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Abstract. SCARF is a tweakable block cipher dedicated to cache address
randomization, proposed at the USENIX Security conference. It has a 10-
bit block, 48-bit tweak, and 240-bit key. SCARF is aggressively optimized
to meet the harsh latency constraints of cache address randomization,
and uses a dedicated model for its security claim.
The full version of SCARF has 8 rounds, and its designers claim security
up to 240 queries and 280 computations. In this work we present a
distinguisher against 6-round SCARF under the collision model with
time and query complexity 230, and a key-recovery attack against the
full 8-round SCARF under the encryption-decryption model with 239

queries and time 276.2. As part of the attack, we present a novel method
to compute the minimal number of right pairs following a differential
characteristic when the input pairs are restricted to a subspace of the
domain of the primitive.
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1 Introduction

Block ciphers are among the most commonly used and versatile primitives in
symmetric cryptography, and are essential to the encryption of sensitive data in
countless applications. More generally, block ciphers are useful in scenarios beyond
encryption or authentication. One such case is that of cache randomization.

Cache randomization [14] aims to prevent an adversary from gaining sensitive
information by timing memory accesses (whose latency greatly depends on
whether the associated address was stored in cache or not) on certain CPU
architectures. This is achieved by obfuscating the relationship between memory
addresses and the cache registers assigned to them. In recent cache randomization
schemes [12,15,13], block ciphers have been used to provide a secure source of
randomization while allowing for regular remapping via key rotations. As these
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Table 1: Attacks on SCARF
Rounds Model Queries Time Note Reference

4 enc-dec 210 261 Key recovery [9]
7 enc-dec 240 276 Key recovery [7]
8 enc-dec 263 268 Multikey distinguisher [7]

6 collision 230 230 Distinguisher Section 4
8 enc-dec 239 277 Key recovery Section 5

block ciphers are used as part of the performance critical lookup path, low latency
is an essential requirement.

SCARF [8] is a novel tweakable block cipher designed with the specific needs
of cache randomization in mind. It uses the index and the tag sections of a
memory address as inputs. The tag is used as the plaintext and the index as a
tweak. The output (ciphertext) is then used to determine which cache set the
register will be stored in. This randomisation is performed under a secret key,
making it difficult for an attacker to manipulate the cache in a way which can
intentionally interfere with the memory space of other processes.

The exact specifications of SCARF are somewhat unusual. SCARF features
a 240-bit key, the index used as tweak has 48 bits, while the tag used as the
plaintext/ciphertext is only 10 bits long. The SCARF data encryption path
consists of eight rounds which manipulate the 10-bit state, and the tweakey
schedule generates the round subkeys from the 48-bit tweak and the 240-bit
key. One of the features of SCARF’s design is that 30 bits of key material are
absorbed into the 10-bit state at each round.

Another feature of the design is the security model. Instead of aiming for the
traditional PRP security which is expected from most block ciphers, SCARF’s
creators propose two weaker security models where ciphertexts cannot be observed
directly. In the first model, attackers have access to a collision oracle: querying
two plaintext-tweak pairs (P1, T1), (P2, T2), they learn whether the corresponding
ciphertexts collide (EK,T1

(P1) = EK,T2
(P2)). This model corresponds to the

cache randomization scenario, where an adversary can only detect addresses
which map to the same cache register. In the second model, attackers have access
to an encrypt-then-decrypt oracle: given a plaintext P and two tweaks T1, T2, they
receive E−1

K,T2

(
EK,T1(P )

)
. The second model gives more power to the adversary,

and is more readily compatible with existing cryptanalysis techniques.
The authors argue that in these security models an adversary would essentially

need to attack SCARF with double the number of rounds. For this reason, only
eight rounds are used, which greatly lowers the latency of a SCARF encryption.
The designers claim that, under both security models, SCARF cannot be broken
with less than 240 oracle queries and less than 280 time.

Previous Works. Given SCARF’s recent introduction, there are few published
results on third-party cryptanalysis. To the best of our knowledge, there are only
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two relevant publications: the works of Chen et al. [9] and of Boura et al. [7].
Chen et al. [9] present a meet-in-the-middle attack on SCARF reduced to four
rounds with a time complexity of 260.63 encryptions and query complexity 210

using the encryption-decryption oracle. This attack is also applicable with the
collision oracle, though with query complexity raised to 220.

Boura et al. target the encryption-decryption model, and thus analyze differ-
entials for R+R rounds of SCARF. These differentials are used in a key recovery
attack on 7-round SCARF with (maximum) 240 query complexity and 276 time
complexity. A distinguishing attack on 8+8 rounds in the multi-key setting with
query complexity 263 and time complexity 268 is also shown.

Our Results. This paper provides the first cryptanalysis on full 8-round SCARF
whose complexity lies within the security claims of the designers. It is a key
recovery attack using techniques from differential cryptanalysis. We first propose
an attack on 6-round SCARF as a stepping stone towards the attack on the full
cipher. The main attack is split into three stages. In the first stage we identify
236 candidates for a 70-bit segment of the 240-bit key, containing the correct key.
This is the most costly step of the attack and has data complexity 239 and time
complexity 276.2. For this stage we also develop a novel method for computing
a tight lower bound on the number of right pairs over all guessed key. In the
second stage we uniquely determine the correct value of the 70-bit part of the
key. The third stage of the attack recovers another 60 bits from the key. After
the third stage the remaining cipher is reduced to just four rounds which still
contain unrecovered key bits. It should then be easy to recover the remaining
unknown key bits, although we do not explicitly give an algorithm for it. In
Table 1 we summarize our results and compare them to the two previous analyses
of SCARF.

Outline. This paper is organized as follows. In Section 2 we describe SCARF
and introduce notation, and in Section 3 we revisit the particular security model
for SCARF. Section 4 introduces a distinguisher for 6-round SCARF which will
be used to stage the attack on full SCARF given in Section 5 and Section 6,
before concluding in Section 7.

2 Preliminaries

2.1 Notation

Table 2 shows the most important notational conventions used in this paper.
We use ⊕ for both the exclusive or of bits or binary vectors and the direct sum
of vector spaces, but the meaning should be clear from context. Following the
SCARF specification, round and subkeys are indexed starting from 1. We also
number the S-boxes in the SL layer starting from 1, bits are indexed starting
from 0, where the least significant bit occupies the rightmost position 0.
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Table 2: Notation used in the paper
P 10-bit SCARF plaintext
T 48-bit tweak used in SCARF tweakey schedule
K 240-bit user-selected key
Ki 60-bit part of K entered into tweakey schedule
k(j) j-th round key
k
(j)
i 5-bit subkey i used in round j

X[i] bit i in the bit-string X
X[i : j] the bit-string (X[i], . . . , X[j])

1f teletype typeface is used for hexadecimal values
0b11111 binary values are prefixed with 0b

2.2 SCARF
SCARF was introduced at the USENIX Security Conference [8], and is a tweakable
block cipher designed specifically for the purpose of cache randomization. It has
a 10-bit block length, and takes a 48-bit tweak and a 240-bit key.

Specification. SCARF consists of a data encryption path and a tweakey schedule
(see Figure 1). The tweakey schedule takes the 48-bit tweak T and the 240-bit
key K and outputs eight 30-bit round subkeys k(i). The data encryption path
takes the 10-bit plaintext P and the subkeys, and outputs the ciphertext C.

Data Encryption Path. Encryption consists of eight consecutive rounds, the first
seven of which are identical and denoted R1, and the last of which is denoted R2.
In both cases, the 10-bit input X is split into two 5-bit parts XL‖XR. Similarly,
the 30-bit round subkey k is split into six five-bit parts k6‖k5‖k4‖k3‖k2‖k1. The
standard round function R1 operates as follows:

Y ← G(XL, k1, k2, k3, k4, k5)⊕XR;

XR ← S(XL ⊕ k6);

XL ← Y ;

where (see Figure 2)

G(x, k1, k2, k3, k4, k5) =

 4⊕
j=0

((x ≪ j) ∧ kj+1)

⊕ ((x ≪ 1) ∧ (x ≪ 2)) ,

= M · x⊕ g(x),

where M is a key-dependent matrix whose elements are mij = (k(j−i mod 5)+1)i
and g(x) = (x ≪ 1) ∧ (x� 2) is the nonlinear part.

The Sbox S is defined as follows:

S(x) =
(
(x ∨ (x ≪ 1)) ∧

(
(x ≪ 3) ∨ (x ≪ 4)

))
⊕
(
(x ∨ (x ≪ 2)) ∧

(
(x ≪ 2) ∨ (x ≪ 3)

))
.
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Fig. 1: The SCARF cipher, including the tweakey schedule.
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Fig. 2: The keyed nonlinear function G.

