Breaking Symmetric Cryptosystems Using Quantum Algorithms

Gaëtan Leurent

Joined work with:
Marc Kaplan Anthony Leverrier María Naya-Plasencia

Inria, France

FOQUS Workshop

Motivation

What would be the impact of quantum computers on symmetric cryptography?

- Some physicists think they can build quantum computers
- NSA thinks we need quantum-resistant crypto (or do they?)

Motivation

What would be the impact of quantum computers on symmetric cryptography?

- Some physicists think they can build quantum computers
- NSA thinks we need quantum-resistant crypto (or do they?)

Expected impact of quantum computers

- Some problems can be solved much faster with quantum computers
- Up to exponential gains
- But we don't expect to solve all NP problems
- RSA, DH, ECC broken by Shor's algorithm
- Breaks factoring and discrete log in polynomial time
- Large effort to develop quantum-resistant atgorithms (e.g. NIST)
- Exhaustive search of a k-bit key in time $2^{k / 2}$ with Grover's algorithm
- Common recommendation: double the key length (AES-256)
- Is there more?

Expected impact of quantum computers

- Some problems can be solved much faster with quantum computers
- Up to exponential gains
- But we don't expect to solve all NP problems

Impact on public-key cryptography

- RSA, DH, ECC broken by Shor's algorithm
- Breaks factoring and discrete log in polynomial time
- Large effort to develop quantum-resistant algorithms (e.g. NIST)
- Exhaustive search of k-bit key in time $2^{k / 2}$ with Crover's algorithm
- Common recommendation: double the key length (AES-256)
- Is there more?

Expected impact of quantum computers

- Some problems can be solved much faster with quantum computers
- Up to exponential gains
- But we don't expect to solve all NP problems

Impact on public-key cryptography

- RSA, DH, ECC broken by Shor's algorithm
- Breaks factoring and discrete log in polynomial time
- Large effort to develop quantum-resistant algorithms (e.g. NIST)

Impact on symmetric cryptography

- Exhaustive search of a k-bit key in time $2^{k / 2}$ with Grover's algorithm
- Common recommendation: double the key length (AES-256)
- Is there more?

Security of symmetric cryptography

Classical approach

- Security of the protocol
- Security proof assuming security of cryptographic operations
- Security of the modes (HMAC, CBC, ...)
- Security proofs (assuming security of the primitive)
- Security of the primitives (AES, SHA-1, RSA, ...)
- Studied with cryptanalysis

In the quantum setting

1 Study quantum cryptanalysis
2 Study modes of operations

- Proofs in the quantum setting
- Attacks in the quantum setting

Overview of the talk

Is AES secure in a quantum setting?

- Study classical cryptanalysis techniques in the quantum setting
- Do we get a quadratic speedup?
- Do we need a quantum encryption oracle?
- How are different cryptanalysis techniques affected?

园
Quantum Differential and Linear Cryptanalysis Kaplan, G. L., Leverrier, Naya-Plasencia

Are classical modes secure in the quantum setting?

- Encryption modes are secure
- Authentication modes broken by superposition queries

Breaking Symmetric Cryptosystems using Quantum Period Finding Kaplan, G. L., Leverrier, Naya-Plasencia

Security notions: Classical

- PRF security: given access to P / P^{-1}, distinguishing E from random
- Classical setting: classical computations
- Classical security: classical queries
- Cipher broken by adversary with
- data $\ll 2^{n}$
- time $\ll 2^{k}$
- success $>3 / 4$

cipher / random

Security notions: Quantum Q1

- PRF security: given access to P / P^{-1}, distinguishing E from random
- Quantum setting: quantum computations
- Classical security: classical queries
- Cipher broken by adversary with
- data $\ll 2^{n}$
- time $\ll 2^{k / 2}$
- success $>3 / 4$

cipher / random

Security notions: Quantum Q2

- PRF security: given access to P / P^{-1}, distinguishing E from random
- Quantum setting: quantum computations
- Quantum security: quantum (superposition) queries
- Cipher broken by adversary with
- data $\ll 2^{n}$
- time $\ll 2^{k / 2}$
- success $>3 / 4$

About the models

Q1 model: classical queries

- Build a quantum circuit from classical values
- Example: breaking RSA with Shor's algorithm

Q2 model: superposition queries

- Access quantum circuit implementing the primitive with a secret key
- Example: breaking CBC-MAC with Simon's algorithm
- The Q2 model is very strong for the adversary
- Simple and clean generalisation of classical oracle
- Aim for security in the strongest (non-trivial) model
- A Q2-secure block cipher is useful for security proofs of modes

Outline

Introduction

Grover's Algorithm
Quantum Differential Cryptanalysis
Differential
Truncated differential
Simon's Algorithm
Breaking Modes of Operation
Forgery attack against CBC-MAC Other modes of operations

