SHA-1 Cryptanalysis

New chosen-prefix collision techniques 000000 Conclusion

From Collisions to Chosen-Prefix Collisions Application to Full SHA-1

Gaëtan Leurent Thomas Peyrin

Inria, France

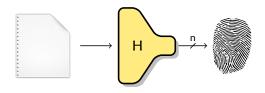
NTU, Singapour

Eurocrypt 2019

Gaëtan Leurent, Thomas Peyrin

From Collisions to Chosen-Prefix Collisions

Eurocrypt 2019 1 / 21


Introduction

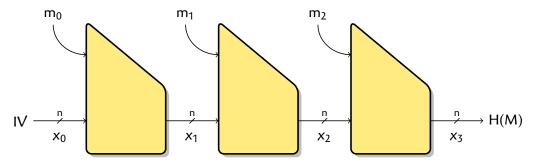
OOOOOOOO

SHA-1 Cryptanalysis 0000

New chosen-prefix collision techniques 000000 Conclusion

Hash functions

- ▶ Hash function: public function $\{0,1\}^* \rightarrow \{0,1\}^n$
 - Maps arbitrary-length message to fixed-length hash
- Hash function should behave like a random function
 - Hard to find collisions, preimages
 - Hash can be used as fingerprint, identifier
- Used in many different contexts
 - Signature: hash-and-sign
 - MAC: hash-and-PRF
 - Blockchain: Proof-of-work, ...


 $\begin{array}{c} Introduction \\ \circ \bullet \circ \circ \circ \circ \circ \circ \circ \end{array}$

SHA-1 Cryptanalysis

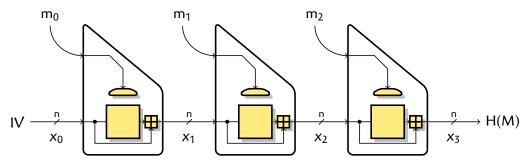
New chosen-prefix collision techniques 000000 Conclusion

SHA-1

- Designed by NSA: SHA-0 [1993], then SHA-1 [1995]
- Standardized by NIST, ISO, IETF, ... Widely used until quite recently
- State size: n = 160
 - Expected collision security 2⁸⁰
- Iterative structure: Merkle-Damgård construction
- Block cipher-based compression function: Davies-Meyer

Gaëtan Leurent, Thomas Peyrin

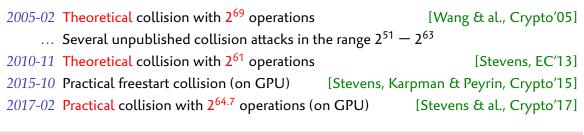
From Collisions to Chosen-Prefix Collisions


 $\begin{array}{c} Introduction \\ \circ \bullet \circ \circ \circ \circ \circ \circ \circ \end{array}$

SHA-1 Cryptanalysis

New chosen-prefix collision techniques 000000 Conclusion

SHA-1


- Designed by NSA: SHA-0 [1993], then SHA-1 [1995]
- Standardized by NIST, ISO, IETF, ... Widely used until quite recently
- State size: n = 160
 - Expected collision security 2⁸⁰
- Iterative structure: Merkle-Damgård construction
- Block cipher-based compression function: Davies-Meyer



SHA-1 Cryptanalysis

New chosen-prefix collision techniques 000000 Conclusion

SHA-1 Cryptanalysis

SHA-1 today

Modern web browsers reject SHA-1 certificates since 2017

- SHA-1 certificates still exists

Symantec. SHA-1 SSL certificate using

SHA-1 certificates still accepted by modern non-browser TLS clients

SHA-1 also used in Git, TLS 1.2 handshake, ...

Gaëtan Leurent, Thomas Peyrin

SHA-1 Cryptanalysis

New chosen-prefix collision techniques 000000 Conclusion

SHA-1 today

- Modern web browsers reject SHA-1 certificates since 2017
- SHA-1 certificates still exists
 - CAs still sell legacy SHA-1 certificates

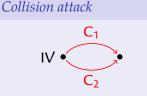
SHA-1 SSL certificate using Symantec's Private CA technology...