The last round function R2 operates as follows:

xR ← G(xL, k1, k2, k3, k4, k5)⊕ xR;

xL ← S(xL)⊕ k6;

Tweakey Schedule. The tweakey schedule takes the 48-bit tweak T and the key
K, which is divided into four 60-bit parts K4‖K3‖K2‖K1, and generates the
eight 30-bit subkeys as follows:

(k(2)‖k(1)) = T 1 ← expansion(T )⊕K1;

(k(4)‖k(3)) = T 2 ← Σ(SL(T 1))⊕K2;

(k(6)‖k(5)) = T 3 ← SL(π(SL(T 2)⊕K3));

(k(8)‖k(7)) = T 4 ← SL(Σ(T 3)⊕K4);

where

expansion(T ) = (0‖T [47 : 44]‖0‖T [43 : 40]‖0‖ · · · ‖0‖T [3 : 0]),

Σ(x) = x⊕ (x ≪ 6)⊕ (x ≪ 12)⊕ (x ≪ 19)

⊕ (x ≪ 29)⊕ (x ≪ 43)⊕ (x ≪ 51),

SL is the parallel application of 12 5-bit Sboxes S (the same Sbox as in the
data encryption path), and π is a bit permutation which takes xi to xpi

where
pi = 5i mod 59 if i 6= 59 and p59 = 59.

Security Claim. Because of the extremely tight latency restrictions which are
imposed by cache randomisation, the designers do not target PRP security, as
is usual for block ciphers. Instead, they note that, since the attacker cannot
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directly observe which cache set a particular memory address is mapped to,
and can instead only detect addresses which map to the same (unknown) set,
they can only access a collision oracle that returns one if and only if, under the
same key and two different tweaks, the encryptions of two plaintexts collide, i.e.,
EK,T1

(P1) = EK,T2
(P2). The designers limit the amount of queries to this oracle

to 240 and the computational complexity of the attack to 280. We note that there
is no known attack matching this bound, it is just a limited claim due to the
trade-offs between efficiency and security.

Since this model is somewhat unusual when trying to apply existing cryptanal-
ysis tools, the designers propose an additional oracle, the encryption-decryption
oracle. In this oracle the attacker can request that a plaintext is first encrypted
under some tweak T1 and then decrypted under another tweak T2 (under the same
unknown key), i.e., E−1

K,T2
(EK,T1

(P )). As with the collision model the adversary
can do at most 240 queries and 280 computations.

In Section 3 we give a formal definition of these models and discuss how they
can be leveraged for cryptanalysis.

3 SCARF Security Model

First we look at the formal definitions of the security models given in [8] for
SCARF. The designers define two models: the collision model, where the attacker
can observe if two encryptions collide, and the stronger encryption-decryption
model, where the attacker can observe the output after sequentially encrypting
and decrypting a plaintext under two tweaks.

Security Requirement 1 (Collision model[8]) Let Oreal be an oracle which,
given a pair of memory addresses (P1, T1), (P2, T2), returns whether EK,T1

(P1) =
EK,T2

(P2), where E is an instance of SCARF for a secret key K. Let Oideal be a
similar oracle but for which E is a tweakable random permutation Π. If restricted
to 240 queries to the oracle and 280 time, an attacker cannot distinguish between
Oreal and Oideal.

In other words, the designers assume that the attacker cannot observe the
ciphertexts and can instead only query pairs of inputs to determine whether they
lead to a collision or not. Since this security requirement is difficult to manipulate
for cryptanalysis, the following stronger security claim is also used:

Security Requirement 2 (Encryption-decryption model[8]) Let Oreal be
an oracle which, given a plaintext P1 and a pair of tweaks T1, T2, returns
P2 = E−1

K,T2
(EK,T1

(P1)), where E is an instance of SCARF for a secret key K.
Let Oideal be a similar oracle but for which E is a random tweakable permutation
Π. If restricted to 240 queries to the oracle and 280 time, an attacker cannot
distinguish between Oreal and Oideal.

In summary, the attacker is able to query the composition of encryption and
decryption under two different tweaks. The designers note that, in practice, the
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encryption-decryption model corresponds to SCARF encryption under double
the number of rounds. This means they can use just 8 rounds, leading to an
extremely competitive latency, and claim that an attacker must deal with a much
more robust 16-round cipher.

3.1 Relations Between the Models

Two important observations are discussed in [8, Appendix A.1]. First, one can
switch between the encryption-decryption model and the collision model. For
a given pair of tweaks (T1, T2), an attacker can reconstruct the full encryption-
decryption codebook (corresponding to 210 data) using about 218 queries to the
collision oracle. Reciprocally, given access to the encryption-decryption oracle,
the attacker can query the full codebook with 210 − 1 queries7, and emulate any
collision query with tweaks (T1, T2).

Second, given the full codebooks of the encryption-decryption oracle with
tweaks (T1, T2) and (T2, T3), we can combine the data to reconstruct the encryption-
decryption codebooks with tweaks (T1, T3):

E−1
K,T3

(EK,T1
(P )) = E−1

K,T3

(
EK,T2

(
E−1

K,T2
(EK,T1

(P ))
))

In particular, if we query the full codebook with tweaks (Ti, T
∗) for a fixed

tweak T ∗ and Ti ∈ T , we deduce the full codebook with any pair of tweaks
(Ti, Tj) ∈ T × T .

3.2 Attacks Based on Collisions

Our attacks are based on differential cryptanalysis: we build pairs of tweak and
plaintext (P1, T1) and (P2, T2) trying to control the internal differences in the
key schedule and data path. However, we focus on specific characteristics leading
to ciphertext collisions. Therefore, we can directly use the collision oracle, and
we only have to study 8 rounds of the cipher rather than 16.

When given access to the encryption-decryption oracle, we use it with a
fixed tweak T ∗ for decryption. We model this oracle as Π(EK,T (P )) with Π
a fixed but unknown permutation (Π = E−1

K,T∗). After querying Π(EK,T (P ))
for the full codebook under a fixed set T of tweaks, we can check for collisions
EK,T1

(P1) = EK,T2
(P2) for any T1, T2 ∈ T and any P1, P2,∈ {0, 1}10:

EK,T1(P1) = EK,T2(P2) ⇐⇒ Π(EK,T1(P1)) = Π(EK,T2(P2))

With this approach, we have more flexibility in our queries: we have the ability
to use structures of tweaks, decreasing the complexity of some attacks. Moreover,
we still consider only 8 rounds in the analysis.

7 Actually, 210 − 2 queries are sufficient because the permutation is even.
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4 Distinguishing 6-round SCARF

In this section, we present a distinguisher against six rounds of SCARF. This dis-
tinguisher is a stepping stone to the more elaborate eight-round attack described
in Section 5. It is furthermore of interest since it is an efficient distinguisher in
the collision model.

The main idea of the distinguisher is to look for a pair of tweaks together
with a plaintext such that the ciphertexts corresponding to the encryption of the
plaintext under the two tweaks have an unusually high collision probability.

In our distinguisher, we fix the plaintext to the all-zeroes plaintext, and
attempt to choose the tweaks so that the data paths collide on all intermediate
states with high probability. As we will show later, this probability turns out to
be particularly high if we choose a tweak pair with a difference of 8.

First, we look at the probability that a difference in the round subkeys
introduces a difference in the state when applying the G function. Next, we
analyze the probability that data paths collide under different round subkeys.
Finally, we discuss the probability that an initial tweak difference generates
conforming subkey differences when it propagates through the tweakkey schedule.

4.1 Analysis of the G Function

The function G is the combination of a left-multiplication by a key-dependent
matrix M and a fixed non-linear function g:

G(x) = M × x⊕ g(x)

Two different round keys give two different matrices M and M ′ and thus two
different functions G and G′ for which the following holds:

G(x) = G′(x) ⇐⇒ x ∈ ker(M ⊕M ′).

It follows that the probability that G and G′ collide for a random x is 2− rank(M⊕M ′).
For two uniformly random matrices M,M ′ the expected probability is 2−4.023.

4.2 Data Path Analysis

The data path used in the distinguisher is depicted in Figure 3. The first thing
to note is that we only consider round key differences that are always zero in the
k
(i)
6 part of each round key. The only way to introduce a difference into the state

is thus via the G function. Let us now look at the probability that this happens
for the specific round key differences depicted in Figure 3. We will look at the
probability that these differences occur later.

1. We start with the all-zeroes plaintext, so the G function cannot introduce a
difference in the first round since G(0) = 0 for any round key.

2. In the second round, no state difference is introduced as there is no difference
in the round keys.
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3. In the third round we have 4 active bits in M , but the matrix M ⊕M ′ only
has rank 1. Therefore, the collision is preserved with probability 2−1.

4. In the fourth round there are three active bits in M , and the matrix M ⊕M ′

has rank 3. Therefore, the collision is preserved with probability 2−3.
5. In the fifth and sixth round, we consider essentially random matrices M and

M ′. The probability that a vector lies in the kernel of a random matrix of
this size is 2−4.023.