Slide attacks

Outline

Introduction

Grover's Algorithm

Quantum Differential Cryptanalysis
Differential
Truncated differential

Simon's Algorithm

Breaking Modes of Operation
Forgery attack against CBC-MAC Other modes of operations

Stide attacks

Grover's algorithm

- Search for a marked element in a set X
- Set of marked elements M, with $|M| \geq \varepsilon \cdot|X|$

Classical algorithm

```
1: loop
2: }\quadx\leftarrow\operatorname{SETUP()
3: if CHECK(x) then
        return x
```

\triangleright Pick a random element in X, cost S
\triangleright Check if it is marked, cost C

- $1 / \varepsilon$ repetitions expected
- Complexity $(S+C) / \varepsilon$

Grover's algorithm

- Search for a marked element in a set X
- Set of marked elements M, with $|M| \geq \varepsilon \cdot|X|$

Grover Algorithm (as a quantum walk)

Quantum algorithm to find a marked element using:

- Setup: builds a uniform superposition of inputs in X
- CHECK: applies a control-phase gate to the marked elements
- Only $1 / \sqrt{\varepsilon}$ repetitions needed
- Complexity $(S+C) / \sqrt{\varepsilon}$
- Can produce a uniform superposition of M
- Can provide an oracle without measuring (nesting)
- Variant to measure ε (quantum counting)

Grover's algorithm

- Search for a marked element in a set X
- Set of marked elements M, with $|M| \geq \varepsilon \cdot|X|$

Grover Algorithm (as a quantum walk)

Quantum algorithm to find a marked element using:

- Setup: builds a uniform superposition of inputs in X
- CHECK: applies a control-phase gate to the marked elements
- Only $1 / \sqrt{\varepsilon}$ repetitions needed
- Complexity $(S+C) / \sqrt{\varepsilon}$
- Can produce a uniform superposition of M
- Can provide an oracle without measuring (nesting)
- Variant to measure ε (quantum counting)

Brute-force attack

- We can use Grover's algorithm for a quantum brute-force key search

1 Capture a few known plaintext/ciphertext: $C_{i}=E_{\kappa^{*}}\left(P_{i}\right)$
$\boxed{2}$ SETUP: builds a uniform superposition of $\{0,1\}^{k}$

$$
\begin{aligned}
S & =1 \\
\varepsilon=2^{-k}, C & =1
\end{aligned}
$$

3 СНесК (κ) : test whether $C_{i}=E_{\kappa}\left(P_{i}\right)$

- Complexity $\mathcal{O}\left(2^{k / 2}\right)$
- Quadratic gain
- Uses the Q1 model
- Classical data (C_{i}, P_{i})
- Quantum circuit independant of the secret key κ^{*}

Outline

Introduction

Grover's Algorithm

Quantum Differential Cryptanalysis
Differential
Truncated differential
Simon's Algorithm
Breaking Modes of Operation
Forgery attack against CBC-MAC
Other modes of operations
Slide attacks

Differential distinguisher: classical

- Assume a differential $\delta_{\text {in }}, \delta_{\text {out }}$ given, with

$$
h:=-\log \operatorname{Pr}_{x}\left[E\left(x \oplus \delta_{\text {in }}\right)=E(x) \oplus \delta_{\text {out }}\right] \ll n,
$$

Classical algorithm: search for right pairs

```
1: for \(0 \leq i<2^{h}\) do
2: \(\quad x \leftarrow \operatorname{RAND}()\)
3: if \(E\left(x \oplus \delta_{\text {in }}\right)=E(x) \oplus \delta_{\text {out }}\) then
4: return cipher
5: return random
```

- Complexity $\mathcal{O}\left(2^{h}\right)$

Differential distinguisher: quantum

- Assume a differential $\delta_{\text {in }}, \delta_{\text {out }}$ given, with

$$
h:=-\log \operatorname{Pr}_{x}\left[E\left(x \oplus \delta_{\text {in }}\right)=E(x) \oplus \delta_{\text {out }}\right] \ll n,
$$

Quantum algorithm: Grover search for right pair

1 Setup: builds a uniform superposition of $\{0,1\}^{n}$

$$
\begin{aligned}
S & =1 \\
\varepsilon=2^{-h}, C & =1
\end{aligned}
$$

$2 \operatorname{CHECK}(x)$: test whether $E\left(x \oplus \delta_{\text {in }}\right)=E(x) \oplus \delta_{\text {out }}$

- Complexity $\mathcal{O}\left(2^{h / 2}\right)$
- Quadratic gain
- Uses the Q2 model
- Superposition queries to $E_{\kappa^{*}}$ with secret key κ^{*}

Last-Round attack: classical

Classical algorithm

$$
\text { 1: for } 0 \leq i<2^{h} \text { do }
$$

$$
2: \quad x \leftarrow \operatorname{RAND}()
$$

3: $\quad \triangleright$ Filter possible output differences
4: \quad if $E(x) \oplus E\left(x \oplus \delta_{\text {in }}\right) \in \mathcal{D}_{\text {fin }}$ then
5: \quad Find last key candidates for $\left(x, x \oplus \delta_{\text {in }}\right)$
6: \quad Try all possibilities for remaining key bits

