Quantum Differential and Linear Cryptanalysis

Marc Kaplan ${ }^{1,2} \quad$ Gaëtan Leurent ${ }^{3}$
 Anthony Leverrier ${ }^{3}$ María Naya-Plasencia ${ }^{3}$

${ }^{1}$ LTCI, Télécom ParisTech
${ }^{2}$ School of Informatics, University of Edinburgh
${ }^{3}$ Inria Paris

FSE 2017

Motivation

What would be the impact of quantum computers on symmetric cryptography?

- Some physicists think they can build quantum computers
- NSA thinks we need quantum-resistant crypto (or do they?)

Motivation

What would be the impact of quantum computers on symmetric cryptography?

- Some physicists think they can build quantum computers
- NSA thinks we need quantum-resistant crypto (or do they?)

Expected impact of quantum computers

- Some problems can be solved much faster with quantum computers
- Up to exponential gains
- But we don't expect to solve all NP problems
- RSA, DH, ECC broken by Shor's algorithm
- Breaks factoring and discrete log in polynomial time
* Large effort to develop quantum-resistant algorithms (e.g. NIST)

Expected impact of quantum computers

- Some problems can be solved much faster with quantum computers
- Up to exponential gains
- But we don't expect to solve all NP problems

Impact on public-key cryptography

- RSA, DH, ECC broken by Shor's algorithm
- Breaks factoring and discrete log in polynomial time
- Large effort to develop quantum-resistant algorithms (e.g. NIST)

Expected impact of quantum computers

- Some problems can be solved much faster with quantum computers
- Up to exponential gains
- But we don't expect to solve all NP problems

Impact on public-key cryptography

- RSA, DH, ECC broken by Shor's algorithm
- Breaks factoring and discrete log in polynomial time
- Large effort to develop quantum-resistant algorithms (e.g. NIST)

Impact on symmetric cryptography

- Exhaustive search of a k-bit key in time $2^{k / 2}$ with Grover's algorithm
- Common recommendation: double the key length (AES-256)
- Encryption modes are secure
- Authentication modes broken by superposition queries [Crypto '16]

Expected impact of quantum computers

- Some problems can be solved much faster with quantum computers
- Up to exponential gains
- But we don't expect to solve all NP problems

Impact on public-key cryptography

- RSA, DH, ECC broken by Shor's algorithm
- Breaks factoring and discrete log in polynomial time
- Large effort to develop quantum-resistant algorithms (e.g. NIST)

Impact on symmetric cryptography

- Exhaustive search of a k-bit key in time $2^{k / 2}$ with Grover's algorithm
- Common recommendation: double the key length (AES-256)
- Encryption modes are secure
[Unruh \& al, PQC'16]
- Authentication modes broken by superposition queries [Crypto '16]

Overview of the talk

Main question

Is AES secure in a quantum setting?

- Symmetric design are evaluated with cryptanalysis:
- Differential (truncated, impossible, ...)
- Linear
- Integral
- Algebraic
- ...
- We should study quantum cryptanalysis!
- Start with classical techniques
- Do we get a quadratic speedup?
- Do we need a quantum encryption oracle?
- How are different cryptanalysis techniques affected?

Security notions: Classical

- PRF security: given access to P / P^{-1}, distinguishing E from random
- Classical setting: classical computations
- Classical security: classical queries
- Cipher broken by adversary with
- data $\ll 2^{n}$
- time $\ll 2^{k}$
- success $>3 / 4$

Security notions: Quantum Q1

- PRF security: given access to P / P^{-1}, distinguishing E from random
- Quantum setting: quantum computations
- Classical security: classical queries
- Cipher broken by adversary with
- data $\ll 2^{n}$
- time $\ll 2^{k / 2}$
- success $>3 / 4$

Security notions: Quantum Q2

- PRF security: given access to P / P^{-1}, distinguishing E from random
- Quantum setting: quantum computations
- Quantum security: quantum (superposition) queries
- Cipher broken by adversary with
- data $\ll 2^{n}$
- time $\ll 2^{k / 2}$
- success $>3 / 4$

About the models

Q1 model: classical queries

- Build a quantum circuit from classical values
- Example: breaking RSA with Shor's algorithm