In summary, assuming a key/tweak pair which follows the given subkey
differences, we estimate that the all-zeroes plaintext will collide at every round
with probability 2−12.05.

4.3 Tweakey Schedule Analysis

As explained earlier, we want the differences in the k6-parts of the round subkeys
to be zero and the probability that G preserves collisions to be high at each
round. By examining the tweakey schedule we can pick an input difference such
that the probability of the k

(i)
6 having zero differences is as high as possible, while

the kernel of the matrices M ⊕M ′ is as large as possible. This will maximize the
probability of getting a collision after six rounds.

The related-tweak characteristic that we consider is shown in Figure 5, and
starts with the tweak difference 8. Since the tweak and key are merged linearly,
the differences in the first two round subkeys are known:

k(1) ⊕ k′
(1)

= (8, 0, 0, 0, 0, 0) and k(2) ⊕ k′
(2)

= (0, 0, 0, 0, 0, 0)

With probability 2−3 the active S-box in the first S-box layer of the tweakey
schedule follows the transition 8→ 2. After applying Σ and the bit permutation
π, we get the following key state differences:

k(3) ⊕ k′
(3)

= (2, 4, 8, 0, 1, 0) and k(4) ⊕ k′
(4)

= (1, 0, 10, 0, 4, 0)

In rounds five and six of the tweakey schedule, we are only interested in the
probability that there is no difference in the k6 part of the round keys (i.e., k(5)6 ,
and k

(6)
6 ). If we trace the bits that lead to k

(5)
6 and k

(6)
6 in T 3, we can see that

this event happens with probability 2−4.68, since 5 bits are already inactive, 4
bits are inactive with probability 1/2 and one bit is inactive with probability
5/8.

k(5) ⊕ k′
(5)

= (∗, ∗, ∗, ∗, ∗, 0) and k(6) ⊕ k′
(6)

= (∗, ∗, ∗, ∗, ∗, 0)

Therefore, a random key/tweak pair follows this trail with probability 2−7.68,
resulting in zero differences in k

(1)
6 , k

(2)
6 , k

(3)
6 , k

(4)
6 , k

(5)
6 , k

(6)
6 ; and difference

matrices M ⊕M ′ of ranks 0, 1, and 3 in rounds 2, 3, and 4, respectively.
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4.4 The Full Distinguisher

We now know that the probability that a tweak pair with starting difference 8

follows our trail is 2−7.68. We also established in Section 4.2 that the probability
that the all-zeroes plaintext leads to a ciphertext collision under a tweak pair which
follows the trail is 2−12.05. We conclude that the probability that we obtain a pair
of tweaks and plaintexts following the trail is 2−7.68×2−12.05 = 2−19.73. We assume
that the probability of collision when not following the trail is 2−10, so we expect
a total collision probability of 2−19.73 +

(
1− 2−19.73

)
× 2−10 ≈ 2−10 +2−19.73 for

pairs (0, T ), (0, T + 8), over random keys and random tweaks.
Experimentally we observe a higher probability than explained by this trail

alone. For a random key K and a random tweak T , we observe:

Pr
K,T

[EK,T (0) = EK,T+8(0)] ≈ 1.004× 2−10 ≈ 2−10 + 2−17.8

However, the probability is not uniform over all keys: some keys lead to a
higher bias than others under random tweaks. Out of 64 random keys, with
100 × 230 samples for each key, we observe probabilities of collision between
1.0024×2−10 ≈ 2−10+2−18.7 and 1.0069×2−10 ≈ 2−10+2−17.2. In particular we
observe four clusters of keys of similar size, with collision probabilities respectively
around 1.0025× 2−10, 1.0037× 2−10, 1.0052× 2−10, and 1.0065× 2−10.

We tried to find alternative trails explaining the higher bias, but did not
identify any. Since the distinguisher is already practical, we did not pursue this
analysis further.

4.5 Using the Distinguisher

In order to distinguish 6-round SCARF from a random tweakable permutation in
the collision model, we query the oracle with n pairs (0, T ), (0, T + 8) for random
tweaks T and count the number of corresponding collisions.

If the oracle is a random tweakable permutation, each query returns inde-
pendent results, and a collision occurs with probability q = 2−10. Therefore, the
number of collisions follows a binomial distribution B(n, q) with n trials, and
probability q. If the oracle is 6-round SCARF, we expect that each query returns
a collision with probability p = 2−10 + 2−17.8, so the number of collisions follows
a binomial distribution B(n, p).

We can distinguish both cases by counting the number of collisions, and
comparing the relative frequency of collisions to a threshold t = (p+ q)/2. Given
enough samples, the observed probability is likely to be above the threshold for
6-round SCARF, and below the threshold for a random tweakable permutation.
Since we observed a non-uniform collision probability over the keyspace, we set
the threshold based on the cluster of keys with the lowest collision probability
p ≈ 1.0025×2−10 ≈ 2−10+2−18.6: we use t = (p+q)/2 = (1+1.0025)/2×2−10 =
1.0013× 2−10. Following the analysis of [10, Theorem 2], the number of samples
required to distinguish the two distributions is in the order of O

(
p/(q − p)2

)
.

Therefore we need c × 22×18.6−10 = c × 227.2 samples, with c a small constant
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depending on the required success rate. More precisely, we can estimate the error
rate using a Poisson approximation or a normal approximation of the binomial
distribution. With n = 230 samples, we expect an error rate of 0.11.

Experimentally, we have simulated the distinguisher with n = 230 pairs of
encryption. We use 6-round SCARF with 64 random keys on the one hand, and
64 sets of random ciphertextext on the other hand, running 100 experiments
in each case (with different subsets of the tweak space). We observe between
2% and 16% of false positive, and between 0% and 16% of false negative (in
particular, 34 keys result in 100 successes because they correspond to a higher
collision probability). This matches the theoretical analysis.

5 Breaking 8-round SCARF

In order to attack 8-round SCARF, our strategy is to guess keys in the first
rounds, and use a distinguisher based on a collision characteristic (similar to the
6-round distinguisher) for the later rounds. In particular, by guessing 60 bits of
the master key (corresponding to K1), we can compute the subkeys of the first
two rounds (k(1), k(2)) for any tweak.

In the tweakey schedule, we consider pairs of tweaks so that there is a small
number of active S-boxes in the second SL layer; therefore the last rounds will be
similar to the 6-round distinguisher. This requires having many active S-boxes in
the first SL layer, because the first Σ layer has a large branch number. We use
the trail of Figure 6, with 8 active S-boxes in the first layer and 2 in the second
layer. Moreover, this trail keeps both k(4) and k(6) inactive.

For the data path, we use the trail of Figure 4. We consider pairs of states
which collide after the second round, and we partially decrypt them to obtain the
corresponding plaintexts, which are queried to the oracle to check for a collision.
As in the 6-round distinguisher, our trail assumes that the internal state collides
at each round. This happens with relatively high probability when a tweak pair
follows the trail in Figure 6: the subkeys k

(i)
6 are inactive between rounds 4 and

8, and the matrix is inactive in rounds 4 and 6. Experimentally, we measure
the probability of collision as 1.7× 2−10 ≈ 2−10 + 2−10.5, starting from pairs of
tweaks following the first two S-box layers in the tweakey schedule and pairs of
data colliding after the third round (see Section 5.2 for a more detailed analysis
of the trail).

We first describe a basic attack with 242 queries and high time complexity, and
then we explain how to reduce the complexities below the security claims of the
SCARF designers. As explained in section 3.2, we query the encryption-decryption
oracle with a fixed tweak T ∗ for the decryption, and model it Π(EK,T (P )) with
Π a fixed but unknown permutation (Π = E−1

K,T∗).

5.1 Basic Attack with 242 Queries

The attack works as follows.
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Table 3: Number of ordered pairs following the differential transition 0b0****→
δ, depending on the MSB of the key.

Number of pairs
S-Box Transition k5 = 0 k5 = 1

1 0b0****→ 0b10110 6 6
3 0b0****→ 0b11011 8 8
4 0b0****→ 0b01000 8 8
6 0b0****→ 0b10010 6 6
7 0b0****→ 0b10010 6 6
8 0b0****→ 0b10110 6 6
11 0b0****→ 0b11110 6 6
12 0b0****→ 0b11001 8 8

1. We query and store the full codebooks for a set of tweaks where bits cor-
responding to the active S-boxes in the tweakey schedule trail (T [0 : 3],
T [8 : 15], T [20 : 31], T [40 : 47]) take all possible values, and the other bits are
fixed to zero.
This corresponds to 242 queries, and we obtain values Π(EK,T (x)).

2. We iterate over 270 partial guesses of the key; we guess the full K1 and the
10 bits of K2 corresponding to the active S-boxes in the second tweakey
schedule round, K2[10 : 14] and K2[20 : 24].

3. For each key guess, we filter out pairs of tweaks which follow the trail in the
key schedule up to the second S-box layer.