- Finding partial key candidates costs $C_{k_{\text {out }}}$
- Between 1 and $2^{k_{\text {out }}}$
- $T=2^{h}+2^{h-n+\Delta_{\text {fin }}} \cdot\left(C_{k_{\text {out }}}+2^{k-h_{\text {out }}}\right)$

Last-Round attack: quantum Q2

Quantum algorithm: Grover search for right pair

1 Setup: builds a uniform superposition of

$$
X=\left\{x: E(x) \oplus E\left(x \oplus \mathcal{\delta}_{\text {in }}\right) \in \mathcal{D}_{\text {fin }}\right\}
$$

using nested Grover algorithm $\quad S=2^{\left(n-\Delta_{\text {fin }}\right) / 2}$
$2 \operatorname{CHECK}(x)$: Find last key cand. for $\left(x, x \oplus \delta_{\text {in }}\right)$
Run nested Grover over remaining key bits

$$
\varepsilon=2^{n-h-\Delta_{\text {fin }}}, C=C_{k_{\text {out }}}^{*}+2^{\left(k-h_{\text {out }}\right) / 2}
$$

- Repeat key recovery with right pair
- Finding partial key candidates costs $C_{k_{\text {out }}}^{*}$
- Between 1 and $2^{k o u t / 2}$

$$
T=2^{h / 2}+2^{\left(h-n+\Delta_{\text {fin }}\right) / 2} \cdot\left(C_{k_{\text {out }}^{*}}^{*}+2^{\left(k-h_{\text {out }}\right) / 2}\right)
$$

Last-Round attack: quantum Q1

- Previous attack uses superposition queries
- Alternatively, make 2^{h} classical queries
- Interesting if $2^{h}<2^{k / 2}$
- E.g. AES-256

Quantum algorithm: Grover search for right pair

1 Setup: builds superposition of classical data using quantum memory

$$
S=1
$$

2 CHECK (x) : same as Q2

$$
\varepsilon=2^{n-h-\Delta_{\text {fin }}}, C=C_{k_{\text {out }}}^{*}+2^{\left(k-h_{\text {out }}\right) / 2}
$$

$$
-T=2^{h}+2^{\left(h-n+\Delta_{\text {fin }}\right) / 2} \cdot\left(C_{k_{\text {out }}}^{*}+2^{\left(k-h_{\text {out }}\right) / 2}\right)
$$

Truncated differential cryptanalysis

- Use a vector space of input / output differences: $\mathcal{D}_{\text {in }}, \mathcal{D}_{\text {out }}$ given ($\operatorname{dim} . \Delta_{\text {in }}, \Delta_{\text {out }}$), with

$$
h:=-\log \operatorname{Pr}_{x, \delta \in \mathcal{D}_{\text {in }}}\left[E(x \oplus \delta) \oplus E(x) \in \mathcal{D}_{\text {out }}\right] \ll n-\Delta_{\text {out }}
$$

Classical distinguisher: use structures

- Encrypt $2^{\Delta_{\text {in }}}$ plaintexts $x \oplus \mathcal{D}_{\text {in }}$, build $2^{2 \Delta_{\text {in }-1}}$ pairs x_{i}, x_{j}
- Detect when there is y_{1}, y_{2} s.t. $y_{1} \oplus y_{2} \in \mathcal{D}_{\text {out }}$: truncate to $\mathcal{D}_{\text {out' }}^{\perp}$ find collisions
- Complexity $\mathcal{O}\left(2^{h-}\right.$

Quantum algorithm: Grover search for structure with right pair

1 Setup: builds a uniform superposition of $\{0,1\}^{n}$ $S=1$
$2 \operatorname{CHECK}(x)$: test whether $\exists y_{1}, y_{2} \in x \oplus \mathcal{D}_{\text {in }}$ s.t. $y_{1} \oplus y_{2} \in \mathcal{D}_{\text {out }}$

$$
\varepsilon=2^{-h+2 \Delta_{\text {in }}}, C=?
$$

\rightarrow Complexity $O\left(2^{h / 2-\Delta_{i n} / 3}\right)$ - less than quadratic speedup

Collision search

- Search for collisions in a list L of N elements

Classical algorithm

1: $\operatorname{SORT}(L)$
2: for $0<i<|L|$ do
3: \quad if $L[i]=L[i+1]$ then return $L[i]$
4: return \perp

- Complexity $\widetilde{\mathcal{O}}(N)$
- Quantum walk algorithm to find collisions
- Complexity $\mathcal{O}\left(N^{2 / 3}\right)$ - less than quadratic speedup!
- Uses memory \mathcal{O}