SHA-1 certificates still accepted by modern non-browser TLS clients

- Until a few week ago, a mailserver in TU Darmsdtat used a SHA-1 certificate
- Windows 10 "Mail" app connects without error

```
$ sslscan mail.sim.informatik.tu-darmstadt.de:993
[...]
SSL Certificate:
Signature Algorithm: she1WithPSAEperuption
```

```
Signature Algorithm: sha1WithRSAEncryption
```


```
SHA-1 also used in Git, TLS 1.2 handshake, ...
```

SHA-1 Cryptanalysis 0000

New chosen-prefix collision techniques 000000 Conclusion

Exploiting collisions

Adding prefix and suffix

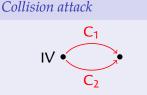
- Start from IV
- C₁ and C₂ collide

- Add identical prefix and suffix using iterative structure
- Usually same difficulty (just a different IV)
- Issue: C₁ and C₂ look random (not controlled)
 - Solution: hide in some ignored sections of the file (e.g. comment)
- Issue: collision is not meaningful
 - Solution: many file formats (e.g. PDF) allow conditional branches

 $M_1 = \text{``if } (C_1 == C_1) \{ \text{good } \} \text{ else } \{ \text{ evil } \}'$ $M_2 = \text{``if } (C_2 == C_1) \{ \text{good } \} \text{ else } \{ \text{ evil } \}'$

Gaëtan Leurent, Thomas Peyrin

From Collisions to Chosen-Prefix Collisions


SHA-1 Cryptanalysis 0000

New chosen-prefix collision techniques 000000

Conclusion

Exploiting collisions

Adding prefix and suffix

- Start from IV
- C₁ and C₂ collide

- Add identical prefix and suffix using iterative structure
- Usually same difficulty (just a different IV)
- Issue: C₁ and C₂ look random (not controlled)
 - Solution: hide in some ignored sections of the file (e.g. comment)
- Issue: collision is not meaningful
 - Solution: many file formats (e.g. PDF) allow conditional branches

Gaëtan Leurent, Thomas Peyrin

From Collisions to Chosen-Prefix Collisions

SHA-1 Cryptanalysis 0000

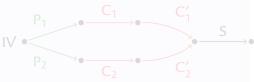
New chosen-prefix collision techniques 000000

Chosen-Prefix Collisions

[Stevens, Lenstra & de Weger, EC'07]

Even with a prefix and prefix, many protocol seem unaffected by collision attacks

Identical-prefix collision


• Given IV, find $M_1 \neq M_2$ s. t. H(M₁) = H(M₂)

- Arbitrary common prefix/suffix, random collision blocks
- Breaks integrity verification
- Breaks signatures (in theory)

Chosen-prefix collision

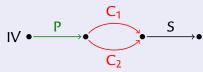
► Given P_1 , P_2 , find $M_1 \neq M_2$ s. t. H($P_1 \parallel M_1$) = H($P_2 \parallel M_2$)

- Breaks certificates
 [Stevens & al, Crypto'09]
- Breaks TLS, IKE, SSH

[Bhargavan & L, NDSS'16]

SHA-1 Cryptanalysis 0000

New chosen-prefix collision techniques 000000


Chosen-Prefix Collisions

[Stevens, Lenstra & de Weger, EC'07]

Even with a prefix and prefix, many protocol seem unaffected by collision attacks

Identical-prefix collision

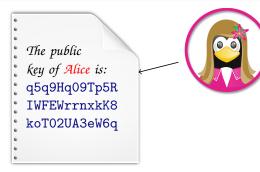
• Given IV, find $M_1 \neq M_2$ s. t. H(M₁) = H(M₂)

- Arbitrary common prefix/suffix, random collision blocks
- Breaks integrity verification
- Breaks signatures (in theory)

