ntroduction	Brute-force	Differential	Truncated differential	Conclusion

Quantum Differential and Linear Cryptanalysis

Marc Kaplan^{1,2} Gaëtan Leurent³ Anthony Leverrier³ María Naya-Plasencia³

¹LTCI, Télécom ParisTech

²School of Informatics, University of Edinburgh

³Inria Paris

FSE 2017

What would be the impact of quantum computers on symmetric cryptography?

Some physicists think they can build quantum computers

NSA thinks we need quantum-resistant crypto (or do they?)

What would be the impact of quantum computers on symmetric cryptography?

- Some physicists think they can build quantum computers
- NSA thinks we need quantum-resistant crypto (or do they?)

Brute-fe 00

Introduction

Differentia 00000 *Truncated differential* 0000000

Conclusion 000

Expected impact of quantum computers

Some problems can be solved much faster with quantum computers

- Up to exponential gains
- But we don't expect to solve all NP problems

Impact on public-key cryptography

- RSA, DH, ECC broken by Shor's algorithm
 - Breaks factoring and discrete log in polynomial time
 - Large effort to develop quantum-resistant algorithms (e.g. NIST)

Impact on symmetric cryptography

► Exhaustive search of a *k*-bit key in time 2^{*k*/2} with Grover's algorithm

- ▶ Common recommendation: double the key length (AES-256)
- Encryption modes are secure [Unruh & al, PQC'16]
 Authentiation modes broken by supercondition queries [Courts '16]

Brute-00

Introduction

Differentia 00000 *Truncated differential* 0000000

Conclusion 000

Expected impact of quantum computers

- Some problems can be solved much faster with quantum computers
 - Up to exponential gains
 - But we don't expect to solve all NP problems

Impact on public-key cryptography

- RSA, DH, ECC broken by Shor's algorithm
 - Breaks factoring and discrete log in polynomial time
 - Large effort to develop quantum-resistant algorithms (e.g. NIST)

Impact on symmetric cryptography

• Exhaustive search of a k-bit key in time $2^{k/2}$ with Grover's algorithm

- Common recommendation: double the key length (AES-256)
- Encryption modes are secure [Unruh & al, PQC'16]

Authentication modes broken by superposition queries [Crypto '16]

Brute-00

Introduction

Differentia 00000 *Truncated differential* 0000000

Conclusion 000

Expected impact of quantum computers

- Some problems can be solved much faster with quantum computers
 - Up to exponential gains
 - But we don't expect to solve all NP problems

Impact on public-key cryptography

- RSA, DH, ECC broken by Shor's algorithm
 - Breaks factoring and discrete log in polynomial time
 - Large effort to develop quantum-resistant algorithms (e.g. NIST)

Impact on symmetric cryptography

► Exhaustive search of a *k*-bit key in time 2^{*k*/2} with Grover's algorithm

- Common recommendation: double the key length (AES-256)
- Encryption modes are secure [Unruh & al, PQC'16]
- Authentication modes broken by superposition queries [Crypto '16]

Brute-

Introduction

Differentia 00000 *Truncated differential* 0000000

Conclusion 000

Expected impact of quantum computers

- Some problems can be solved much faster with quantum computers
 - Up to exponential gains
 - But we don't expect to solve all NP problems

Impact on public-key cryptography

- RSA, DH, ECC broken by Shor's algorithm
 - Breaks factoring and discrete log in polynomial time
 - Large effort to develop quantum-resistant algorithms (e.g. NIST)

Impact on symmetric cryptography

- ► Exhaustive search of a *k*-bit key in time 2^{*k*/2} with Grover's algorithm
 - Common recommendation: double the key length (AES-256)
- Encryption modes are secure [Unruh & al, PQC'16]
- Authentication modes broken by superposition queries [Crypto '16]

Introduction

Brute-force

Differential 00000 *Truncated differential* 0000000

Conclusion

Overview of the talk

Main question

Is AES secure in a quantum setting?

- Symmetric design are evaluated with cryptanalysis:
 - Differential (truncated, impossible, ...)
 - Linear
 - Integral
 - Algebraic
 - <u>ا ...</u>
- We should study quantum cryptanalysis!
- Start with classical techniques
 - Do we get a quadratic speedup?
 - Do we need a quantum encryption oracle?
 - How are different cryptanalysis techniques affected?