4. For each such pair of tweaks (T, T ′), we construct 210 data pairs (P, P ′) that
collide after the third round.
Starting from a value (XL, XR) before the third round, we compute δ =
G(XL)⊕G′(XL) = ∆M (2) ×XL, where ∆M (2) is the known key difference
in the third round. We deduce the state value (X ′

L, X
′
R) = (XL, XR ⊕ δ)

such that (XL, XR) and (X ′
L, X

′
R) collide at the end of the third round.

We partially decrypt (XL, XR) and (X ′
L, X

′
R) to obtain the plaintext pairs

(P, P ′).
5. We count how many pairs collide, by comparing Π(EK,T (P )) and Π(EK,T ′(P ′)),

which are part of the data queried in Step 1.

Success Probability. In order to analyze this attack, we first count how many
pairs of tweaks (T, T ′) are expected for each key guess at Step 3.

For each active S-box in the first tweakey schedule layer, the input is the sum
of a 5-bit key and a 4-bit tweak (padded with a zero bit). We consider a structure
with all 24 tweaks, and we filter pairs with a fixed difference δ after the S-box. On
average (for a random S-box and random difference), we expect 24×24×2−5 = 23

ordered pairs of tweaks (T, T ′) with S[k⊕expansion(T )]⊕S[k⊕expansion(T ′)] =
δ. However, taking into account the actual S-box and the trail, we have fewer
pairs; Table 3 shows the number of valid pairs for each S-box, depending on the
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most significant bit of the key. In total we have 65×83/2 = 1990656 (un-ordered)
pairs following the first S-box layer for each key.

In the second layer there are two active S-boxes, and the probability of the
corresponding differential transition is 2−4 for both of them. Therefore we expect
1990656 × 2−8 = 7776 pairs (T, T ′) on average for each key. In Section 5.7,
we show that in the worst case, the minimum number of pairs following the
characteristic through the second S-box layer is 7740 ≈ 212.9.

In Step 4 we therefore build 210 × 212.9 = 222.9 samples (T, P ), (T ′, P ′) for
each key guess. For a wrong key guess, we assume that the number of collisions
follows a binomial distribution with n = 222.9 trials, and probability q = 2−10.
For the right key, the average probability of collision is around p = 1.7× 2−10,
but the distribution does not follow a binomial distribution. In experiments we
observe a variance of 215.3 instead of the expected 213.7 for a binomial distribution.
Instead of assuming a binomial distribution we implement the main step of the
attack and measure experimentally the distribution of the number of collisions.

We distinguish the right key from the wrong keys according to the number
of collisions detected. Using the threshold t = (p + q)/2 = 1.35 × 2−10, the
probability of mistake is negligible. We can bound the probability of a wrong key
having more collisions that the threshold using the Chernoff-Hoeffding theorem
(with D the Kullback-Leibler divergence):

Pr[B(n, q) ≥ nt] ≤ e−D(t‖q)n ≈ 2−628

Therefore expect no wrong key to pass the threshold (270 × 2−628 ≪ 1).
For the right key, we observe experimentally that the probability of being

below the threshold is negligible (below 1/1000). We can also bound it using
Chebyshev’s inequality. We use the random variable X to denote the number of
collisions. Experimentally we observe a standard deviation of σ = 27.6, therefore
we have np ≈ nt+ 14σ and we deduce:

Pr[X ≤ nt] ≤ 1/142 ≈ 0.5%.

Complexity. If we implement this attack naively, the bottleneck of the attack
is Step 3, were we filter tweak pairs following the trail for every key guess.

We optimize this step by observing that the pairs of tweaks following the first
S-box layer depend only on K1 and not K2. Moreover, given a guess of K1 and a
tweak pair following the first S-box layer, we can easily determine the guesses of
K2 (restricted to the active S-boxes) compatible with the pair, because we know
the output of the Σ layer, and the inputs to the S-box (the only pair following
the differential trail). This is shown in Algorithm 1: the bottleneck is the loop
over all K1 guesses and queried tweaks of Line 4, evaluated 232× 260 = 292 times.

5.2 Analysis of the Characteristic

We can analyse the 8-round characteristic in same way as we analysed the 6-round
characteristic. In the key schedule, after filtering pairs of tweaks following the
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characteristic up to the second SL layer, we obtain

k(3) ⊕ k′
(3)

= (0, 0, a, 0, 9, 0) and k(4) = k′
(4)

With probability 5/16 = 2−1.67 the output difference of the active S-box in the
third SL layer is only active on bits 1, 2 and 3. In this case we have:

k(5) ⊕ k′
(5) ∈ ({2, 4, 8, c}, 0, 0, 0, 0, 0) and k(6) = k′

(6)

k(7) ⊕ k′
(7)

= (∗, ∗, ∗, ∗, ∗, 0) and k(8) ⊕ k′
(8)

= (∗, ∗, ∗, ∗, ∗, 0)

In the data path we evaluate the distribution of the rank of the matrices
M ⊕M ′ based on the key schedule differences. We obtain an average probability
2/5 ≈ 2−1.32 for round 5, and 2−4.023 for rounds 7 and 8. Therefore the probability
that a pair of tweaks and plaintexts follows our trail is on average 2−1.67×2−1.32×
2−4.023 × 2−4.023 ≈ 2−11. Finally we expect a probability of collision of roughly
2−10 + 2−11 = 1.5× 2−10 based on this trail. Since the experimental probability
is 1.7× 2−10, this trail does not explain the full bias.

We point out that the 210 pairs that we build for a given tweak pair do not
behave independently. If the tweak pair follows the key schedule characteristic in
the third S-box layer then all 210 pairs have a high probability of colliding. Oth-
erwise we expect them to collide with probability 2−10. Moreover, the probability
of the data characteristic depends on the rank of the matrices M ⊕M ′ which
are fixed by the tweak pair. This explains why the distribution of the number of
collisions does not follow a binomial distribution. We expect that for each tweak
pair, it follows a mixture of several binomial distributions, and the mixtures are
summed to obtain the number of collisions.

Equivalent Keys. We observe that some keys cannot be distinguished by this
attack. Indeed, if a pair of tweaks (T, T ′) follows the key schedule characteristic
for a given key guess, then the input to the active S-boxes in the second SL
layer must be exactly the pairs that satisfies the S-box transition. By flipping
bits K2[11, 13] or K2[20, 23], we only swap the two elements of the pair, and
the tweak pair is also valid for the new key guess. Therefore we obtain sets of 4
equivalent keys.

5.3 Reducing the Number of Queries

Since the attack has an overwhelming probability of success, we can reduce the
query complexity and still keep a high success probability. More precisely, we
select a smaller set of tweaks to query.

Following the analysis of Section 5.1, we count the number of tweak pairs
compatible with the output difference of each individual S-box, considering a
4-bit tweak and a 5-bit key. In particular, we look for subspaces of 8 tweaks that
still guarantee valid pairs for all keys; such subspaces exist for all active S-boxes
in our trail.
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Table 4: Number of ordered pairs following the differential transition V → δ,
depending on the coset of inputs.

Number of pairs
σk = 0 σk = 0 σk = 1 σk = 1

S-Box Transition k5 = 0 k5 = 1 k5 = 0 k5 = 1

1 V → 0b10110 2 2 2 2
6 V → 0b10010 2 2 2 2
7 V → 0b10010 2 2 2 2

We focus on S-boxes 1, 6 and 7, and we select the subspace of 8 tweaks with
even Hamming weight:

V = {0b0000, 0b0011, 0b0101, 0b0110, 0b1001, 0b1010, 0b1100, 0b1111}

For each S-box, we obtain 8 inputs k ⊕ expansion(T ), corresponding to one of 4
cosets of V , depending on the most significant bit of k, and its Hamming weight
σk. As shown in Table 4, we count the number of pairs in each coset of V leading
to the desired output difference δ. For S-boxes 1, 6, and 7, this reduces the
number of available pairs from 6 to 2. Overall, we reduce the number of queries
from 232 × 210 = 242 to 229 × 210 = 239, and the average (respectively, minimal)
number of tweaks compatible with a key decreases from 65 × 83 × 2−8/2 = 7776
(respectively 7740) to 23 × 62 × 83 × 2−8/2 = 288 (respectively 284).

Success Probability. With this variant of the attack, we obtain 210×288 ≈ 218.2

samples (T, P ), (T ′, P ′) for each key guess. For a wrong key, we assume that
the number of collisions follows a binomial distribution with n = 218.2 trials,
and probability q = 2−10. For the right key, we experimentally measure the
distribution of the collision probability, and we set a threshold t so that the
collision probability is higher than the threshold more than 99% of the time. We
obtain t = 1.4× 2−10 (see Figure 7).