Q2 model: superposition queries

- Access quantum circuit implementing the primitive with a secret key
- Example: breaking CBC-MAC with Simon's algorithm
- The Q2 model is very strong for the adversary
- Simple and clean generalisation of classical oracle
- Aim for security in the strongest (non-trivial) model
- A Q2-secure block cipher is useful for security proofs of modes

Outline

Introduction
 Quantum Computing

Brute-force
Grover's algorithm
Differential
Distinguisher
Last-round attack
Truncated differential
Distinguisher
Last-round attack
Conclusion

Grover's algorithm

- Search for a marked element in a set X
- Set of marked elements M, with $|M| \geq \varepsilon \cdot|X|$

Classical algorithm

1: loop

2: $\quad x \leftarrow \operatorname{SETUP}()$
3: if $\operatorname{CHECK}(x)$ then
\triangleright Pick a random element in X, cost S
4: return x
\triangleright Check if it is marked, cost C

- $1 / \varepsilon$ repetitions expected
- Complexity $(S+C) / \varepsilon$

Grover's algorithm

- Search for a marked element in a set X
- Set of marked elements M, with $|M| \geq \varepsilon \cdot|X|$

Grover Algorithm (as a quantum walk)

Quantum algorithm to find a marked element using:

- Setup: builds a uniform superposition of inputs in X
- CHECK: applies a control-phase gate to the marked elements
- Only $1 / \sqrt{\varepsilon}$ repetitions needed
- Complexity $(S+C) / \sqrt{\varepsilon}$
- Can produce a uniform superposition of M
- Can provide an oracle without measuring (nesting)
- Variant to measure ε (quantum counting)

Grover's algorithm

- Search for a marked element in a set X
- Set of marked elements M, with $|M| \geq \varepsilon \cdot|X|$

Grover Algorithm (as a quantum walk)

Quantum algorithm to find a marked element using:

- Setup: builds a uniform superposition of inputs in X
- CHECK: applies a control-phase gate to the marked elements
- Only $1 / \sqrt{\varepsilon}$ repetitions needed
- Complexity $(S+C) / \sqrt{\varepsilon}$
- Can produce a uniform superposition of M
- Can provide an oracle without measuring (nesting)
- Variant to measure ε (quantum counting)

Brute-force attack

- We can use Grover's algorithm for a quantum brute-force key search

1 Capture a few known plaintext/ciphertext: $C_{i}=E_{\kappa^{*}}\left(P_{i}\right)$
2 SETUP: builds a uniform superposition of $\{0,1\}^{k} \quad S=1$
$3 \operatorname{CHECK}(\kappa)$: test whether $C_{i}=E_{\kappa}\left(P_{i}\right)$

$$
\varepsilon=2^{-k}, C=1
$$

- Complexity $O\left(2^{k / 2}\right)$
- Quadratic gain
- Uses the Q1 model
- Classical data (C_{i}, P_{i})
- Quantum circuit independant of the secret key κ^{*}

Differential

Outline

Introduction

Quantum Computing

Brute-force
Grover's algorithm

Differential

Distinguisher Last-round attack

Truncated differential Distinguisher Last-round attack Conclusion

Differential distinguisher: classical

- Assume a differential $\delta_{\text {in }}, \delta_{\text {out }}$ given, with

$$
h:=-\log \operatorname{Pr}_{x}\left[E\left(x \oplus \delta_{\text {in }}\right)=E(x) \oplus \delta_{\text {out }}\right] \ll n,
$$

Classical algorithm: search for right pairs
1: for $0 \leq i<2^{h}$ do
2: $\quad x \leftarrow \operatorname{RAND}()$
3: \quad if $E\left(x \oplus \delta_{\text {in }}\right)=E(x) \oplus \delta_{\text {out }}$ then
4: return cipher
5: return random

- Complexity $O\left(2^{h}\right)$

Differential distinguisher: quantum

- Assume a differential $\delta_{\text {in }}, \delta_{\text {out }}$ given, with

$$
h:=-\log \operatorname{Pr}_{x}\left[E\left(x \oplus \delta_{\text {in }}\right)=E(x) \oplus \delta_{\text {out }}\right] \ll n,
$$