Security notions: Classical

- PRF security: given access to P/P^{-1} , distinguishing E from random
- Classical setting: classical computations
- Classical security: classical queries
- Cipher broken by adversary with
 - ▶ data ≪ 2ⁿ

Introduction

- time $\ll 2^k$
- success > 3/4

Brute-f 00

Introduction

Differentia 00000 *Truncated differential* 0000000

Conclusion 000

Security notions: Quantum Q1

- PRF security: given access to P/P^{-1} , distinguishing E from random
- Quantum setting: quantum computations
- Classical security: classical queries
- Cipher broken by adversary with
 - ▶ data ≪ 2ⁿ
 - ▶ time ≪ 2^{k/2}
 - success > 3/4

Brute-for 00

Introduction

Differential 00000 *Truncated differential* 0000000

Conclusion 000

Security notions: Quantum Q2

- PRF security: given access to P/P^{-1} , distinguishing E from random
- Quantum setting: quantum computations
- Quantum security: quantum (superposition) queries
- Cipher broken by adversary with
 - ▶ data ≪ 2ⁿ
 - ▶ time ≪ 2^{k/2}
 - success > 3/4

ntroduction	
00000000	

Differential 00000 *Truncated differential* 0000000

Conclusion

About the models

Q1 model: classical queries

- Build a quantum circuit from classical values
- Example: breaking RSA with Shor's algorithm

Q2 model: superposition queries

- Access quantum circuit implementing the primitive with a secret key
- Example: breaking CBC-MAC with Simon's algorithm
- The Q2 model is very strong for the adversary
 - Simple and clean generalisation of classical oracle
 - Aim for security in the strongest (non-trivial) model
 - A Q2-secure block cipher is useful for security proofs of modes

Introduction	Brute-force	Differential	Truncated differential	Conclusion
0000000				

Outline

Introduction

Quantum Computing

Brute-force Grover's algorithm

Differential

Distinguisher Last-round attack

Truncated differential

Distinguisher Last-round attack

Conclusion

Differential 00000 *Truncated differential* 0000000

Conclusion

Grover's algorithm

- Search for a marked element in a set X
- Set of marked elements *M*, with $|M| \ge \varepsilon \cdot |X|$

Classical algorithm

- 1: **loop**
- 2: $x \leftarrow \mathsf{Setup}()$
- 3: **if** CHECK(*x*) **then**
- 4: return x

Pick a random element in X, cost S
 Check if it is marked, cost C

- $1/\varepsilon$ repetitions expected
- Complexity $(S + C)/\varepsilon$

Differential

Truncated differential 0000000

Conclusion

Grover's algorithm

- Search for a marked element in a set X
- Set of marked elements *M*, with $|M| \ge \varepsilon \cdot |X|$

Grover Algorithm (as a quantum walk)

Quantum algorithm to find a marked element using:

- SETUP: builds a uniform superposition of inputs in X
- CHECK: applies a control-phase gate to the marked elements
- Only $1/\sqrt{\epsilon}$ repetitions needed
- Complexity $(S + C) / \sqrt{\varepsilon}$
- Can produce a uniform superposition of *M*
- Can provide an oracle without measuring (nesting)
- Variant to measure ε (quantum counting)

Differential

Truncated differential 0000000

Conclusion

Grover's algorithm

- Search for a marked element in a set X
- Set of marked elements *M*, with $|M| \ge \varepsilon \cdot |X|$

Grover Algorithm (as a quantum walk)

Quantum algorithm to find a marked element using:

- SETUP: builds a uniform superposition of inputs in X
- CHECK: applies a control-phase gate to the marked elements
- Only $1/\sqrt{\epsilon}$ repetitions needed
- Complexity $(S + C) / \sqrt{\varepsilon}$
- Can produce a uniform superposition of M
- Can provide an oracle without measuring (nesting)
- Variant to measure ε (quantum counting)

Brute-force attack

- ▶ We can use Grover's algorithm for a quantum brute-force key search
- **1** Capture a few known plaintext/ciphertext: $C_i = E_{\kappa^*}(P_i)$
- **2** SETUP: builds a uniform superposition of $\{0, 1\}^k$ S = 1
- 3 CHECK(κ): test whether $C_i = E_{\kappa}(P_i)$ $\varepsilon = 2^{-k}, C = 1$
- Complexity O(2^{k/2})
 - Quadratic gain
- Uses the Q1 model
 - Classical data (C_i, P_i)
 - Quantum circuit independant of the secret key κ^*

Introduction	Brute-force	Differential	<i>Truncated differential</i> 0000000	Conclusion
00000000	00	00000		000