Using this threshold t we have a significant advantage, with a small probability
of missing the correct key. We estimate the advantage by evaluating the cumulative
distribution function of the binomial distribution, giving tighter results than the
Chernoff-Hoeffding theorem:

Pr[B(n, q) > nt] ≈ 2−34

Therefore, running the attack with these parameters is expected to return a set
of roughly 270 × 2−34 = 236 candidates for the 70-bit key. With high probability
(99%) this set contains the correct key.

5.4 Improving the Time Complexity

Algorithm 1 is inefficient due to two main reasons:
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– For each key, the algorithm iterates over 232 tweaks (respectively 229 with
less data) to identify a set of 212.9 (respectively 28.2) valid tweaks.

– The algorithm iterates over 210 plaintexts to identify on average one collision.

We improve the complexity by precomputing some data, and reordering the steps
of the attack, as shown in Algorithm 2.

First we observe that the valid pairs of tweaks for a given key guess can be
computed efficiently. Indeed, we consider each S-box independently: we have an
affine subspace of 5-bit inputs k⊕expansion(T ), and we need to filter pairs (T, T ′)
with a fixed output difference S[k ⊕ expansion(T )]⊕ S[k ⊕ expansion(T ′)] = δ.
As explained above, we obtain pairs of S-box inputs (u, u′) with output difference
δ depending on one or two key bits that define the affine subspace (see Tables 3
and 4). We deduce the corresponding tweak pairs as T = u ⊕ k, T ′ = u′ ⊕ k,
and just combine options from all S-boxes. For S-boxes 3, 4, 8, 11, and 12, we
consider a set of tweaks of dimension 4 and only need the MSB of the 5-bit key;
for S-Boxes 1, 6, and 7 we consider a set of tweaks of dimension 3 and need both
the MSB of the key and its Hamming weight. Let us denote this set of 11 key
bits as KS .

After guessing KS , we obtain 23 × 62 × 83/2 = 216.2 pairs of S-box inputs
(U,U ′) that satisfy the first S-box layer of the key schedule characteristic. In
particular, the tweak difference T ⊕ T ′ is equal to the S-box input difference
U ⊕ U and there are only 13 × 32 × 43 = 29.2 different values U ⊕ U ′.

Secondly, instead of iterating over 210 plaintext pairs for every valid tweak pair
and checking for collisions, we precompute pairs of tweaks leading to collisions
for every plaintext pair (P, P ′). More precisely we create a table L indexed by
the tweak difference T ⊕ T ′ and by the pair of plaintext (P, P ′). After guessing
KS , there are only 29.2 possible T ⊕ T ′ for pairs of tweaks following the key
schedule characteristic. For a given T ⊕ T ′ and a given (P, P ′) we expect on
average 229 × 2−10 = 219 tweak pairs (T, T ′) leading to collisions. Therefore the
total memory used is around 29.2 × 219 × 219 = 247.2 32-bit words.

In order to exploit this precomputed data, we reorder the steps of attack:
We first guess KS and 20 bits of K1 corresponding to inactive S-boxes, and we
create counters indexed by the remaining key bits. Then we iterate over pairs of
inputs to the first S-box layer (U,U ′). This fixes the subkeys k(1), k(2) and we
can generate pairs of plaintext (P, P ′) leading to collisions after the third round.
For each such pair, we use the precomputed table to recover pairs of tweaks
(T, T ′) with difference U ⊕ U ′ corresponding to collisions in the queried data.
This fixes the full key K1 = U ⊕ T and we can increment the corresponding
counters (Algorithm 2, line 20).

We also need to compute the number of tweak pairs compatible with each
guess. This number is not constant because the second S-box layer in the key
schedule is probabilistic. We do this by iterating over all tweaks (line 14).

Complexity. The precomputation step of line 7 has complexity 229 × 219 ×
29.2 × 28+3 = 268.2. The bottleneck of the attack is the loop on line 18, evaluated
219 × 210 × 216.2 × 220 × 28+3 = 276.2 times. This requires 276.2 accesses to the

20



precomputated table L; we assume that a memory access has a complexity similar
to the complexity of evaluating the block cipher8.

5.5 Additional Filtering

The attack described so far returns on the average 236 candidates for 70 key bits:
K1, K2[10 : 14], and K2[20 : 24]. In order to filter these candidates we guess 20
additional key bits to increase the signal-to-noise ratio of the characteristic.

More precisely, we guess key bits K2[0 : 4], K2[35 : 39], K2[45 : 49] and
K3[0, 12, 24, 36, 48]. Combined with the previous guesses, we can now compute
the input of the active S-box in the third SL layer of the tweakey schedule. Tweak
pairs follow a valid transition with probability 5/16, and we filter valid tweak
pairs for each key guess; we expect on average 288× 5/16 = 90 tweak pairs. For
tweaks pairs that follow the full tweakey schedule characteristic, the experimental
probability to obtain a collision increases from 1.7 × 2−10 ≈ 2−10 + 2−10.5 to
3.2× 2−10 ≈ 2−10 + 2−8.9.

We thus have three different distributions for the number of found collisions:

– Wrong values of the initial 70-bit guess have q = 2−10 collision probability.
– Right guesses for the initial 70 bits combined with a wrong guess for the

extra 20 bits have a collision probability of 1.7× 2−10.
– The right key guess has collision probability p = 3.2× 2−10.

On average we have n = 90 × 210 = 92160 samples per key guess. This is not
sufficient to recover a unique 90-bit key, but we use the additional filter to identify
the correct 70-bit guess: if the guess is correct, there will be at least one guess of
the additional 20 bits with a high bias p. On the other hand, if the 70-bit guess
is wrong, any guess of the additional 20 bits should lead to a low bias q (we only
distinguish the first and the third cases).

We assume the number of collisions for a wrong guess of the initial 70 bits
follows a binomial distribution B(n, q). For the right key, we use experiments
to measure the probability distribution, and set a threshold so that more than
99% of the keys are above the threshold. As seen in Figure 8, this results in a
threshold t = 2.5× 2−10. With this threshold, we have:

Pr[B(n, q) > nt] ≈ 2−108

Since this filtering is not independent of the previous part we cannot combine
them, but we expect no candidate corresponding to a wrong guess of the initial 70
bits to pass the new filter (290×2−108 ≪ 1). On the other hand, when combining
both steps, we detect the correct key with probability at least 98%.

This step has a relatively small complexity compared to the initial filtering of
the 70 key bits: We iterate over 236 × 220 key candidates, and for each candidate
we process n = 216.5 samples, for a total complexity of 272.5.
8 We point out that the table L is accessed sequentially by blocks of 219 32-bit words,

therefore the latency should be reasonable.
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Algorithm 1 Basic attack on 8 rounds, with 242 queries
1: Query Π(EK,T (P )) . 242

2: for all K1 do . 60 bits
3: Initialize counters (pairs, colls) for 210 K2 candidates
4: for all queried tweak T do . 232

5: Z ← expansion(T )
6: Z′ ← SL−1

(
SL(Z ⊕K1)⊕∆1

)
⊕K1

7: if Z′ is a valid expanded tweak then . 220.9

8: T ′ ← expansion−1(Z′)
9: (T, T ′) satisfies the first S-Box layer

10: Identify candidates K2 compatible with (T, T ′)
11: for all (XL, XR) do . 210

12: (X ′
L, X

′
R)← (XL, XR ⊕∆M (2) ×XL)

13: Partially decrypt (X,X ′) to obtain plaintexts (P, P ′)
14: pairs[K2]← pairs[K2] + 1
15: if Π(EK,T (P )) = Π(EK,T ′(P ′)) then
16: colls[K2]← colls[K2] + 1

17: for all K2 bits active in the second layer do . 10 bits
18: if colls[K2]/pairs[K2] > t then
19: (K1,K2) is a key candidate

Algorithm 2 Improved attack on 8 rounds, with 239 queries
1: Query Π(EK,T (P )) . 239

2: for all KS (bits from active S-Boxes not covered by tweaks) do . 8+3 bits
3: Build 216.2 pairs of inputs (U,U ′) for active S-Boxes of first SL layer
4: Initialize array L of size 29.2 × 219 × 219 . 247.2

5: for all U ⊕ U ′ do . 29.2

6: for all plaintext pairs (P, P ′) do . 219

7: L[U ⊕ U ′][(P, P ′)]← {T ∈ queries : ET (P ) = ET⊕U⊕U′(P ′)} . 229

8: for all K1 corresponding to inactive S-Boxes do . 20 bits
9: Initialize counters (pairs, colls) for remaining 39 bits of key guess

10: for all (U,U ′) do . 216.2

11: 70 bits of subkeys k(1), k(2) are known
12: for all queried tweak T do . 229

13: Identify candidates K1,K2 compatible with (T, T ⊕ U ⊕ U ′)
14: pairs[K1,K2]← pairs[K1,K2] + 210

15: for all (XL, XR) do . 210

16: (X ′
L, X

′
R)← (XL, XR ⊕∆M (2) ×XL)

17: Partially decrypt (X,X ′) to obtain plaintexts (P, P ′)
18: for all T ∈ L[U ⊕ U ′][(P, P ′)] do . 219

19: Identify candidates K1,K2 compatible with (T, T ⊕ U ⊕ U ′)
20: colls[K1,K2]← colls[K1,K2] + 1

21: for all remaining 39 bits of key do
22: if colls[K1,K2]/pairs[K1,K2] > t then
23: (K1,K2) is a key candidate
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5.6 Experimental Verification

We have implemented the main steps of the attack with 239 queries as a proof
of concept: starting from the correct guess of K1, we recover K2[10 : 14] and
K2[20 : 24] in the first phase following Section 5.3, and we filter candidates in
a second phase following Section 5.5. The code is available as supplementary
material9.