Quantum algorithm: Grover search for right pair
1 SETUP: builds a uniform superposition of $\{0,1\}^{n} \quad S=1$
2 CHECK (x) : test whether $E\left(x \oplus \delta_{\text {in }}\right)=E(x) \oplus \delta_{\text {out }} \quad \varepsilon=2^{-h}, C=1$

- Complexity $O\left(2^{h / 2}\right)$
- Quadratic gain
- Uses the Q2 model
- Superposition queries to E with secret key

Last-Round attack: classical

$p=2^{-h_{\text {out }}}$

- Finding partial key candidates costs $C_{k_{\text {out }}}$
- Between 1 and $2^{k_{\text {out }}}$

Last-Round attack: quantum Q2

$$
p=2^{-h}
$$

Quantum algorithm: Grover search for right pair

1 Setup: builds a uniform superposition of $X=\left\{x: E(x) \oplus E\left(x \oplus \delta_{\text {in }}\right) \in \mathcal{D}_{\text {fin }}\right\}$ using nested Grover algorithm $S=2^{\left(n-\Delta_{\text {fin }}\right) / 2}$
$\boxed{2}$ СнесК (x) : Find last key cand. for $\left(x, x \oplus \delta_{\text {in }}\right)$ Run nested Grover over remaining key bits

$$
\varepsilon=2^{n-h-\Delta_{\text {fin }}}, C=C_{k_{\text {out }}}^{*}+2^{\left(k-h_{\text {out }}\right) / 2}
$$

- Repeat key recovery with right pair

$$
p=2^{-h_{\text {out }}}
$$

- Finding partial key candidates costs $C_{k_{\text {out }}}^{*}$
- Between 1 and $2^{k o u t / 2}$

Last-Round attack: quantum Q1

- Previous attack uses superposition queries
- Alternatively, make 2^{h} classical queries
- Interesting if $2^{h}<2^{k / 2}$
- E.g. AES-256

$p=2^{-h}$ Quantum algorithm: Grover search for right pair

1 SETUP: builds superposition of classical data using quantum memory $\quad S=1$
$2 \operatorname{Check}(x)$: same as Q2

$$
\varepsilon=2^{n-h-\Delta_{\text {fin }}}, C=C_{k_{\text {out }}}^{*}+2^{\left(k-h_{\text {out }}\right) / 2}
$$

$$
p=2^{-h_{\text {out }}}
$$

$$
T=2^{h}+2^{\left(h-n+\Delta_{\text {fin }}\right) / 2} \cdot\left(C_{k_{\text {out }}}^{*}+2^{\left(k-h_{\text {out }}\right) / 2}\right)
$$

Outline

Introduction

Quantum Computing

Brute-force
Grover's algorithm
Differential
Distinguisher
Last-round attack
Truncated differential
Distinguisher Last-round attack

Conclusion

Truncated differential distinguisher: classical

- Assume vector spaces $\mathcal{D}_{\text {in }}, \mathcal{D}_{\text {out }}$ given $\left(\operatorname{dim} . \Delta_{\text {in }}, \Delta_{\text {out }}\right)$, with

$$
h:=-\log \operatorname{Pr}_{x, \delta \in \mathcal{D}_{\text {in }}}\left[E(x \oplus \delta) \oplus E(x) \in \mathcal{D}_{\text {out }}\right] \ll n-\Delta_{\text {out }}
$$

Classical algorithm (using structures)

1: for $0 \leq i<2^{h-2 \Delta_{\text {in }}}$ do
2: $\quad x \leftarrow \operatorname{RAND}()$
3: $\quad L \leftarrow\left\{E(x \oplus \delta): \delta \in \mathcal{D}_{\text {in }}\right\}$
4: \quad if $\exists y_{1}, y_{2} \in L$ s.t. $y_{1} \oplus y_{2} \in \mathcal{D}_{\text {out }}$ then
5: return cipher
6: return random