Chosen-prefix collision

► Given P_1, P_2 , find $M_1 \neq M_2$ s. t. $H(P_1 || M_1) = H(P_2 || M_2)$

- Breaks certificates
 [Stevens & al, Crypto'09]
- Breaks TLS, IKE, SSH


[Bhargavan & L, NDSS'16]

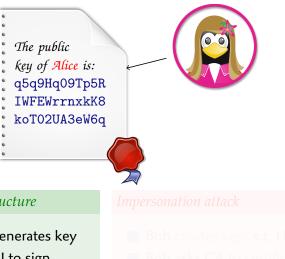
SHA-1 Cryptanalysis 0000

New chosen-prefix collision techniques 000000

Attacking key certification

[Stevens, Lenstra & de Weger, EC'07]

PKI Infrastructure


- Alice generates key
- Ask PKI to sign
- Certificate proves ID

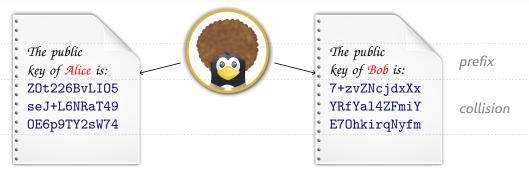
Impersonation attack

- Bob creates keys s.t. H(Alice||k_A) = H(Bob||k_B)
- Bob asks CA to certify his key k_B
- Bob copies the signature to k_A, impersonates Alice

Attacking key certification

[Stevens, Lenstra & de Weger, EC'07]

PKI Infrastructure


- Alice generates key
- Ask PKI to sign
- Certificate proves ID ►

SHA-1 Cryptanalysis 0000 *New chosen-prefix collision techniques* 000000

Conclusion

Attacking key certification

[Stevens, Lenstra & de Weger, EC'07]

PKI Infrastructure

- Alice generates key
- Ask PKI to sign
- Certificate proves ID

Impersonation attack

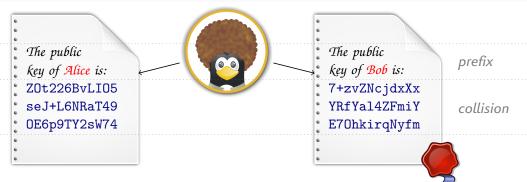
Bob creates keys s.t. H(Alice||k_A) = H(Bob||k_B)

2 Bob asks CA to certify his key k_E

Bob copies the signature to k_A, impersonates Alice

Gaëtan Leurent, Thomas Peyrin

From Collisions to Chosen-Prefix Collisions


Eurocrypt 2019 8 / 21

SHA-1 Cryptanalysis 0000 *New chosen-prefix collision techniques* 000000

Conclusion

Attacking key certification

[Stevens, Lenstra & de Weger, EC'07]

PKI Infrastructure

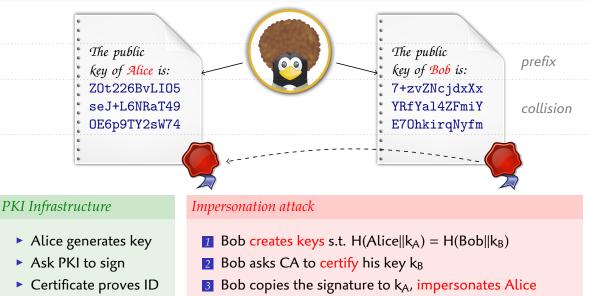
Impersonation attack

- Alice generates key
- Ask PKI to sign
- Certificate proves ID

Bob creates keys s.t. H(Alice||k_A) = H(Bob||k_B)

2 Bob asks CA to certify his key k_B

Bob copies the signature to k_A, impersonates Alice


SHA-1 Cryptanalysis

New chosen-prefix collision techniques 000000

Conclusion

Attacking key certification

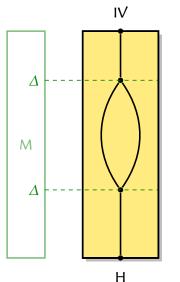
[Stevens, Lenstra & de Weger, EC'07]

