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Abstract. This paper provides three important contributions to the security analysis of
SIMD. First, we show a new free-start distinguisher based on symmetry relations. It allows
to distinguish the compression function of SIMD from a random function with a single
evaluation. However, we also show that this property is very hard to exploit to mount
any attack on the hash function because of the mode of operation of the compression
function. Essentially, if one can build a pair of symmetric states, the symmetry property
can only be triggered once. Then, we show that a class of free-start distinguishers is not a
threat to wide-pipe hash functions. In particular, this means that our distinguisher has a
minimal impact on the security of the SIMD hash function, and we still have a security
proof for the iterated hash function. Intuitively, the reason why this distinguisher does not
weaken the function is that getting into a symmetric state is about as hard as finding a
preimage. Finally, we study differential path in SIMD, and give an upper bound on the
probability of related key differential paths. Our bound is in the order of 2−n/2 using very
weak assumptions. Resistance to related key attacks is often overlooked, but it is very
important for hash function designs.
Key words: SIMD, SHA-3, hash function, distinguisher, security proof with distinguishers.

1 Introduction

SIMD is a SHA-3 candidate designed by Leurent, Fouque and Bouillaguet [11]. Its main feature is
a strong message expansion whose aim is to thwart differential attacks. In this paper we study
the security of SIMD, and we introduce three new results.

In Section 2 we study its resistance against self-similarity attacks [4]. This class of attack is
inspired by the complementation property of DES and includes symmetry based attacks. In the
case of SIMD, we show that it is possible to exploit the symmetry of the design using special
messages. This shows that the constants included in the message expansion of SIMD are not
sufficient to prevent symmetry relations, and non-symmetric constants should be added in the
last steps of the message expansion. In-depth study of this symmetry property shows that it is
much weaker than symmetry properties in CubeHash [1,8] or Lesamnta [4]. More precisely, most
symmetry properties can be used to generate many symmetric states out of a single state, but
this is not the case for SIMD.

In Section 3, we show a proof of security for the mode of operation used in SIMD, the truncated
prefix-free Merkle-Damgård, in the presence of some efficient distinguishers on the compression
function. The class of distinguisher we consider includes the symmetry based distinguisher, and
also includes differential paths with a non-zero chaining value difference. This shows that the
properties of the compression function of SIMD found so far do not affect the security of the
iterated hash function. This part is also of independent interest and applies to other wide-pipe
hash functions.
∗This is the full version of a paper published in SAC 2010.
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Fig. 2. SIMD compression rounds. There are 4 parallel
Feistels in SIMD-256, and 8 parallel Feistels in SIMD-512.

In Section 4, we study differential attacks, and bound the probability of paths with a non-zero
message difference, i.e., related key attacks on the block cipher. We show an upper bound on such
paths on the order of 2−n/2, and we argue that the best paths are probably much worse than
this bound. We note that there are very few results known regarding resistance to related key
attack for block ciphers. In particular, the differential properties of the AES have been extensively
studied [16] but related key differential attacks have been shown recently [3]. In many hash
function designs (in particular those based on the Davies-Meyer construction), related key attacks
are a real concern and should be studied accordingly.

By combining the results of Section 3 and 4, we show that SIMD is resistant to differential
cryptanalysis: a path with a non-zero difference in the chaining value input cannot be used to
attack the hash function because it is wide-pipe, while a path a non-zero difference in the message
can only have a low success probability.

Finally, in Section 5 we express our views on the security of SIMD.

1.1 Brief Description of SIMD

SIMD is built using a modified Davies-Meyer mode with a strong message expansion, as shown
in Figure 1. The compression part is built from 4 parallel Feistel ladders (8 for SIMD-512) with
32-bit registers, and is shown in Figure 2. We can describe the step update function as:

Dj ←
(
Dj �W

(i)
j � φ(i)(Aj , Bj , Cj)

)≪s(i)

�Ap(i)(j)
≪r(i)

(Aj , Bj , Cj , Dj)← (Dj , A
≪r(i)

j , Bj , Cj)

where j denotes the Feistel number, and i denotes the round number. A, B, C, and D are the
four registers of the Feistel ladders, while φ(i) is the Boolean function used at round i (which can
be either IF or MAJ) and W is the expanded message. The parallel Feistels interact through the
permutations p(i), which are built as p(i)(j) = j ⊕αi, for some αi. There are no explicit constants
in the round function, but there are implicit constants in the message expansion.