Out of 2048 experiments we observe:

– 19 cases where the key does not pass the threshold of the first step;
– 13 cases where the key passes the threshold of the first step, but not the

second step;
– 2016 cases where the key passes both thresholds.

This matches the expected success rate of 98%.
Moreover, we observed no wrong keys passing the first threshold, apart from

the 3 wrong keys equivalent to the correct key. Out of 2048 experiments with a
wrong guess of K1 we do not observe any key passing the first threshold either.
This is coherent with the expected 34 bits of filtering.

5.7 Counting Minimal Compatible Tweak Pairs

To guarantee that a sufficient number of tweak pairs are available for every key
guess in the attack, the minimal number of compatible tweak pairs over all keys
was given in Sections 5.1 and 5.3. In this section we discuss the method that
was used to derive these results. It is based on quasidifferential trails [4] and
computes a tight lower bound on the number of compatible tweak pairs. We give
an overview of quasidifferential trails in Appendix A.

As is shown in Theorem 1, the probability of a differential characteristic
with inputs restricted to a subspace can be computed using quasidifferential
trails. When the analyzed function is key dependent this gives rise to a function
that maps keys from the key-space K to the respective probability of each key:
f : K → [0, 1]. When f is sufficiently simple, its minimum can be computed with
off-the-shelf constraint optimization solvers, such as [11].

Theorem 1. Let F : Fn
2 → Fm

2 be a vectorial Boolean function such that F =
Fr ◦ . . . ◦ F1, let V ⊆ Fn

2 be a subspace of the domain of F . The probability of a
characteristic with differences a1, . . . ar+1 and with input restricted to V is equal
to:

Pr

[
r∧

i=1

Fi(xi + ai) = Fi(xi) + ai+1

]
=

∑
u1⊥V

∑
u2,...,ur

r∏
i=1

DFi

(ui+1,ai+1),(ui,ai)
, (1)

where ur+1 = 0, xi = Fi−1(xi−1) for i ≥ 2 and x1 is sampled uniformly at
random from V .

9 https://github.com/SCARF-Cryptanalysis/SCARF-cryptanalysis
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0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3
·2−10

1.4× 2−10 Right key
Wrong key

N (2−10, 2−28.2)

Fig. 7: Experimental verification of Section 5.3.
We simulate the attack 212 times with random keys, and measure the observed
collision probability for the right key and for a random (wrong) key. With a
threshold of 1.4 × 2−10, we miss less than 1% of right keys. For wrong keys,
we obtain the distribution B(218.2, 2−10)/218.2 which can be approximated by
N (2−10, 2−28.2) (red curve).

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4
·2−10

2.5× 2−10 Right key
Wrong key

N (2−10, 2−28.2)

Fig. 8: Experimental verification of Section 5.5.
We simulate the attack 212 times with random keys, and measure the observed
collision probability for the right key and for a random (wrong) key. With a
threshold of 2.5× 2−10, we miss less than 1% of right keys.
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Proof. The result follows from the representation of the set of input pairs
S = {(x, x + a1) : x ∈ V } in the quasidifferential basis. Let f ∈ R[Fn

2 ⊕ Fn
2 ]

coincide with the probability density of the uniform distribution on S, i.e.
f [x, y] = |V |−1δV [x]δa[y − x] and let f̃ = Dnf be its representation in the
dual quasidifferential basis. We have

f̃ [u, a] = |V |−1
∑

(x,y)∈S
x+y=a

(−1)u
Tx = δa1

(a)δV ⊥(u),

which concludes the proof.

Note that multiplying Equation (1) by the size of V gives the number of ordered
pairs which follow the characteristic. When a1 ∈ V , the number of unique
unordered pairs is half the number of ordered pairs.

Applying [4, Thm. 3.2] and Theorem 1 to the tweak-key schedule up to the
addition with K3 gives∑

u1∈
⊕12

i=1 V ⊥
i

∑
u3∈F60

2

DSL
(u2,a2),(u1,a1)

DSL
(0,a4),(u3,a3)

(−1)u
T
1K

1+uT
3K

2

,

where (u1, a1), (u2, a2), (u3, a3) and (0, u4) are the mask-difference pairs of
respectively the input and output of the first substitution layer and the input and
output of the second substitution layer. Vi are the input spaces to each S-box,
a3 = Σ(a2), and u2 = ΣT(u3).

To further model the truncated characteristic of Figure 6, it suffices to
sum over all characteristics which follow the truncation pattern. However, the
resulting number of quasidifferential trails with non-zero correlation is too large
to enumerate. This can be remediated by reordering the sum to exploit that
DSL = DS⊗12 according to property 2 of [4, Thm. 3.2]:

f(K) =
∑

u3∈F60
2

(−1)u
T
3K

2

DSL
(0,a4),(u3,a3)

∑
a∈

⊕12
i=1 Vi

u∈
⊕12

i=1 V ⊥
i

(−1)u
TK1

DSL
(u2,a2),(u,a)

.

The second sum can now be rewritten as:
R∏
i=1

∑
a1∈Vi

u1∈V ⊥
i

(−1)u
T
1[5i:5i+4]K1[5i:5i+4]DS

(u2[5i:5i+4],a2[5i:5i+4]),(u1,a1)

︸ ︷︷ ︸∑
k∈F52

g(Vi,u2[5i:5i+4],a2[5i:5i+4],k)δk(K1[5i:5i+4])

.

By precomputing g(V, v, b) =
∑

u,a∈V ⊥⊕V (−1)u
TkDS

(v,b),(u,a), f(K) is simple
enough to be minimized with a constraint minimization solver. Table 5 gives the
results of these computations for the characteristic of Figure 6 and the subspace
of Section 5.3 applied to an increasing number of S-boxes. The corresponding
code is available as supplementary material9.
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Table 5: Expected and minimal number of unordered pairs that fol-
low the characteristic of Figure 6 from the input space

⊕12
i=1 Vi

where Vi = {0b0000} if the corresponding S-box is inactive, Vi =
{0b0000, 0b0011, 0b0101, 0b0110, 0b1001, 0b1010, 0b1100, 0b1111} if i ∈ S and
Vi = F4

2 otherwise. The expected number of unordered pairs is the minimum
number of unordered pairs through the first substitution layer multiplied by the
expected probability of the second substitution layer.

S {} {1} {1, 3} {1, 3, 7} {1, 3, 7, 8}

Expected 7776 2592 864 288 96
Minimal 7740 2580 860 284 92

6 Recovering the rest of the key

In the previous section we showed how to recover all of K1 and 10 bits of K2.
We now show how to extract the rest of the key, assuming that all the bits of
K1, K2[10 : 14], and K2[20 : 24] are known. For this part of the attack we also
use the differential trail given in Figure 6.

6.1 Finding 216 Tweak Pairs Following the Given Trail

The first stage is to find 216 tweak pairs (Ti, T
′
i ) that follow the trail in Figure 6

with probability 1 up to the third S-box layer of the tweakey schedule. This can
be readily done since we know the full K1 and the key bits affecting the active
S-boxes in the second round, but there is a small complication due to the fact
that not all bits of K1 are xored with tweak bits. For this reason we split the set
of outputs from the S-box into two parts:

Z0 = {S[x]|x = 0b0****} and Z1 = {S[x]|x = 0b1****}.

As K1[5i − 1] is the most significant bit going into S-box i in the first S-box
layer we know that the output value of S-box i must belong to ZK1[5i−1], for
i = 1, . . . , 12.