SHA-1 Cryptanalysis 0000 *New chosen-prefix collision techniques* 000000 Conclusion

[SSALMO, Crypto'09]

Outline

- Chosen-prefix collisions are more dangerous than identical-prefix collisions
 - Creation of a rogue CA with MD5 CPC
 - Abused in the wild: Flame malware (MD5 CPC)
- Generic attacks require 2^{n/2} operations in both cases
- Cryptanalytic attack harder for chosen-prefix collisions


	Identical-Prefix Collisions	Chosen-Prefix Collisions
MD5	2 ¹⁶ [SSALMO C'09]	2 ^{39.1} [SSALMO C'09]
SHA-1	2 ^{64.7} [Stevens EC'13, SBKAM C'17]	277.1 [Stevens EC'13]

Goal of this work

- Improve SHA-1 chosen-prefix collision attacks
- Reduce the gap between Identical-Prefix and Chosen-Prefix Collisions

SHA-1 Cryptanalysis •000 *New chosen-prefix collision techniques* 000000 Conclusion

Differential collision attacks

Differential cryptanalysis

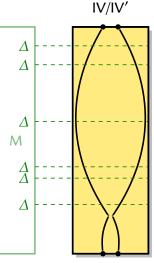
- Find a high probability trail $0 \rightarrow 0$
- Find a conforming message
- 2 Linearized trails

Chabaud & Joux, C'98

- Linear combinations of local collisions
- High probability, but non-zero input / output diff.
- 3 Message modification

- [BC04, WYY05]
- Satisfy first rounds without paying probability

4 Non-linear trails


- [Wang & al., C'05]
- Modify trail in first rounds using non-linearity
- Can start from arbitrary difference
 - \Rightarrow near-collision
- 5 Multi-block technique

- [CJ98, WYY05]
- Two trails with same linear core: $0 \rightarrow \delta$ and $\delta \rightarrow \delta$ \Rightarrow collision

From Collisions to Chosen-Prefix Collisions

SHA-1 Cryptanalysis •000 *New chosen-prefix collision techniques* 000000 Conclusion 00

Differential collision attacks

H/H'

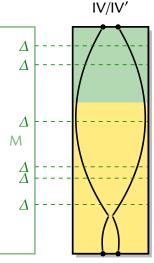
1 Differential cryptanalysis

- Find a high probability trail $0 \rightarrow 0$
- Find a conforming message
- 2 Linearized trails

[Chabaud & Joux, C'98]

- Linear combinations of local collisions
- High probability, but non-zero input / output diff.
- 3 Message modification

- [BC04, WYY05]
- Satisfy first rounds without paying probability
- 4 Non-linear trails


- [Wang & al., C'05]
- Modify trail in first rounds using non-linearity
- Can start from arbitrary difference
 - \Rightarrow near-collision
- 5 Multi-block technique

- [CJ98, WYY05]
- Two trails with same linear core: $0 \rightarrow \delta$ and $\delta \rightarrow \delta$ \Rightarrow collision

SHA-1 Cryptanalysis

New chosen-prefix collision techniques 000000 Conclusion 00

Differential collision attacks

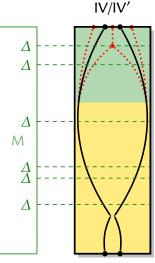
H/H'

1 Differential cryptanalysis

- Find a high probability trail $0 \rightarrow 0$
- Find a conforming message
- 2 Linearized trails

- [Chabaud & Joux, C'98]
- Linear combinations of local collisions
- High probability, but non-zero input / output diff.
- 3 Message modification

[BC04, WYY05]


- Satisfy first rounds without paying probability
- 4 Non-linear trails

- [Wang & al., C'05
- Modify trail in first rounds using non-linearity
- Can start from arbitrary difference
 - \Rightarrow near-collision
- 5 Multi-block technique

- [CJ98, WYY05]
- Two trails with same linear core: $0 \rightarrow \delta$ and $\delta \rightarrow \delta$ \Rightarrow collision