- Complexity $O\left(2^{h-\Delta_{\text {in }}}\right)$

Truncated differential distinguisher: quantum

- Assume vector spaces $\mathcal{D}_{\text {in }}, \mathcal{D}_{\text {out }}$ given ($\operatorname{dim} . \Delta_{\text {in }}, \Delta_{\text {out }}$), with

$$
h:=-\log \operatorname{Pr}_{x, \delta \in \mathcal{D}_{\text {in }}}\left[E(x \oplus \delta) \oplus E(x) \in \mathcal{D}_{\text {out }}\right] \ll n-\Delta_{\text {out }}
$$

Quantum algorithm: Grover search for structure with right pair
1 Setup: builds a uniform superposition of $\{0,1\}^{n} \quad S=1$
$2 \operatorname{CHECK}(x)$: test whether $\exists y_{1}, y_{2} \in x \oplus \mathcal{D}_{\text {in }}$ s.t. $y_{1} \oplus y_{2} \in \mathcal{D}_{\text {out }}$

$$
\varepsilon=2^{-h+2 \Delta_{\text {in }}}, C=?
$$

Finding collisions

- Fiding $y_{1}, y_{2} \in L$ s.t. $y_{1} \oplus y_{2} \in \mathcal{D}_{\text {out }}$: truncate and find collisions

Classical algorithm

1: SORT(L)
2: for $0<i<|L|$ do
3: \quad if $L[i]=L[i+1]$ then return $L[i]$
4: return \perp

- Complexity $\tilde{O}(N)$
- Quantum walk algorithm to find collisions

Finding collisions

- Fiding $y_{1}, y_{2} \in L$ s.t. $y_{1} \oplus y_{2} \in \mathcal{D}_{\text {out }}$: truncate and find collisions

Classical algorithm

1: SORT(L)
2: for $0<i<|L|$ do
3: \quad if $L[i]=L[i+1]$ then return $L[i]$
4: return \perp

- Complexity Õ (N)

Quantum algorithmic: Ambainis' element distinctness

- Quantum walk algorithm to find collisions
- Complexity $\mathrm{O}\left(\mathrm{N}^{2 / 3}\right)$ - less than quadratic speedup!
- Uses memory $O\left(N^{2 / 3}\right)$

Truncated differential distinguisher: quantum

- Assume vector spaces $\mathcal{D}_{\text {in }}, \mathcal{D}_{\text {out }}$ given ($\operatorname{dim} . \Delta_{\text {in }}, \Delta_{\text {out }}$), with

$$
h:=-\log \operatorname{Pr}_{x, \delta \in \mathcal{D}_{\text {in }}}\left[E(x \oplus \delta) \oplus E(x) \in \mathcal{D}_{\text {out }}\right] \ll n-\Delta_{\text {out }}
$$

Quantum algorithm: Grover search for structure with right pair
1 Setup: builds a uniform superposition of $\{0,1\}^{n} \quad S=1$
$2 \operatorname{CHECK}(x)$: test whether $\exists y_{1}, y_{2} \in x \oplus \mathcal{D}_{\text {in }}$ s.t. $y_{1} \oplus y_{2} \in \mathcal{D}_{\text {out }}$

$$
\varepsilon=2^{-h+2 \Delta_{\text {in }}}, C=2^{2 \Delta_{\text {in }} / 3}
$$

- Complexity $O\left(2^{h / 2-\Delta_{\text {in }} / 3}\right)$ - less than quadratic speedup
- Uses the Q2 model
- Superposition queries to E with secret key

Last-Round attack: classical

$$
p=2^{-h_{\text {out }}}
$$

Kaplan, Leurent, Leverrier \& Naya-Plasencia
6:

Classical algorithm

1: for $0 \leq i<2^{h-2 \Delta_{\text {in }}}$ do
2: $\quad x \leftarrow \operatorname{RAND}()$
3: $\quad L \leftarrow\left\{E(x \oplus \delta): \delta \in \mathcal{D}_{\text {in }}\right\}$
4: $\quad \triangleright$ Filter possible output differences
5: \quad if $\exists y_{1}, y_{2} \in L$ s.t. $y_{1} \oplus y_{2} \in \mathcal{D}_{\text {out }}$ then Find last key candidates for $\left(y_{1}, y_{2}\right)$
7: Try all possibilities for remaining key bits