Collision search

- Search for collisions in a list L of N elements

Classical algorithm

1: $\operatorname{SORT}(L)$
2: for $0<i<|L|$ do
3: \quad if $L[i]=L[i+1]$ then return $L[i]$
4: return \perp

- Complexity $\widetilde{\mathcal{O}}(N)$

Quantum algorithmic: Ambainis' element distinctness

- Quantum walk algorithm to find collisions
- Complexity $\mathcal{O}\left(N^{2 / 3}\right)$ - less than quadratic speedup!
- Uses memory $\mathcal{O}\left(N^{2 / 3}\right)$

Truncated differential cryptanalysis

- Use a vector space of input / output differences: $\mathcal{D}_{\text {in }}, \mathcal{D}_{\text {out }}$ given ($\operatorname{dim} . \Delta_{\text {in }}, \Delta_{\text {out }}$), with

$$
h:=-\log \operatorname{Pr}_{x, \delta \in \mathcal{D}_{\text {in }}}\left[E(x \oplus \delta) \oplus E(x) \in \mathcal{D}_{\text {out }}\right] \ll n-\Delta_{\text {out }}
$$

Classical distinguisher: use structures

- Encrypt $2^{\Delta_{\text {in }}}$ plaintexts $x \oplus \mathcal{D}_{\text {in }}$, build $2^{2 \Delta_{\text {in }-1}}$ pairs x_{i}, x_{j}
- Detect when there is y_{1}, y_{2} s.t. $y_{1} \oplus y_{2} \in \mathcal{D}_{\text {out }}$: truncate to $\mathcal{D}_{\text {out }}{ }^{\perp}$ find collisions
- Complexity $\mathcal{O}\left(2^{h-\Delta_{\text {in }}}\right)$

Quantum algorithm: Grover search for structure with right pair

1 SETUP: builds a uniform superposition of $\{0,1\}^{n}$
$2 \operatorname{CHECK}(x)$: test whether $\exists y_{1}, y_{2} \in x \oplus \mathcal{D}_{\text {in }}$ s.t. $y_{1} \oplus y_{2} \in \mathcal{D}_{\text {out }} \quad \varepsilon=2^{-h+2 \Delta_{\text {in }}}, C=2^{2 \Delta_{\text {in }} / 3}$

- Complexity $\mathcal{O}\left(2^{h / 2-\Delta_{\text {in }} / 3}\right)$ - less than quadratic speedup

Summary: simplified complexities

- Simple differential distinguisher

$$
\begin{aligned}
D_{C} & =2^{h} & D_{\mathrm{Q} 1} & =2^{h}=D_{C}
\end{aligned} \quad D_{\mathrm{Q} 2}=2^{h / 2}=\sqrt{D_{C}}
$$

- Simple differential LR attack

$$
\begin{array}{lll}
D_{C}=2^{h} & D_{\mathrm{Q} 1}=2^{h}=D_{C} & D_{\mathrm{Q} 2}=2^{h / 2}=\sqrt{D_{C}} \\
T_{C}=2^{h}+C_{k} & T_{\mathrm{Q} 1}=2^{h}+C_{k}^{*} & T_{\mathrm{Q} 2}=2^{h / 2}+C_{k}^{*} \approx \sqrt{T_{C}}
\end{array}
$$

- Truncated differential distinguisher

$$
\begin{aligned}
D_{C} & =2^{h-\Delta_{\text {in }}} & D_{\mathrm{Q} 1}=2^{h-\Delta_{\text {in }}}=D_{C} & D_{\mathrm{Q} 2}=2^{h / 2-\Delta_{\text {in }} / 3}>\sqrt{D_{C}} \\
T_{C} & =2^{h-\Delta_{\text {in }}} & T_{\mathrm{Q} 1}=2^{h-\Delta_{\text {in }}}=T_{C} & T_{\mathrm{Q} 2}=2^{h / 2-\Delta_{\text {in }} / 3}>\sqrt{T_{C}}
\end{aligned}
$$

- Truncated differential LR attack Assuming > 1 filtered pairs / structure
$D_{C}=2^{h-\Delta_{\text {in }}}$
$D_{\mathrm{Q} 1}=2^{h-\Delta_{\text {in }}}=D_{C}$
$D_{\mathrm{Q} 2}=2^{h / 2-\left(n-\Delta_{\text {fin }}\right) / 6}>\sqrt{D_{C}}$
$T_{C}=2^{h-\Delta_{\text {in }}}+C_{k}$
$T_{\mathrm{Q} 1}=2^{h-\Delta_{\text {in }}}+C_{k}^{*}$

$$
T_{\mathrm{Q} 2}=2^{h / 2-\left(n-\Delta_{\mathrm{fin}}\right) / 6}+C_{k}^{*}>\sqrt{T_{C}}
$$