SHA-1 Cryptanalysis •000 *New chosen-prefix collision techniques* 000000 Conclusion

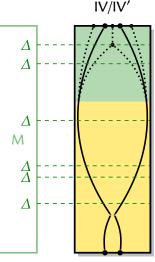
Differential collision attacks

H/H'

Differential cryptanalysis

- Find a high probability trail $0 \rightarrow 0$
- Find a conforming message
- 2 Linearized trails

- [Chabaud & Joux, C'98]
- Linear combinations of local collisions
- High probability, but non-zero input / output diff.
- 3 Message modification


- [BC04, WYY05]
- Satisfy first rounds without paying probability
- 4 Non-linear trails

- [Wang & al., C'05]
- Modify trail in first rounds using non-linearity
- Can start from arbitrary difference
 - \Rightarrow near-collision
- 5 Multi-block technique

• Two trails with same linear core: $0 \rightarrow \delta$ and $\delta \rightarrow \delta$ \Rightarrow collision

SHA-1 Cryptanalysis •000 *New chosen-prefix collision techniques* 000000 Conclusion

Differential collision attacks

H/H'

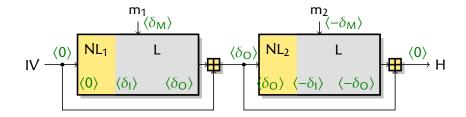
1 Differential cryptanalysis

- Find a high probability trail $0 \rightarrow 0$
- Find a conforming message
- 2 Linearized trails

- [Chabaud & Joux, C'98]
- Linear combinations of local collisions
- High probability, but non-zero input / output diff.
- 3 Message modification

- [BC04, WYY05]
- Satisfy first rounds without paying probability
- 4 Non-linear trails
- [Wang & al., C'05]
- Modify trail in first rounds using non-linearity
- Can start from arbitrary difference
 - \Rightarrow near-collision
- 5 Multi-block technique

- [CJ98, WYY05]
- Two trails with same linear core: $0 \rightarrow \delta$ and $\delta \rightarrow \delta$ \Rightarrow collision


SHA-1 Cryptanalysis 0000

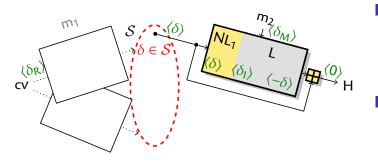
New chosen-prefix collision techniques 000000

MD5/SHA-1 collision attack

Multi-block technique

- Start from a good core linear trail $\delta_{\rm I} \rightarrow \delta_{\rm O}$
- Build two non-linear trails $0 \rightarrow \delta_{I}, \delta_{O} \rightarrow -\delta_{I}$
- Differences cancel due to feed-forward

SHA-1 Cryptanalysis


New chosen-prefix collision techniques 000000 Conclusion 00

Chosen-prefix collision attack

[Stevens, Lenstra & de Weger, EC'07]

Main idea

Find a set of "nice" chaining value differences ${\cal S}$

Birthday phase

- ► Find m_1, m'_1 such that $H(P_1 || m_1) - H(P_2 || m'_1) \in S$
- Complexity about $\sqrt{2^n/|S|}$

2 Near-collision phase

- Adjust non-linear trail
- Erase the state difference, using near-collision blocks

New chosen-prefix collision techniques 000000

How to build S: previous works

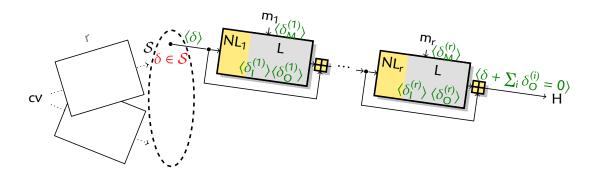
MD5

[SLW07] SHA-1

- Family of core trails, output on different bits
- Several near-collision blocks, erase differences bit by bit
- Very structured set S

[S13]

- Single core trail, vary the last rounds
- Single near-collision block
- ▶ Small set *S*, no structure


Our work

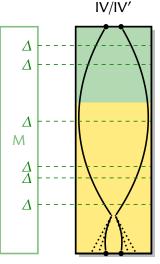
- The bottleneck of the SHA-1 attack is the birthday phase
 - Complexity around $\sqrt{2^n/|S|}$
 - We need a larger set S
- Can we combine those ideas and improve them?