Outline

Introduction

Quantum Computing

Brute-force Grover's algorithm

Differential Distinguisher Last-round attack

Truncated differential

Distinguisher Last-round attack

Conclusion

Differential ●○○○○ *Truncated differential* 0000000

Conclusion

Differential distinguisher: classical

• Assume a *differential* δ_{in} , δ_{out} given, with

$$h := -\log \Pr_{x}[E(x \oplus \delta_{in}) = E(x) \oplus \delta_{out}] \ll n,$$

Classical algorithm: search for right pairs

- 1: for $0 \le i < 2^h$ do
- 2: $x \leftarrow \mathsf{RAND}()$
- 3: **if** $E(x \oplus \delta_{in}) = E(x) \oplus \delta_{out}$ **then**
- 4: **return** cipher
- 5: **return** random
 - Complexity O(2^h)

Brut 00 *Differential* ○●○○○ *Truncated differential* 0000000

Conclusion

Differential distinguisher: quantum

• Assume a *differential* δ_{in} , δ_{out} given, with

$$h:=-\log\Pr_{x}[E(x\oplus\delta_{\mathrm{in}})=E(x)\oplus\delta_{\mathrm{out}}]\ll n,$$

Quantum algorithm: Grover search for right pair

- SETUP: builds a uniform superposition of {0,1}ⁿ
 CHECK(x): test whether E(x ⊕ δ_{in}) = E(x) ⊕ δ_{out}
 ε = 2^{-h}, C = 1
- Complexity O(2^{h/2})
 - Quadratic gain
- Uses the Q2 model
 - Superposition queries to E with secret key

uction	Br
0000	

Differential ○○●○○ *Truncated differentia*

Conclusion

Last-Round attack: classical

Differential 00000

Last-Round attack: quantum Q2

Kaplan, Leurent, Leverrier & Naya-Plasencia

Ouantum Differential and Linear Cryptanalysis

Kaplan, Leurent, Leverrier & Naya-Plasencia

Quantum Differential and Linear Cryptanalysis

FSE 2017 15 / 25

Introduction	Brute-force	Differential	Truncated differential	Conclusion

Outline

Introduction

Quantum Computing

Brute-force Grover's algorithm

D*ifferential* Distinguisher Last-round attack

Truncated differential Distinguisher Last-round attack

Conclusion

n Bru 0 00 D 0 *Truncated differential*

Truncated differential distinguisher: classical

• Assume vector spaces \mathcal{D}_{in} , \mathcal{D}_{out} given (dim. Δ_{in} , Δ_{out}), with

$$h:=-\log \Pr_{x,\delta\in\mathcal{D}_{\mathrm{in}}}[\mathsf{E}(x\oplus\delta)\oplus\mathsf{E}(x)\in\mathcal{D}_{\mathrm{out}}]\ll n-\Delta_{\mathrm{out}},$$

Classical algorithm (using structures)

1: for
$$0 \leq i < 2^{h-2\Delta_{in}}$$
 do

2:
$$x \leftarrow \mathsf{RAND}()$$

3:
$$L \leftarrow \{E(x \oplus \delta) : \delta \in \mathcal{D}_{in}\}$$

4: **if**
$$\exists y_1, y_2 \in L$$
 s.t. $y_1 \oplus y_2 \in \mathcal{D}_{out}$ **then**

5: **return** cipher

6: **return** random

 Differential
 Truncated differential

 00
 00
 00000

Truncated differential distinguisher: quantum

• Assume vector spaces \mathcal{D}_{in} , \mathcal{D}_{out} given (dim. Δ_{in} , Δ_{out}), with

$$h:=-\log \Pr_{x,\delta\in\mathcal{D}_{\mathrm{in}}}[\mathsf{E}(x\oplus\delta)\oplus\mathsf{E}(x)\in\mathcal{D}_{\mathrm{out}}]\ll n-\Delta_{\mathrm{out}},$$

Quantum algorithm: Grover search for structure with right pair

 SETUP: builds a uniform superposition of {0,1}ⁿ
 CHECK(x): test whether ∃y₁, y₂ ∈ x ⊕ D_{in} s.t. y₁ ⊕ y₂ ∈ D_{out} ε = 2<sup>-h+2Δ_{in}, C = ?
</sup>

17/25

Differential 00000 *Truncated differential* 000000

Conclusion 000

Finding collisions

▶ Fiding y_1 , $y_2 \in L$ s.t. $y_1 \oplus y_2 \in \mathcal{D}_{out}$: truncate and find collisions