Conclusion

- Quantification of classical attacks using Grover and Ambainis
- Differential, truncated differential and linear cryptanalysis
- Independent work on quantum differential cryptanalysis
[Zhou, Lu, Zhang \& Sun, QIP]
- "It's complicated"
- Up to quadratic speedup
- A cipher secure against classical cryptanalysis, is secure against this kind of quantum cryptanalysis.
- Truncated differential attacks have less than quadratic speedup
- Can become worse than Grover key search (not an attack)
- The best quantum attack is not always a quantum version of the best classical attack
- Concrete examples: LAC, KLEIN
- Data complexity can only be reduced using quantum queries
- Cipher with $k>n$ are most likely to see quadratic speedup
- Attacks with classical queries (Q1 model) possible

Outline

Introduction

Grover's Algorithm
Quantum Differential Cryptanalysis
Differential
Truncated differential

Simon's Algorithm

Breaking Modes of Operation

Forgery attack against CBC-MAC Other modes of operations

Slide attacks

Previous work: breaking Even-Mansour encryption

Kuwakado \& Morii

The Even-Mansour cipher can be broken with quantum queries

- Simple block cipher construction, from a public permutation P
- $E_{\kappa}(x)=P\left(x \oplus \kappa_{1}\right) \oplus \kappa_{2}$

- Attacker is given oracle access to P and E
- "If P is a random permutation, attacks against E_{K} with time T and data D are possible only if $D T>2^{n \prime}$

Previous work: breaking Even-Mansour encryption

Kuwakado \& Morii

The Even-Mansour cipher can be broken with quantum queries

- Simple block cipher construction, from a public permutation P
- $E_{\kappa}(x)=P\left(x \oplus \kappa_{1}\right) \oplus \kappa_{2}$

- Security proof
- Attacker is given oracle access to P and E
- "If P is a random permutation, attacks against E_{κ} with time T and data D are possible only if $D T>2^{n \prime \prime}$

Classical attack against Even-Mansour

Slide with a twist attack
[Biryukov \& Wagner, Eurocrypt '00]
Using $2^{n / 2}$ known plaintext $y_{i}=E_{\kappa}\left(x_{i}\right)$

1 Assume that a pair of plaintext satisfy $x^{\prime}=x \oplus \kappa_{1}$

- $E_{\kappa}(x)=P(\underbrace{x \oplus \kappa_{1}}_{x^{\prime}}) \oplus \kappa_{2}, \quad E_{\kappa}\left(x^{\prime}\right)=P(\underbrace{x^{\prime} \oplus \kappa_{1}}_{x}) \oplus \kappa_{2}$
- $E_{\kappa}(x) \oplus P\left(x^{\prime}\right)=E_{\kappa}\left(x^{\prime}\right) \oplus P(x)=\kappa_{2}$
- $E_{\kappa}(x) \oplus P(x)=E_{\kappa}\left(x^{\prime}\right) \oplus P\left(x^{\prime}\right)$

2 Attacker computes $y_{i} \oplus P\left(x_{i}\right)=E_{\kappa}\left(x_{i}\right) \oplus P\left(x_{i}\right)$, looks for collisions
3 When $y_{i} \oplus P\left(x_{i}\right)=y_{j} \oplus P\left(x_{j}\right)$, try $\kappa_{1}=x_{i} \oplus x_{j}$

Quantum attack against Even-Mansour

Kuwakado \& Morii, [ISITA '12]

The Even-Mansour cipher can be broken with quantum queries

- Build the same function as in the classical attack:

$$
\begin{aligned}
& f: \mathbb{B}^{n} \rightarrow \mathbb{B}^{n} \\
& x \quad \mapsto E_{\kappa}(x) \oplus P(x)=P\left(x \oplus \kappa_{1}\right) \oplus P(x) \oplus \kappa_{2} \\
& \quad f(x)=f\left(x \oplus \kappa_{1}\right)
\end{aligned}
$$

- There is a quantum algorithm to recover κ_{1} with $\mathcal{O}(n)$ queries
- Simon's algorithm (period-finding)
- Superposition queries to $f: \sum_{x} \psi_{x}|x\rangle|0\rangle \mapsto \sum_{x} \psi_{x}|x\rangle|f(x)\rangle$

Quantum attack against Even-Mansour

Kuwakado \& Morii, [ISITA '12]

The Even-Mansour cipher can be broken with quantum queries

- Build the same function as in the classical attack:

$$
\begin{aligned}
& f: \mathbb{B}^{n} \rightarrow \mathbb{B}^{n} \\
& x \quad \mapsto E_{\kappa}(x) \oplus P(x)=P\left(x \oplus \kappa_{1}\right) \oplus P(x) \oplus \kappa_{2} \\
& \quad f(x)=f\left(x \oplus \kappa_{1}\right)
\end{aligned}
$$