We now fix pairs of 60-bit values Vi = (v1, . . . , v12) and V ′
i = (v′1, . . . , v

′
12),

where each vj and v′j are 5-bit values. The V and V ′ represent two states
after the first S-box layer in the tweakey schedule. As explained in Section 5.1,
there are 1990656 valid pairs with the given output difference of the active S-
boxes in the first round. For the passive S-boxes we select values (v2, v5, v9, v10) =
(v′2, v

′
5, v

′
9, v

′
10) from the set of 216 different values from ZK1[9]×ZK1[24]×ZK1[44]×

ZK1[49]. In total we can therefore find 1990656 · 216 ≈ 236.9 pairs (Vi, V
′
i ) that

has the correct difference after the first S-box layer and will lead to the given
input difference of the second S-box layer. The probability for following the
characteristic through the two active S-boxes in this layer is 2−8, so there will
be 228.9 (Vi, V

′
i )-pairs that follow the characteristic up to the input of the third

S-box layer. Since all of K1 and the key bits from K2 affecting the active S-boxes
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in the second layer are known, we can filter out 216 pairs (Vi, V
′
i ) that with

probability 1 will follow the characteristic in Figure 6 up to the third S-box layer.
Going backwards through the first S-box layer we easily find the tweak pairs
(Ti, T

′
i ) that will end up in (Vi, V

′
i ), for 0 ≤ i < 216.

6.2 Guessing the Rest of K2 and 10 Bits of K3

At this point we ask for the full codebook for each of the tweaks Ti and T ′
i

for 0 ≤ i < 216. In total we are therefore making 227 queries to the encryption
oracle. The attack proceeds by guessing the remaining 50 bits of K2. For each
guess, we compute the values (Wi,W

′
i ) after the second S-box layer, for each

of the tweak pairs (Ti, T
′
i ). There are 10 bits of K3 that affect the two S-boxes

corresponding to k
(5)
6 and k

(6)
6 . We now divide the set of 216 (Wi,W

′
i ) pairs and

the corresponding (Ti, T
′
i ) pairs into 210 subsets U0, . . . , U1023 according to these

10 bits. The pairs ((Wi,W
′
i ), (Ti, T

′
i )) are put in subset Uy if the value of Wi

restricted to the 10 selected bits is y. Note that W ′
i restricted to the same 10 bits

is also y, since the characteristic guarantees the difference between Wi and W ′
i is

zero on these bits. We expect that each Uy will have 26 pairs each.
We continue by guessing the 10 bits of K3 going into the S-boxes for k

(5)
6 and

k
(6)
6 . When the guessed 10-bit value is y, we only use the tweak pairs in Uy going

forward. The (Ti, T
′
i ) pairs in Uy will make sure that both k

(5)
6 and k

(6)
6 are zero

for the current key guess.

6.3 Determining the Correct Guess by Counting Collisions

For each of the (expected) 26 tweak pairs (Ti, T
′
i ) in the current subset Uy we

can compute all round keys k(1), k(2), k(3), k(4). Set the state in the data path
after the fourth round to (0, 0) (see Figure 1). For both Ti and T ′

i , decrypt this
(0, 0)-state to find the corresponding plaintexts Pi and P ′

i , both leading to the
(0, 0)-state after round 4. Since we know that k

(5)
6 = k

(6)
6 = 0 we know that

the encryption of both Pi and P ′
i will also have (0, 0)-state after round 6, since

G(0) = 0 regardless of the 25 key bits used in G, and because S[0] = 0.
There is only one active S-box in the third S-box layer in our trail in the

tweakey schedule. With probability 5/16, the pair (Ti, T
′
i ) will follow the partial

characteristic indicated for this S-box in Figure 6, i.e. there will be no difference
in the least or the most significant bits of the S-box outputs. This implies that
k
(7)
6 and k

(8)
6 will have the same values for both Ti and T ′

i under the current key
guess. When the partial characteristic after the third S-box layer is followed, we
know that EK̃,Ti

(Pi) = EK̃,T ′
i
(P ′

i ) = (k
(8)
6 , S[k

(7)
6 ]), where K̃ is the current key

guess. That is, we have a pair of plaintexts and tweaks that collide.
For the correct key guess we therefore expect to have 5/16 · 26 = 20 colliding

pairs from the (expected) 64 (Pi, P
′
i )-pairs. For a wrong key guess the probability

of having a collision between (Pi, Ti) and (P ′
i , T

′
i ) is 2−10. The probability of
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having 11 or more collisions among the (expected) 64 pairs in Uy is

64∑
i=11

(
64

i

)
(2−10)i(1− 2−10)64−i ≈ 2−70.63.

There are 260 − 1 wrong key guesses. For all wrong key guesses, the number of
times we expect to see more than 11 collisions is (260 − 1)2−70.63 = 2−10.63. So
with probability less than 1/1000 do we expect to see more than 10 collisions
for wrong key guesses. The large gap in the number of collisions for right and
wrong key guesses means we can clearly distinguish the correct key guess from
all the wrong ones, even if the number of pairs in the Uy’s deviates slightly from
the expected 64. For instance, with 50 pairs in a Uy, we expect 15.63 collisions
for the correct key guess, while the probability of seeing more than 9 collisions
among the wrong key guesses is 2−6.79. Hence the key guess returning the most
collisions will be the correct K2 and the correct 10 selected bits from K3.

Complexity The complexity of the part of the attack given in this section is
dominated by guessing the remaining 50 bits of K2, and visiting all 216 pairs of
tweaks for each guess. This gives a time complexity of 266.

6.4 Recovering the rest of K3

After learning K2 and 10 bits of K3 we can continue the attack by guessing the
remaining part of K3. For each guess, we first find a set of 8 tweak pairs (Ti, T

′
i )

for 1 ≤ i ≤ 8 that give equal values of k(7)6 and k
(8)
6 . This can be done by first

fixing Ti to an arbitrary value and computing Yi, the 60-bit value output from the
last Σ in the tweakey schedule. Next, we try random values for T ′

i and compute
the corresponding Y ′

i , until Y ′
i [25 : 29] = Yi[25 : 29] and Y ′

i [55 : 59] = Yi[55 : 59].
These 10 bits of Yi and Y ′

i determine k
(7)
6 and k

(8)
6 and will therefore give equal

values for these sub-keys. We expect to try 29 different T ′
i before a match is

found, so repeating this search 8 times gives a total complexity for finding the
(Ti, T

′
i )-pairs of 250 · 29 · 8 = 262.

For each guess of K3 we can compute all round keys k(1), . . . , k(6). For each
of the tweak pairs (Ti, T

′
i ) we can then set the (0, 0)-state after round 6 and

decrypt to find the corresponding plaintexts (Pi, P
′
i ) that will give the (0, 0)-state

after six rounds of encryption. Since we know k
(7)
6 and k

(8)
6 will be the same for

both Ti and T ′
i , we know that EK,Ti

(Pi) = EK,T ′
i
(P ′

i ) for all 1 ≤ i ≤ 8 when the
remaining 50 bits of K3 are guessed correctly. That is, we will see 8 collisions
in the ciphertexts for the 8 (Pi, P

′
i )-pairs we have constructed. For wrong key

guesses, we get a collision in each pair with probability 2−10. Therefore, the
probability of having 8 collisions among the wrong key guesses is 2−80 ·250 = 2−30.
Take the guess giving 8 collisions as the correct value for K3.

28



6.5 Recovering K4

When K1,K2, and K3 have been recovered, the last 60 bits in K4 can be
recovered as follows. Guess K4[0 : 29], the half of K4 that determines k(7). For
each guess, find 8 tweak pairs (Ti, T

′
i ) giving equal k(8)6 . For each pair, we expect

to try 24 tweak pairs before a valid pair is found. The total complexity for this
part is therefore 230 · 24 · 23 = 237.

For each key guess and each of the 8 (Ti, T
′
i ) pairs, set the cipher state after

round 7 to (0, a) for some arbitrary value a. Decrypt this state with the current
key guess and Ti, T

′
i to find the corresponding plaintexts (Pi, P

′
i ). We know that

EK,Ti(Pi) = EK,T ′
i
(P ′

i ) for all 1 ≤ i ≤ 8 when we have guessed the 30 bits
of K4[0 : 29] correctly. All key guesses will have a collision in the right half
of the ciphertext, but wrong key guesses will only collide in the left half with
probability 2−5. The probability of having 8 collisions among the wrong key
guesses is therefore 2−40 · 230 = 2−10. So we expect only one guess for K4[0 : 29]
to collide in all eight pairs, and take that as the correct value.

Finally, the 30 remaining bits of K4 can be guessed for a complete key
candidate K with complexity 230, which is verified against the known code book
for some tweak.

7 Conclusions

We have demonstrated that using tweak pairs exhibiting a well-chosen difference
can be used to introduce a significant bias in the probability that two ciphertexts
collide. We illustrated this approach in a distinguishing attack on 6-round SCARF
with query and time complexities of 230. This distinguisher effectively works by
counting the number of collisions given by the collision oracle and thus serves as
an example of an effective distinguisher in that model.

We next demonstrate how this approach can be extended to a key-recovery
attack on full-round SCARF in the encryption-decryption model. With a query
complexity of 239 and a time complexity of 277, this attack shows that full-round
SCARF does not achieve the designers’ intended security level in the encryption-
decryption model. Whether SCARF is fully secure in the more conservative
collision model remains an open problem.
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A Differential Cryptanalysis

The presentation below follows the geometric approach to differential crypt-
analysis by Beyne and Rijmen [4], although we use the updated description of
the geometric approach from [5]. For simplicity, we will restrict this description
and the subsequent derivation of differential cryptanalysis to vectorial Boolean
function.