Classical algorithm

- 1: **SORT**(*L*)
- 2: for 0 < i < |L| do
- 3: if L[i] = L[i+1] then return L[i]
- 4: return \perp
 - ► Complexity Õ(*N*)

Quantum algorithmic: Ambainis' element distinctness

- Quantum walk algorithm to find collisions
- Complexity O(N^{2/3}) less than quadratic speedup!
- ► Uses memory **O**(**N**^{2/3})

Kaplan, Leurent, Leverrier & Naya-Plasencia Quantum Differential and Linear Cryptanalysis

FSE 2017 18 / 25

Differential 00000 *Truncated differential* 000000

Conclusion 000

Finding collisions

▶ Fiding y_1 , $y_2 \in L$ s.t. $y_1 \oplus y_2 \in \mathcal{D}_{out}$: truncate and find collisions

Classical algorithm

- 1: **SORT**(*L*)
- 2: for 0 < i < |L| do
- 3: if L[i] = L[i+1] then return L[i]
- 4: return ⊥
 - ► Complexity Õ(N)

Quantum algorithmic: Ambainis' element distinctness

- Quantum walk algorithm to find collisions
- ► Complexity $O(N^{2/3})$ less than quadratic speedup!
- Uses memory O(N^{2/3})

n Brute-force Differential **Truncated differential**

Conclusion 000

Truncated differential distinguisher: quantum

• Assume vector spaces \mathcal{D}_{in} , \mathcal{D}_{out} given (dim. Δ_{in} , Δ_{out}), with

$$h := -\log \Pr_{x, \delta \in \mathcal{D}_{in}} [E(x \oplus \delta) \oplus E(x) \in \mathcal{D}_{out}] \ll n - \Delta_{out},$$

Quantum algorithm: Grover search for structure with right pair

I SETUP: builds a uniform superposition of $\{0, 1\}^n$ S = 12 CHECK(x): test whether $\exists y_1, y_2 \in x \oplus \mathcal{D}_{in}$ s.t. $y_1 \oplus y_2 \in \mathcal{D}_{out}$ $\varepsilon = 2^{-h+2\Delta_{in}}, C = 2^{2\Delta_{in}/3}$

- Complexity $O(2^{h/2-\Delta_{in}/3})$ less than quadratic speedup
- Uses the Q2 model
 - Superposition queries to E with secret key

duction	
00000	

Differential 00000 *Truncated differential*

Conclusion

Last-Round attack: classical

Kaplan, Leurent, Leverrier & Naya-Plasencia

Quantum Differential and Linear Cryptanalysis

FSE 2017 20 / 25

Kaplan, Leurent, Leverrier & Naya-Plasencia

Quantum Differential and Linear Cryptanalysis

FSE 2017 21/25

Kaplan, Leurent, Leverrier & Naya-Plasencia

Quantum Differential and Linear Cryptanalysis

FSE 2017 22 / 25

Brute-foi 00 Differential 00000 Truncated differential

Conclusion

Summary: simplified complexities

Simple differential distinguisher

- $D_{C} = 2^{h} \qquad D_{Q1} = 2^{h} = D_{C} \qquad D_{Q2} = 2^{h/2} = \sqrt{D_{C}}$ $T_{C} = 2^{h} \qquad T_{Q1} = 2^{h} = T_{C} \qquad T_{Q2} = 2^{h/2} = \sqrt{T_{C}}$
- Simple differential LR attack

$$D_{C} = 2^{h} \qquad D_{Q1} = 2^{h} = D_{C} \qquad D_{Q2} = 2^{h/2} = \sqrt{D_{C}}$$

$$T_{C} = 2^{h} + C_{k} \qquad T_{Q1} = 2^{h} + C_{k}^{*} \qquad T_{Q2} = 2^{h/2} + C_{k}^{*} \approx \sqrt{T_{C}}$$

Truncated differential distinguisher

$$D_{C} = 2^{h-\Delta_{in}} \quad D_{Q1} = 2^{h-\Delta_{in}} = D_{C} \quad D_{Q2} = 2^{h/2-\Delta_{in}/3} > \sqrt{D_{C}}$$
$$T_{C} = 2^{h-\Delta_{in}} \quad T_{Q1} = 2^{h-\Delta_{in}} = T_{C} \quad T_{Q2} = 2^{h/2-\Delta_{in}/3} > \sqrt{T_{C}}$$