- There is a quantum algorithm to recover κ_{1} with $\mathcal{O}(n)$ queries
- Simon's algorithm (period-finding)
- Superposition queries to $f: \sum_{x} \psi_{x}|x\rangle|0\rangle \mapsto \sum_{x} \psi_{x}|x\rangle|f(x)\rangle$

Quantum attack against Even-Mansour

Kuwakado \& Morii, [ISITA '12]

The Even-Mansour cipher can be broken with quantum queries

- Build the same function as in the classical attack:

$$
\begin{aligned}
& f: \mathbb{B}^{n} \rightarrow \mathbb{B}^{n} \\
& x \quad \mapsto E_{\kappa}(x) \oplus P(x)=P\left(x \oplus \kappa_{1}\right) \oplus P(x) \oplus \kappa_{2} \\
& f(x)=f\left(x \oplus \kappa_{1}\right)
\end{aligned}
$$

1 Build a quantum circuit for f, from a circuit for E_{κ}
2 Apply Simon's algorithm to recover κ_{1}

Simon's Algorithm

Definition (Simon's problem)

Given $f: \mathbb{B}^{n} \rightarrow \mathbb{B}^{n}$ such that there exists $\delta \in \mathbb{B}^{n}$ with $f(x)=f\left(x^{\prime}\right) \Leftrightarrow x \oplus x^{\prime} \in\left\{0^{n}, \delta\right\}$, find δ.

- Classical algorithms require $\mathcal{O}\left(2^{n / 2}\right)$ queries (finding collisions)
- Simon's algorithm require $\mathcal{O}(n)$ quantum queries

One step of Simon's algorithm returns $y \perp \delta$

Simon's Algorithm

Definition (Simon's problem)

Given $f: \mathbb{B}^{n} \rightarrow \mathbb{B}^{n}$ such that there exists $\delta \in \mathbb{B}^{n}$ with $f(x)=f\left(x^{\prime}\right) \Leftrightarrow x \oplus x^{\prime} \in\left\{0^{n}, \delta\right\}$, find δ.

- Classical algorithms require $\mathcal{O}\left(2^{n / 2}\right)$ queries (finding collisions)
- Simon's algorithm require $\mathcal{O}(n)$ quantum queries

Weaker promise

$f(x)=f\left(x^{\prime}\right) \Leftarrow x \oplus x^{\prime} \in\left\{0^{n}, \delta\right\}$ i.e. $\forall x, f(x)=f(x \oplus \delta)$

- There are extra collisions $f(x)=f\left(x^{\prime}\right)$ with arbitrary $x \oplus x^{\prime}$
- If there is no structure in these collisions, we can still recover δ
- Complexity increase by a factor $\mathcal{O}(1 /(1-\varepsilon))$, with $\varepsilon=\max _{t \neq\{0, \delta\}} \operatorname{Pr}_{x}[f(x)=f(x \oplus t)]$

Outline

Introduction

Grover's Algorithm

Quantum Differential Cryptanalysis
Differential
Truncated differential

Simon's Algorithm

Breaking Modes of Operation
Forgery attack against CBC-MAC Other modes of operations

CBC-MAC

- One of the first MAC
[NIST, ANSI, ISO, '85?]
- Based on CBC encryption mode
- Security proof
[Bellare, Kilian \& Rogaway '94]
- "If E is a secure block cipher, there are no forgery attacks against CBC-MAC with less than $2^{\text {n/2 }}$ blocs"

Classical Attack against CBC-MAC

- Collision attack: two sets of $2^{n / 2}$ messages
- $A_{x}=0 \| x$
- $\operatorname{MAC}\left(A_{x}\right)=E^{\prime}(E(x \oplus E(0)))$
- $B_{y}=1 \| y$
- $\operatorname{MAC}\left(B_{y}\right)=E^{\prime}(E(y \oplus E(1)))$
- Collision $\left(A_{x}, B_{y}\right)$?
- The MAC collide iff $x \oplus E(0)=y \oplus E(1)$
- Deduce $\delta=E(0) \oplus E(1)=x \oplus y$
- Produce forgeries: $\operatorname{MAC}\left(0\|m\| m^{\prime}\right)=\operatorname{MAC}\left(1\|m \oplus \delta\| m^{\prime}\right)$

Quantum attack against CBC-MAC

- Consider the following function:

$$
\begin{aligned}
f: \mathbb{B} \times \mathbb{B}^{n} & \rightarrow \mathbb{B}^{n} \\
b, x & \mapsto \operatorname{MAC}(b \| x)=E^{\prime}(E(x \oplus E(b))) \\
f(0, x) & =E^{\prime}(E(x \oplus E(0))) \\
f(1, x) & =E^{\prime}(E(x \oplus E(1)))
\end{aligned}
$$

- $f(b, x)=f(b \oplus 1, x \oplus \delta)$, with $\delta=E(0) \oplus E(1)$
- Simon's algorithm recovers $1 \| \delta$
- Produce forgeries: $\operatorname{MAC}(0 \| m)=\operatorname{MAC}(1 \| m \oplus \delta)$

