantum queries
I Cipher with k > n are most likely to see quadratic speedup

I Attacks with classical queries (Q1 model) possible
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Bonus slide: Linear cryptanalysis

I Linear distinguisher

DC = 1/ε2 DQ1 = 1/ε2 = DC DQ2 = 1/ε =
√
DC

TC = 1/ε2 TQ1 = 1/ε2 = TC TQ2 = 1/ε =
√
TC

I Linear attack with ` r-round distinguishers (Matsui 1)

DC = 1/ε2 DQ1 = `/ε2 > DC DQ2 = `/ε >
√
DC

TC = `/ε2 + 2k−` TQ1 = `/ε2 + 2(k−`)/2 TQ2 = `/ε + 2(k−`)/2 >
√
TC

I Last-round linear attack (Matsui 2)

DC = 1/ε2 DQ1 = 1/ε2 = DC DQ2 = 2kout/2/ε >
√
DC

TC = Ck TQ1 = 1/ε2 +
√
Ck TQ2 =

√
Ck =

√
TC
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