The Message Expansion. The message expansion of SIMD is defined with the following
operations:

1. Use a NTT transform (which is the same as a FFT over a finite field) to double the size of
the message(the message bytes are interpreted as elements of F257). The NTT is actually
used as a Reed-Solomon code.



Table 1. Full Permutations for SIMD-256. The yi’s are the output of the NTT, and IC(x, y) is
((C � x) mod 216) + 216((C � y) mod 216)

i W
(i)
0 W

(i)
1 W

(i)
2 W

(i)
3

0 I185(y32, y33) I185(y34, y35) I185(y36, y37) I185(y38, y39)
1 I185(y48, y49) I185(y50, y51) I185(y52, y53) I185(y54, y55)
2 I185(y0, y1) I185(y2, y3) I185(y4, y5) I185(y6, y7)
3 I185(y16, y17) I185(y18, y19) I185(y20, y21) I185(y22, y23)
4 I185(y56, y57) I185(y58, y59) I185(y60, y61) I185(y62, y63)
5 I185(y40, y41) I185(y42, y43) I185(y44, y45) I185(y46, y47)
6 I185(y24, y25) I185(y26, y27) I185(y28, y29) I185(y30, y31)
7 I185(y8, y9) I185(y10, y11) I185(y12, y13) I185(y14, y15)

8 I185(y120, y121) I185(y122, y123) I185(y124, y125) I185(y126, y127)
9 I185(y88, y89) I185(y90, y91) I185(y92, y93) I185(y94, y95)
10 I185(y96, y97) I185(y98, y99) I185(y100, y101) I185(y102, y103)
11 I185(y64, y65) I185(y66, y67) I185(y68, y69) I185(y70, y71)
12 I185(y72, y73) I185(y74, y75) I185(y76, y77) I185(y78, y79)
13 I185(y104, y105) I185(y106, y107) I185(y108, y109) I185(y110, y111)
14 I185(y80, y81) I185(y82, y83) I185(y84, y85) I185(y86, y87)
15 I185(y112, y113) I185(y114, y115) I185(y116, y117) I185(y118, y119)

16 I233(y8, y72) I233(y10, y74) I233(y12, y76) I233(y14, y78)
17 I233(y16, y80) I233(y18, y82) I233(y20, y84) I233(y22, y86)
18 I233(y56, y120) I233(y58, y122) I233(y60, y124) I233(y62, y126)
19 I233(y32, y96) I233(y34, y98) I233(y36, y100) I233(y38, y102)
20 I233(y48, y112) I233(y50, y114) I233(y52, y116) I233(y54, y118)
21 I233(y40, y104) I233(y42, y106) I233(y44, y108) I233(y46, y110)
22 I233(y0, y64) I233(y2, y66) I233(y4, y68) I233(y6, y70)
23 I233(y24, y88) I233(y26, y90) I233(y28, y92) I233(y30, y94)

24 I233(y49, y113) I233(y51, y115) I233(y53, y117) I233(y55, y119)
25 I233(y1, y65) I233(y3, y67) I233(y5, y69) I233(y7, y71)
26 I233(y9, y73) I233(y11, y75) I233(y13, y77) I233(y15, y79)
27 I233(y57, y121) I233(y59, y123) I233(y61, y125) I233(y63, y127)
28 I233(y25, y89) I233(y27, y91) I233(y29, y93) I233(y31, y95)
29 I233(y41, y105) I233(y43, y107) I233(y45, y109) I233(y47, y111)
30 I233(y33, y97) I233(y35, y99) I233(y37, y101) I233(y39, y103)
31 I233(y17, y81) I233(y19, y83) I233(y21, y85) I233(y23, y87)

2. Make two copies of the NTT output.
3. The first copy is multiplied by 185, while the second copy is multiplied by 233. This step also

doubles the size of the message, as the output are 16-bit words.
4. Permute the 16-bit words and pack them into 32-bit words. Table 1 shows how the packing is

done for SIMD-256.

Constants are added in the NTT layer, and make it an affine code instead of a linear one.
They avoid special expanded messages such as the all-zero message. For more details, see the
specification of SIMD [11].