- Finding partial key candidates costs $C_{k_{\text {out }}}$
- Between 1 and $2^{k_{\text {out }}}$

$$
\underset{\text { Quantum Differential and Linear Cryptanalysis }}{-T=2^{h-\Delta_{\text {in }}}+2^{h-n+\Delta_{\text {fin }}} \cdot\left(C_{k_{\text {out }}}+2_{\text {FSE } 2017}^{k-h_{\text {out }}}\right), ~}
$$

Last-Round attack: quantum Q2

$\overline{-}$ Assume each structure has pairs with difference in $\mathcal{D}_{\text {fin }}$
Q2 algo: Grover search for structure with right pair

$$
p=2^{-h} \quad \approx \text { CHECK }(x) \text { : Grover search over pairs in } x \oplus \mathcal{D}_{\text {in }}
$$

1 Setup: Ambainis to find pairs

$$
\text { with output in } \mathcal{D}_{\text {fin }} \quad S^{\prime}=2^{\left(n-\Delta_{\text {fin }}\right) / 3}
$$

$2 \operatorname{CHECK}\left(x_{1}, x_{2}\right)$: Find last key candidates Run nested Grover over remaining key bits,

$$
\begin{aligned}
& \varepsilon^{\prime}=2^{-2 \Delta_{\text {in }}+\left(n-\Delta_{\text {fin }}\right)}, C^{\prime}=C_{k_{\text {out }}}^{*}+2^{\left(k-h_{\text {out }}\right) / 2} \\
& \hat{\vdots}=2^{\Delta_{\text {in }}-\left(n-\Delta_{\text {fin }}\right) / 6}+2^{\Delta_{\text {in }}+\left(\Delta_{\text {fin }}-n\right) / 2}\left(C_{k_{\text {out }}^{*}}^{*}+2^{\left(k-h_{\text {out }}\right) / 2}\right) \\
&
\end{aligned}
$$

$$
p=2^{-h}
$$

- $T=2^{h / 2-\left(n-\Delta_{\text {fin }}\right) / 6}+$
$2^{\left(h-n+\Delta_{\text {fin }}\right) / 2}\left(C_{k_{\text {out }}}^{*}+2^{\left(k-h_{\text {out }}\right) / 2}\right)$
Kaplan, Leurent, Leverrier \& Naya-Plasencia

Last-Round attack: quantum Q1

- Alternatively, use classical queries
- Filter pairs with output in $\mathcal{D}_{\text {fin }}$ classically

Q1 algo: Grover search for structure with right pair

$$
p=2^{-h}
$$

1 Setup: builds superposition of classical data using quantum memory
2 СнесК (x_{1}, x_{2}): Find last key candidates Run nested Grover over remaining key bits

$$
\varepsilon=2^{n-h-\Delta_{\text {fin }}}, C=C_{k_{\text {out }}}^{*}+2^{\left(k-h_{\text {out }}\right) / 2}
$$

$$
p=2^{-h_{\text {out }}}
$$

Summary: simplified complexities

- Simple differential distinguisher

$$
\begin{aligned}
D_{C}=2^{h} & D_{\mathrm{Q} 1}=2^{h}=D_{C} & D_{\mathrm{Q} 2}=2^{h / 2}=\sqrt{D_{C}} \\
T_{C}=2^{h} & T_{\mathrm{Q} 1}=2^{h}=T_{C} & T_{\mathrm{Q} 2}=2^{h / 2}=\sqrt{T_{C}}
\end{aligned}
$$

- Simple differential LR attack

$$
\begin{aligned}
D_{C} & =2^{h} & D_{\mathrm{Q} 1} & =2^{h}=D_{C}
\end{aligned} \quad D_{\mathrm{Q} 2}=2^{h / 2}=\sqrt{D_{C}} .
$$

- Truncated differential distinguisher

$$
\begin{aligned}
D_{C} & =2^{h-\Delta_{\text {in }}} & D_{\mathrm{Q} 1} & =2^{h-\Delta_{\text {in }}}=D_{C}
\end{aligned} \quad D_{\mathrm{Q} 2}=2^{h / 2-\Delta_{\text {in }} / 3}>\sqrt{D_{C}}
$$