► Truncated differential LR attack Assuming > 1 filtered pairs / structure

$$D_{C} = 2^{h-\Delta_{in}} \qquad D_{Q1} = 2^{h-\Delta_{in}} = D_{C} \qquad D_{Q2} = 2^{h/2-(n-\Delta_{fin})/6} > \sqrt{D_{C}}$$
$$T_{C} = 2^{h-\Delta_{in}} + C_{k} \qquad T_{Q1} = 2^{h-\Delta_{in}} + C_{k}^{*} \qquad T_{Q2} = 2^{h/2-(n-\Delta_{fin})/6} + C_{k}^{*} > \sqrt{T_{C}}$$

Brute-force Differential Truncated differential 00 00000 000000

Conclusion

Concrete examples

- Truncated differential attacks have less than quadratic speedup
- Can become worse than Grover key search (not an attack)
- The best quantum attack is not always a quantum version of the best classical attack

LAC (reduced LBlock, n = 64)

- Differential with probability 2^{-61.5}
 - Classical distinguisher with complexity 2^{62.5}
 - Quantum distinguisher with complexity 2^{31.75}
- Truncated differential with $\Delta_{in} = 12$, $\Delta_{out} = 20$, $2^h = 2^{-44} + 2^{-55.3}$
 - Classical distinguisher with complexity 2^{60.9}
 - Quantum distinguisher with complexity 2^{33.4}

Brute-force Differential Truncated differential 00 00000 000000

Concrete examples

- Truncated differential attacks have less than quadratic speedup
- Can become worse than Grover key search (not an attack)
- The best quantum attack is not always a quantum version of the best classical attack

KLEIN-64 (n = 64)

- ► Truncated differential with h = 69.5, Δ_{in} = 16, Δ_{fin} = 32, k = 64, k_{out} = 32, h_{out} = 45
 - Classical attack with complexity 2^{58.2}
 - Quantum attack with complexity > 2³²

Conclusion

Brute-force Differential Truncated differential 00 00000 000000

Concrete examples

- Truncated differential attacks have less than quadratic speedup
- Can become worse than Grover key search (not an attack)
- The best quantum attack is not always a quantum version of the best classical attack

KLEIN-96 (*n* = 64)

- Truncated differential with h = 78, Δ_{in} = 32, Δ_{fin} = 32, k = 96, k_{out} = 48, h_{out} = 52
 - Classical attack with complexity 2⁹⁰
 - Q2 attack with complexity 2^{47.3}
 - Q1 attack with complexity 2^{47.96}

Conclusion

Introduction	Brute-force	Differential	Truncated differential	Conclusion
	00	00000	0000000	○○●

Conclusions

- We fixed some mistakes from the ToSC version
 - Updated version on arXiv:1510.05836
- Quantification of classical attacks using Grover and Ambainis
 - Differential, truncated differential and linear cryptanalysis
- "It's complicated"
- Up to quadratic speedup
 - If key search is the best classical attack, Grover key search is the best quantum attack
- Data complexity can only be reduced using quantum queries
- Cipher with k > n are most likely to see quadratic speedup
 - Attacks with classical queries (Q1 model) possible

Bonus slide: Linear cryptanalysis

Linear distinguisher

$$D_C = 1/\epsilon^2 \qquad D_{Q1} = 1/\epsilon^2 = D_C \qquad D_{Q2} = 1/\epsilon = \sqrt{D_C}$$

$$T_C = 1/\epsilon^2 \qquad T_{Q1} = 1/\epsilon^2 = T_C \qquad T_{Q2} = 1/\epsilon = \sqrt{T_C}$$

• Linear attack with ℓ *r*-round distinguishers (Matsui 1)

$$D_{C} = 1/\varepsilon^{2} \qquad D_{Q1} = \ell/\varepsilon^{2} > D_{C} \qquad D_{Q2} = \ell/\varepsilon > \sqrt{D_{C}}$$

$$T_{C} = \ell/\varepsilon^{2} + 2^{k-\ell} \qquad T_{Q1} = \ell/\varepsilon^{2} + 2^{(k-\ell)/2} \qquad T_{Q2} = \ell/\varepsilon + 2^{(k-\ell)/2} > \sqrt{T_{C}}$$

Last-round linear attack (Matsui 2)

$$D_C = 1/\varepsilon^2 \qquad D_{Q1} = 1/\varepsilon^2 = D_C \qquad D_{Q2} = \frac{2^{k_{out}/2}}{\varepsilon} > \sqrt{D_C}$$
$$T_C = C_k \qquad T_{Q1} = 1/\varepsilon^2 + \sqrt{C_k} \qquad T_{Q2} = \sqrt{C_k} = \sqrt{T_C}$$