SHA-1 Cryptanalysis 0000

New chosen-prefix collision techniques ••••••• Conclusion

New techniques

- I Larger set of output differences for the compression function $(192 \rightarrow 8768)$ I Multi-block technique using a single core trail $|\mathcal{S} \approx 2^{30}|$
- **3** Dynamic selection of near-collision targets (clustering)


Gaëtan Leurent, Thomas Peyrin

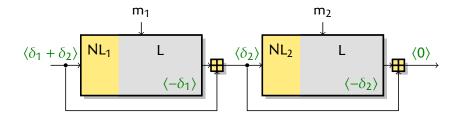
SHA-1 Cryptanalysis

New chosen-prefix collision techniques

Conclusion

Relaxing the final rounds

H/H'


- Start from a core linear trail
- Modify last rounds to reach new difference
- Previous work: [Stevens, EC'13]
 192 differences with optimal probability
- Our work: 8768 differences with non-optimal probability
- Reduce the complexity from 2^{77.1} to 2^{74.3}

SHA-1 Cryptanalysis 0000

New chosen-prefix collision techniques

Conclusion

Multi-block technique with unstructured set

- Assume we reach a set of output differences \mathcal{D} with one block
- With two blocks, we can reach a set of output differences:
 S := {δ₁ + δ₂ | δ₁, δ₂ ∈ D}
- With n blocks:

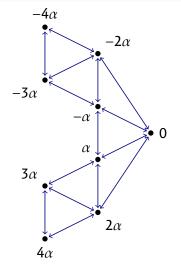
 $\mathcal{S} := \{\delta_1 + \delta_2 + \cdots \delta_n \mid \delta_1, \delta_2, \dots \delta_n \in \mathcal{D}\}$

Reduce the complexity from 2^{74.3} to 2^{68.6}

SHA-1 Cryptanalysis 0000

New chosen-prefix collision techniques

Clustering


Observation

A value in *S* can be reached in many different ways $\delta_1 + \delta_2 + \delta_3 = \delta_1 + \delta_3 + \delta_2 = \delta_2 + \delta_1 + \delta_3 = \cdots$

- Near-collision block search:
 - **1** Choice of δ gives message conditions
 - 2 Search for message reaching δ

• Target δ values with same conditions simultaneously!

- Eg. half work with two δ with similar cost
- With weights: $w_N = \min\left\{\left(1 + \sum(w_j/c_j^\beta)\right) / \sum(1/c_j^\beta)\right\}$
- Reduce the complexity from 2^{68.6} to 2^{66.9}

Graph \mathcal{G} : transitions in \mathcal{S} Ex: $\mathcal{D} := \{-2\alpha, -\alpha, \alpha, 2\alpha\}$

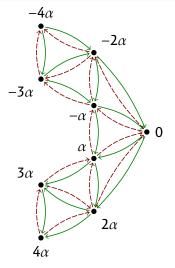
Gaëtan Leurent, Thomas Peyrin

From Collisions to Chosen-Prefix Collisions

Eurocrypt 2019 17 / 21

SHA-1 Cryptanalysis 0000

New chosen-prefix collision techniques


Conclusion

Clustering

Observation

A value in *S* can be reached in many different ways $\delta_1 + \delta_2 + \delta_3 = \delta_1 + \delta_3 + \delta_2 = \delta_2 + \delta_1 + \delta_3 = \cdots$