Attack structure

1 Define a function f with $f(x \oplus \delta)=f(x)$ for some interesting δ
2 Build quantum circuit for f, use Simon's algorithm to recover δ

- $t=\mathcal{O}(n)$ quantum queries

3 Use δ to produce forgeries

- One classical query gives two messages/MAC pairs
- Repeat until more valid messages than queries

Applications of Simon's algorithm

- Breaks most common MAC and AEAD modes
- Corresponds to classical attacks with $2^{n / 2}$ queries
- Query f with $2^{n / 2}$ values, look for collisions

PMAC: Parallelisable MAC with secret offsets

PMAC

- With 2-block msg, \approx CBC-MAC
- Same attack

$$
\begin{aligned}
& f: \mathbb{B} \times \mathbb{B}^{n} \rightarrow \mathbb{B}^{n} \\
& b, x \quad \mapsto \operatorname{MAC}(b \| x) \\
& f(b, x)=E\left(E\left(b \oplus \Delta_{0}\right) \oplus x \oplus \Delta_{\star}\right) \\
& f(b, x)=f(b \oplus 1, x \oplus \delta) \\
& \delta=E\left(\Delta_{0}\right) \oplus E\left(\Delta_{0} \oplus 1\right)
\end{aligned}
$$

- No message xored into state - Alternative attack

PMAC: Parallelisable MAC with secret offsets

PMAC

- With 2-block msg, \approx CBC-MAC
- Same attack

$$
\begin{aligned}
& f: \mathbb{B} \times \mathbb{B}^{n} \rightarrow \mathbb{B}^{n} \\
& b, x \quad \mapsto \operatorname{MAC}(b \| x) \\
& f(b, x)=E\left(E\left(b \oplus \Delta_{0}\right) \oplus x \oplus \Delta_{\star}\right) \\
& f(b, x)=f(b \oplus 1, x \oplus \delta) \\
& \delta=E\left(\Delta_{0}\right) \oplus E\left(\Delta_{0} \oplus 1\right)
\end{aligned}
$$

PMAC variant

- No message xored into state
- Alternative attack

$$
\begin{aligned}
f: \mathbb{B}^{n} & \rightarrow \mathbb{B}^{n} \\
x \quad & \mapsto \operatorname{MAC}(x \| x) \\
f(x) & \left.=E\left(E\left(x \oplus \Delta_{0}\right) \oplus E\left(x \oplus \Delta_{1}\right)\right)\right) \\
f(x) & =f(x \oplus \delta) \\
\delta & =\Delta_{0} \oplus \Delta_{1}
\end{aligned}
$$

Sponge-based modes

Full-width sponge

- Same structure as CBC-MAC
- Same attack

$$
\begin{aligned}
f: \mathbb{B} \times \mathbb{B}^{n} & \rightarrow \mathbb{B}^{n} \\
b, x \quad & \mapsto \operatorname{MAC}(b \| x) \\
f(b, x) & =\pi(\pi(\kappa \oplus b) \oplus x) \\
f(b, x) & =f(b \oplus 1, x \oplus \delta) \\
\delta & =\pi(\kappa) \oplus \pi(\kappa \oplus 1)
\end{aligned}
$$

Sponge-based modes

Full-width sponge

- Same structure as CBC-MAC
- Same attack

$$
\begin{aligned}
f: \mathbb{B} \times \mathbb{B}^{n} & \rightarrow \mathbb{B}^{n} \\
b, x \quad & \mapsto \operatorname{MAC}(b \| x) \\
f(b, x) & =\pi(\pi(\kappa \oplus b) \oplus x) \\
f(b, x) & =f(b \oplus 1, x \oplus \delta) \\
\delta & =\pi(\kappa) \oplus \pi(\kappa \oplus 1)
\end{aligned}
$$

Normal sponge

- Can't cancel the full state difference
- No attack found

Nonce-based modes

Nonce at the end (GMAC)

- Same structure as CBC-MAC
- Same attack

$$
\begin{aligned}
f_{N}: \mathbb{B} \times \mathbb{B}^{n} & \rightarrow \mathbb{B}^{n} \\
b, x & \mapsto \operatorname{MAC}(b \| x) \\
f_{N}(b, x) & =b \cdot H^{2} \oplus x \cdot H \oplus E_{k}(N) \\
f_{N}(b, x) & =f(b \oplus 1, x \oplus \delta) \\
\delta & =H
\end{aligned}
$$

Dealing with the nonce

- We can't really apply Simon's algorithm to f_{N}
- We don't choose N
- Each oracle call will use a different N
- Luckily, one step of Simon's algorithm makes a single call to f_{N}
- The family f_{N} satisfies Simon's promise with the same δ
- One step gives y with $y \perp \delta$
- Classical repetition, classical Linear algebra