- Truncated differential LR attack Assuming >1 filtered pairs / structure

$$
\begin{aligned}
D_{C} & =2^{h-\Delta_{\text {in }}} & D_{\mathrm{Q} 1} & =2^{h-\Delta_{\text {in }}}=D_{C}
\end{aligned} \quad D_{\mathrm{Q} 2}=2^{h / 2-\left(n-\Delta_{\mathrm{fin}}\right) / 6}>\sqrt{D_{C}} .
$$

Concrete examples

- Truncated differential attacks have less than quadratic speedup
- Can become worse than Grover key search (not an attack)
- The best quantum attack is not always a quantum version of the best classical attack

LAC (reduced LBlock, $n=64$)

- Differential with probability $2^{-61.5}$
- Classical distinguisher with complexity $2^{62.5}$
- Quantum distinguisher with complexity $2^{31.75}$
- Truncated differential with $\Delta_{\text {in }}=12, \Delta_{\text {out }}=20,2^{h}=2^{-44}+2^{-55.3}$
- Classical distinguisher with complexity $2^{60.9}$
- Quantum distinguisher with complexity $2^{33.4}$

Concrete examples

- Truncated differential attacks have less than quadratic speedup
- Can become worse than Grover key search (not an attack)
- The best quantum attack is not always a quantum version of the best classical attack

KLEIN-64 ($n=64$)

- Truncated differential with $h=69.5, \Delta_{\text {in }}=16, \Delta_{\text {fin }}=32, k=64$, $k_{\text {out }}=32, h_{\text {out }}=45$
- Classical attack with complexity $2^{58.2}$
- Quantum attack with complexity $>2^{32}$

Concrete examples

- Truncated differential attacks have less than quadratic speedup
- Can become worse than Grover key search (not an attack)
- The best quantum attack is not always a quantum version of the best classical attack

KLEIN-96 ($n=64$)

- Truncated differential with $h=78, \Delta_{\text {in }}=32, \Delta_{\text {fin }}=32, k=96$, $k_{\text {out }}=48, h_{\text {out }}=52$
- Classical attack with complexity 2^{90}
- Q2 attack with complexity $2^{47.3}$
- Q1 attack with complexity $2^{47.96}$

Conclusions

- We fixed some mistakes from the ToSC version
- Updated version on arXiv:1510.05836
- Quantification of classical attacks using Grover and Ambainis
- Differential, truncated differential and linear cryptanalysis
- "It's complicated"
- Up to quadratic speedup
- If key search is the best classical attack,

Grover key search is the best quantum attack

- Data complexity can only be reduced using quantum queries
- Cipher with $k>n$ are most likely to see quadratic speedup
- Attacks with classical queries (Q1 model) possible

Bonus slide: Linear cryptanalysis

- Linear distinguisher

$$
\begin{aligned}
D_{C} & =1 / \varepsilon^{2} & D_{\mathrm{Q} 1} & =1 / \varepsilon^{2}=D_{C}
\end{aligned} \quad D_{\mathrm{Q}^{2}}=1 / \varepsilon=\sqrt{D_{C}}
$$

- Linear attack with ℓr-round distinguishers (Matsui 1)

$$
\begin{aligned}
D_{C} & =1 / \varepsilon^{2} & D_{\mathrm{Q} 1} & =\ell / \varepsilon^{2}>D_{C}
\end{aligned} \quad D_{\mathrm{Q} 2}=\ell / \varepsilon>\sqrt{D_{C}} .
$$

- Last-round linear attack (Matsui 2)

$$
\begin{aligned}
D_{C} & =1 / \varepsilon^{2} & D_{\mathrm{Q} 1}=1 / \varepsilon^{2}=D_{C} & D_{\mathrm{Q} 2}=2^{k_{\mathrm{out}} / 2} / \varepsilon>\sqrt{D_{C}} \\
T_{C} & =C_{k} & T_{\mathrm{Q} 1}=1 / \varepsilon^{2}+\sqrt{C_{k}} & T_{\mathrm{Q} 2}=\sqrt{C_{k}}=\sqrt{T_{C}}
\end{aligned}
$$