- Near-collision block search:
 - **1** Choice of δ gives message conditions
 - 2 Search for message reaching δ
- Target δ values with same conditions simultaneously!
 - \blacktriangleright Eg. half work with two δ with similar cost
- With weights: $w_N = \min\left\{\left(1 + \sum (w_j/c_j^\beta)\right) / \sum (1/c_j^\beta)\right\}$
- Reduce the complexity from 2^{68.6} to 2^{66.9}

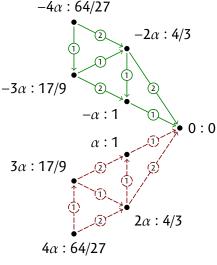
Graph \mathcal{G} : transitions in \mathcal{S} Ex: $\mathcal{D} := \{-2\alpha, -\alpha, \alpha, 2\alpha\}$

Gaëtan Leurent, Thomas Peyrin

From Collisions to Chosen-Prefix Collisions

Eurocrypt 2019 17 / 21

SHA-1 Cryptanalysis 0000

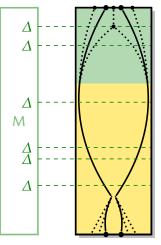

New chosen-prefix collision techniques

Clustering

Observation

A value in *S* can be reached in many different ways $\delta_1 + \delta_2 + \delta_3 = \delta_1 + \delta_3 + \delta_2 = \delta_2 + \delta_1 + \delta_3 = \cdots$

- Near-collision block search:
 - **1** Choice of δ gives message conditions
 - 2 Search for message reaching δ
- Target δ values with same conditions simultaneously!
 - \blacktriangleright Eg. half work with two δ with similar cost
- With weights: $w_N = \min\left\{\left(1 + \sum_{j=1}^{\infty} (w_j/c_j^{\beta})\right) / \sum_{j=1}^{\infty} (1/c_j^{\beta})\right\}$
- Reduce the complexity from 2^{68.6} to 2^{66.9}


Graph \mathcal{G} : transitions in \mathcal{S} Ex: $\mathcal{D} := \{-2\alpha, -\alpha, \alpha, 2\alpha\}$

SHA-1 Cryptanalysis 0000

New chosen-prefix collision techniques

Application to SHA-1: low-level details

IV/IV'

H/H'

- Start from the SHAttered collision attack
 - Proven to work
 - Complexity 2^{64.7} on GPU
- Relax the last rounds
 - 8768 possible output differences
- Assume that we can build trails in the first rounds
 - More constrained than IPC attack
 - C_{block} between 2^{64.7} (optimistic) and 2^{67.7} (conservative), depending on degrees of freedom
- Build set ${\mathcal S}$ and graph ${\mathcal G}$
 - Large computational effort
 - $|S| = 2^{33.7}$, iterations for clustering

SHA-1 Cryptanalysis

New chosen-prefix collision techniques

Conclusion 00

Attack parameters

Set ${\mathcal S}$		Birthday parameters					
Max cost	Size	Mask	Proba	# coll.	Ch. len.	# chain	Attack cost
$2.0 \cdot C_{block}$	2 ^{24.66}	106 bits	0.71	2 ^{30.83}	2 ³⁴	2 ^{34.74}	$2^{68.74} + 2^{65.83} + 2.0 \cdot C_{block}$
$2.5 \cdot C_{block}$	2 ^{28.59}	102 bits	0.65	2 ^{31.03}	2 ³²	2 ^{34.84}	$2^{66.84} + 2^{64.03} + 2.5 \cdot C_{block}$
$3.0 \cdot C_{block}$	2 ^{30.95}	98 bits	0.76	2 ^{32.44}	2 ³¹	2 ^{34.55}	$2^{65.55} + 2^{64.44} + 3.0 \cdot C_{block}$
$3.5 \cdot C_{block}$	2 ^{32.70}	98 bits	0.76	2 ^{30.70}	2 ³⁰	2 ^{34.68}	$2^{64.68} + 2^{61.70} + 3.5 \cdot C_{block}$
$4.0 \cdot C_{block}$	2 ^{33.48}	98 bits	0.74	2 ^{29.95}	2 ³⁰	2 ^{34.30}	$2^{64.30} + 2^{60.95} + 4.0 \cdot C_{block}$
$4.5 \cdot C_{block}$	((98 bits	0.74	2 ^{29.77}	2 ³⁰	2 ^{34.21}	$2^{64.21} + 2^{60.77} + 4.5 \cdot C_{\text{block}}$