Dealing with the nonce

- We can't really apply Simon's algorithm to f_{N}
- We don't choose N
- Each oracle call will use a different N
- Luckily, one step of Simon's algorithm makes a single call to f_{N}
- The family f_{N} satisfies Simon's promise with the same δ
- One step gives y with $y \perp \delta$
- Classical repetition, classical linear algebra

Nonce-based modes

Nonce at the end (GMAC)

- Same structure as CBC-MAC
- Same attack

$$
\begin{aligned}
f_{N}: \mathbb{B} \times \mathbb{B}^{n} & \rightarrow \mathbb{B}^{n} \\
b, x & \mapsto \operatorname{MAC}(b \| x) \\
f_{N}(b, x) & =b \cdot H^{2} \oplus x \cdot H \oplus E_{k}(N) \\
f_{N}(b, x) & =f(b \oplus 1, x \oplus \delta) \\
\delta & =H
\end{aligned}
$$

Nonce at the beginning (CCM)

- State difference depend on N
- No fixed period δ
- No attack found

Quantum security of modes of operations

Applications of Simon's algorithm

Common MAC and AEAD modes broken with superposition queries:

- CBC-MAC, PMAC, GMAC, GCM, OCB
- 8 CAESAR candidates: AEZ, CLOC, COLM, Minalpher, OCB, OMD, OTR, POET

Secure modes

- Common encryption modes are mostly quantum-secure
[Unruh, Targhi, Tabia \& Anand, PQC'16]
- Efficient MACs \& AEAD secure against quantum attacks?
- Boneh \& Zhandry: quantum safe Carter-Wegman MAC, where the randomness depend on the message
- Alagic and Russell: replace xor by other group operation
- Do we have the right security definition?

Outline

Introduction

Grover's Algorithm
Quantum Differential Cryptanalysis
Differential
Truncated differential

Simon's Algorithm

Breaking Modes of Operation
Forgery attack against CBC-MAC Other modes of operations

Slide attacks

Classical slide attacks

- Cryptanalysis of block ciphers
[Biryukov \& Wagner, FSE '99]
- Applicable if all rounds are identical

1 Assume a pair $x^{\prime}=P(x \oplus \kappa)$, then $y^{\prime}=P(y) \oplus \kappa$

2 Attacker looks for collision between
$-x_{i} \oplus P\left(y_{i}\right)$
$>P^{-1}\left(x_{j}\right) \oplus y_{j}$
3 When $x_{i} \oplus P\left(y_{i}\right)=P$

Classical slide attacks

- Cryptanalysis of block ciphers
- Applicable if all rounds are identical
[Biryukov \& Wagner, FSE '99]

$$
E_{\kappa}(P(x \oplus \kappa))=P\left(E_{\kappa}(x)\right) \oplus \kappa
$$

1 Assume a pair $x^{\prime}=P(x \oplus \kappa)$, then $y^{\prime}=P(y) \oplus \mathcal{K}$

- $x \oplus P^{-1}\left(x^{\prime}\right)=P(y) \oplus y^{\prime}=\kappa$
- $x \oplus P(y)=P^{-1}\left(x^{\prime}\right) \oplus y^{\prime}$

2 Attacker looks for collision between

- $x_{i} \oplus P\left(y_{i}\right)$
- $P^{-1}\left(x_{j}\right) \oplus y_{j}$

3 When $x_{i} \oplus P\left(y_{i}\right)=P^{-1}\left(x_{j}\right) \oplus y_{j}$, try $\kappa=x_{i} \oplus P^{-1}\left(x_{j}\right)$

Quantum slide attacks

- $E_{\kappa}(P(x \oplus \kappa))=P\left(E_{\kappa}(x)\right) \oplus \kappa$
- Build function inspired by the classical attack:

$$
\begin{aligned}
f: \mathbb{B} \times \mathbb{B}^{n} & \rightarrow \mathbb{B}^{n} \\
b, x & \mapsto \begin{cases}x \oplus P\left(E_{\kappa}(x)\right) & \text { if } b=0, \\
x \oplus E_{\kappa}(P(x)) & \text { if } b=1 .\end{cases}
\end{aligned}
$$

- $f(0, x)=P\left(E_{\kappa}(x)\right) \oplus x=E_{\kappa}(P(x \oplus \kappa)) \oplus \kappa \oplus x=f(1, x \oplus \kappa)$
- Simon's algorithm recovers $1 \| \kappa$

Conclusion

Applications of two quantum algorithms on symmetric crypto

1 Grover's Algorithm (and variant)

- Quadratic speedup for some cryptanalysis techniques

2 Simon's Algorithm

- $\mathcal{O}(n)$ attacks against common MAC and AEAD modes
- $\mathcal{O}(n)$ slide attack
- There are more quantum attacks than Grover key search for symmetric crypto
- Against primitives and modes
- Most of our attacks require superposition queries