The geometric approach studies vectorial Boolean functions, F : Fn
2 → Fm

2 ,
by extending them to linear functions from the free k-vector space on Fn

2 to the
free k-vector space on Fm

2 . This is the push forward operator of F . In the context
of differential cryptanalysis of vectorial Boolean functions, it suffices to take k as
R. Additionally, we index vectors in this free vector space with square brackets.
The notation δx is used for the standard basis vectors, and they are defined as
δx[y] = 1 if and only if x = y and 0 otherwise.

Definition 1 (Pushforward Operator and Transition Matrix). Let F :
Fn
2 → Fm

2 be a vectorial Boolean function. The pushforward operator of F is the
unique linear operator TF : R[Fn

2 ]→ R[Fm
2 ] defined by δx 7→ δF (x) for all x ∈ Fn

2 .
The transition matrix of F is the matrix representation of TF in the standard
basis of R[Fn

2 ] and R[Fm
2 ].

The pushforward operator can be interpreted as propagating information,
in the form of elements of the free vector space, forwards through a function.
Similarly, we can define the pullback operator of a function which propagates
information backwards. It is the dual of the pushforward operator and maps the
k-valued functions on Fm

2 to the k-valued functions on Fn
2 . We use round brackets

for function evaluation. The notation δx is used for the standard basis vectors,
and they are defined as δx(y) = 1 if and only if x = y and 0 otherwise. Note
that we identify the dual of the free k-vector space on a set with the k-valued
functions on the same set by extending the function evaluation linearly to the
k-vector space. That is h(g) =

∑
x∈Fn

2
h(x)g[x] with g ∈ R[Fn

2 ] and h : Fn
2 → R.

Alternatively we write h ∈ RFm
2 .

Definition 2 (Pullback Operator [2, Def. 2.8]). Let F : Fn
2 → Fm

2 be
a vectorial Boolean function. The pullback operator of F is the unique linear
operator TF∨

: RFm
2 → RFn

2 defined by TF∨
(δx) = δx ◦ F for all x ∈ Fm

2 .

The pushforward and pullback operator of the composition or concatenation
of functions can also be expressed as the product and tensor product of the
individual functions, respectively.
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Theorem 2 (Properties of the Pushforward and Pullback Operator [2,
Thm. 2.4]). Let F : Fn

2 → Fm
2 be a vectorial Boolean function. The pushforward

operator TF and pullback operator TF∨ satisfy the following properties:

1. if F (xl‖ . . . ‖x1) = Fl(xl)‖ . . . ‖F1(x1) then TF =
⊗l

i=1 T
Fi and TF∨

=⊗l
i=1 T

Fi
∨,

2. if F = Fr ◦ · · · ◦ F1 then TF = TFr · · ·TF1 and TF∨
= TF1

∨ · · ·TFr
∨.

Many cryptographic properties can be expressed by combining forward and
backward propagation. For example, in differential cryptanalysis [6], we are
interested in the probability that an input pair (x, x+a) results in an output pair
(x′, x′ + b) for some difference a ∈ Fn

2 and b ∈ Fm
2 and a function F : Fn

2 → Fm
2 .

Since we sample x uniformly at random from the domain of F , we can encode this
as a vector g ∈ R[Fn

2 ⊕ Fn
2 ] where g[x, y] = 2−nδa[y − x]. Similarly, the check for

the output difference can be encoded as h ∈ RFm
2 ⊕Fm

2 where h(x, y) = δb(y − x).
The probability of the differential is then equal to h

(
(TF ⊗ TF )g

)
. Note that

g and h are defined on the sets Fn
2 ⊕ Fn

2 and Fm
2 ⊕ Fm

2 respectively, because
differential cryptanalysis requires pairs of values.

One of the strengths of the geometric approach is that we can analyse the
transition matrix in any basis. Such a basis can be chosen to simplify the
description of the properties of interest and/or a part of the cipher, such as
the key addition. A choice of basis that describes differential properties are the
indicators for the difference, δb(y − x). However, this basis does not span the
full space and needs to be extended. The quasidifferential basis is the extension
of these difference indicators with the additive character basis used in linear
cryptanalysis [1]. This choice additionally diagonalizes the transition matrix of
the constant addition, which simplifies the analysis of key additions.

Definition 3 (Quasidifferential Basis [4, Def. 3.1]). For any u, a ∈ Fn
2 the

function βu,a : Fn
2 ⊕ Fn

2 → R is defined as

βu,a(x, y) = χu(x)δa(y − x),

where χu(x) = (−1)uTx. The set of all βu,a defines the quasidifferential basis.

Because the quasidifferential basis is orthogonal [4, Thm. 3.1], its dual basis
consists of the vectors βu,a[x, y] = 2−nβu,a(x, y). Let Dn be the change of basis
transformation with respect to this dual basis. The quasidifferential transition
matrix can then be defined as the change of basis transformation of TF ⊗ TF to
this dual basis.

Definition 4 (Quasidifferential Transition Matrix [4, Def. 3.1]). For
a function F : Fn

2 → Fm
2 , let DF = Dm(TF ⊗ TF )D−1

n . The quasidifferential
transition matrix is the coordinate representation of DF with respect to the
standard bases of R[Fn

2 ⊕ Fn
2 ] and R[Fm

2 ⊕ Fm
2 ].

The properties of the transition matrix from Theorem 2 carry over to the
quasidifferential transition matrix. Additionally, the quasidifferential transition
matrices of affine functions have a simple description.
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Theorem 3 (Properties of Quasidifferential Transition Matrices [4,
Thm. 3.2]). Let F : Fn

2 → Fm
2 be a vectorial Boolean function. The quasidiffer-

ential transition matrix of F , DF has the following properties:

1. if F (xl‖ . . . ‖x1) = Fl(xl)‖ . . . ‖F1(x1), then DF =
⊗l

i=1 D
Fi ,

2. if F = Fr ◦ · · · ◦ F1 then DF = DFr . . . DF1 ,
3. if F (x) = x+ t, then DF

(v,b),(u,a) = (−1)uTtδu(v)δa(b),
4. if F is a linear function, DF

(v,b),(u,a) = δu(F
T(v))δb(F (a)).

At the SAC 2023 summer school, Beyne gave an alternative description of the
quasidifferential transition matrix which highlights the information that a single
entry propagates [3]. The entries of the quasidifferential transition matrix are
equal to the probability of the difference a to b through F times the correlation
of the linear approximation uTx = vTF (x) conditioned on the right pairs of the
difference:

DF
(v,b),(u,a) =

(
2Pr

[
uTx = vTF (x) | F (x+ a) = F (x) + b

]
− 1

)
(2)

× Pr [F (x+ a) = F (x) + b] ,

where x is a random vector uniformly distributed on Fn
2 .

When F = Fr ◦ · · · ◦ F1, property 2 of Theorem 3 gives rise to a trail-based
approach to computing the probability of a differential:

Pr [F (x+ a) = F (x) + b] = DF
(0,b),(0,a) =

∑
a2,...ar,u2,...ur

r∏
i=1

DFi

(ui+1,ai+1),(ui,ai)
,

where u1 = ur+1 = 0, a1 = a and ar+1 = b. From the alternative description
of Equation (2) it can be seen that, for a fixed sequence of differences, the
quasidifferential trail with the all-zero masks coincides with the corresponding
differential characteristic. The correlation of this quasidifferential trail is equal to
the expected differential probability of the characteristic, as it would be derived
through ordinary differential cryptanalysis:

Pr

[
r∧

i=1

Fi(xi + ai) = F (xi) + ai+1

]
=

r∏
i=1

DF
(0,ai+1),(0,ai)

,

where all xi are independently uniform on the domain of their corresponding Fi.
All other quasidifferential trails following the same characteristic can be seen

as corrections to the expected differential probability based on probabilistic
linear relations on the pairs that satisfy the characteristic. By summing over
all quasidifferential trails for a fixed characteristic, the exact probability of that
characteristic can be computed.

Theorem 4 (Exact Probability of a Differential Characteristic [4, Thm.
4.1]). Let F : Fn

2 → Fm
2 be a vectorial Boolean function such that F = Fr◦. . .◦F1.
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The probability of a differential characteristic a1, . . . , ar+1 is equal to the sum of
the correlations of all quasidifferential trails with the same differences:

Pr

[
r∧

i=1

Fi(xi + ai) = F (xi) + ai+1

]
=

∑
u2,...,ur

r∏
i=1

DF
(ui+1,ai+1),(ui,ai)

,

where u1 = ur+1 = 0, xi = Fi−1(xi−1) for i > 1 and x1 uniform random on the
domain of F .
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