Optimal parameters

- Optimistic estimate: 2^{66.9}
- Conservative estimate: 2^{69.4}

 $\begin{aligned} (C_{block} &= 2^{64.7}, \text{ max cost of } 3.5 \cdot C_{block}) \\ (C_{block} &= 2^{67.7}, \text{ max cost of } 2.5 \cdot C_{block}) \end{aligned}$

New chosen-prefix collision techniques 000000

Results

• Generic framework to turn collision attacks into chosen-prefix collision attacks

Function	Collision type	Complexity (GPI	J) Ref.
SHA-1	collision	2 ⁶⁹	[Wang & al., C'05]
	chosen-prefix collisio	2 ^{64.} on 2 ^{77.} 2 ^{66.9} — 2 ^{69.}	¹ [Stevens, EC'13]
MD5	collision	2 ⁴⁰ 2 ¹⁶	[Wang & al., EC'05] [Stevens & al., C'09]
	chosen-prefix collisic	on (9 blocks) 2 ^{39.} (3 blocks) 2 ⁴⁹ (1 block) 2 ^{53.} (2 blocks) 2 ^{46.}	[Stevens & al., C'09] 2 [Stevens & al., C'09]

▶ Small gap between SHA-1 Identical-Prefix and Chosen-Prefix collisions (×4.6 − ×26)

Improvement for MD5 CPC limited to two blocks

*The attack has a complexity of 2⁶¹ on CPU, and 2^{64.7} on GPU

Gaëtan Leurent, Thomas Peyrin

Attack cost and future work

- We are now looking more closely at the low-level details
 - We believe we can keep two boomerangs
 - This gives $C_{block} = 2^{65.1}$, and the total cost is around $2^{67.2}$
- Cost estimation by renting GPUs:
 - About 2.6M\$ on Amazon's AWS (using spot p3.16xlarge instances @7.5\$/hr)
 - Around 540 000\$ renting GPU (former mining farms?)
 - Affordable for state-level adversaries
- Security advice: retire SHA-1 NOW!

On-going work

- New ideas for small improvements of various parts of attacks
- Get the cost below 100 000\$
- We hope to build a practical chosen-prefix collision in 2019...

Gaëtan Leurent, Thomas Peyrin

From Collisions to Chosen-Prefix Collisions

Attack cost and future work

- We are now looking more closely at the low-level details
 - We believe we can keep two boomerangs
 - This gives $C_{block} = 2^{65.1}$, and the total cost is around $2^{67.2}$
- Cost estimation by renting GPUs:
 - About 2.6M\$ on Amazon's AWS (using spot p3.16xlarge instances @7.5\$/hr)
 - Around 540 000\$ renting GPU (former mining farms?)
 - Affordable for state-level adversaries
- Security advice: retire SHA-1 NOW!

On-going work

- New ideas for small improvements of various parts of attacks
- Get the cost below 100 000\$
- We hope to build a practical chosen-prefix collision in 2019...

Attack cost and future work

- We are now looking more closely at the low-level details
 - We believe we can keep two boomerangs
 - This gives $C_{block} = 2^{65.1}$, and the total cost is around $2^{67.2}$
- Cost estimation by renting GPUs:
 - About 2.6M\$ on Amazon's AWS (using spot p3.16xlarge instances @7.5\$/hr)
 - Around 540 000\$ renting GPU (former mining farms?)
 - Affordable for state-level adversaries
- Security advice: retire SHA-1 NOW!

On-going work

- New ideas for small improvements of various parts of attacks
- Get the cost below 100 000\$
- We hope to build a practical chosen-prefix collision in 2019...