1.2 Previous Cryptanalysis Results

As far as we know, the following results have been found on SIMD:

– In [9], Gauravaram and Bagheri showed that the modified Davies-Meyer construction used in
SIMD allows to find partial fixed-points (this is a weaker version of Davies-Meyer’s fixed-points).



There is no easy way to find full fixed-points as in the original Davies-Meyer construction, but
those partial fixed-points give an easy distinguisher of the compression function. Just like the
fixed-points of Davies-Meyer, this property does not affect the security of a wide-pipe hash
function, and the mode can be proven secure under the assumption that the block cipher is
ideal [7].

– In [14], Mendel and Nad showed a differential path with probability 2−507 for the compression
function of the round-1 version of SIMD-512. They used it to make a distinguishing attack on
the compression function with complexity 2427, using IV/message modifications. In this path,
no difference is introduced in the message, but a specific difference ∆in in the chaining value
can go to a difference ∆out. Because of the need to control the chaining value difference, this
path cannot be used to attack the iterated hash function. In Section 3, we show that even if
there of a path with probability one, we only loose a factor 2 in the indifferentiability proof.
However, this path was using some unwanted properties of the permutations used in the
compression function, and it was decided to remove those properties by tweaking the design
for the second round of the SHA-3 competition [12].

– More recently, in [19] Yu and Wang studied differential paths for the round-2 version of SIMD.
They describe near-collisions in reduced versions of the compression function (20 steps for
SIMD-256 and 24 steps for SIMD-512) and build a differential path with probability 2−897 for
the full compression function of SIMD-512. This path can be used to build a distinguisher
with complexity 2398, yielding pair of inputs and outputs with a fixed difference. Like the
previous result, this work uses a difference in the chaining value and no difference in the
message. For this reason it does not threaten the iterated hash function. It should be noted
that for this distinguisher, the attacker needs to choose both input chaining values, and not
only the difference between the chaining values (it is a free-start attack, while the attack on
the round-1 version could be mounted as a semi-free-start attack). That makes it even less
threatening to a wide-pipe design. Moreover we found several mistakes in the path described
in the preprint of their work, which cast a doubt on the validity of the path.

– In [15], Nikolić et al. applied rotational cryptanalysis to the compression function of SIMD-512.
They showed that 24 rounds can be distinguished from a random function with complexity
2497 if the constants are removed from the design. In the real design, they can only distinguish
12 rounds (out of 36) because of the non-linear message expansion. This is clearly not a threat
for SIMD-512.

2 A Distinguisher for the Compression Function of SIMD

Our distinguisher is based on symmetries in the design, and follows the ideas of [4]. Symmetry
based properties have already been found in several hash function designs, such as CubeHash [1,8]
or Lesamnta [4]. We describe the distinguisher in the case of SIMD-256, but it applies similarly
to SIMD-512.

2.1 Building the Symmetric Messages

The basic idea is to build a message so that the expanded message is symmetric. Then, if the
internal state is also symmetric, the compression rounds preserve the symmetry. This can also be
used with a pair of symmetric messages, and a pair of symmetric states.

The NTT layer of the message expansion is an affine transformation, therefore it is easy to
find inputs that satisfy some affine conditions on the output. Since it only doubles the size of the
input, we have enough degrees of freedom to force equalities between pairs of output. The next
expansion step is a multiplication by a constant, and it will preserve equality relations.



If we look at the permutations used in the message expansion, they have the following property1:
the NTT words used to build the message words W (i)

0 ,W
(i)
1 ,W

(i)
2 ,W

(i)
3 are always of the form

(yk1 , yk2), (yk1+2, yk2+2), (yk1+4, yk2+4), (yk1+6, yk2+6) for some k1 and k2 (with ki = 0 mod 8 or
ki = 1 mod 8). The full permutations are given in Table 1. Because of this property, if we have
yi = yi⊕2 after the NTT, then we have W (i)

0 =W
(i)
1 and W (i)

2 =W
(i)
3 . This allows us to build a

symmetric message. An example of such a symmetric message is given in Appendix A.
More precisely, let us use the notation ←→• to denote this symmetry relation, and •←→ and ←→•←→

to denote the other two possible symmetries:
←−−−−−−−−−−→
(X0, X1, X2, X3) = (X1, X0, X3, X2)

(X0, X1, X2, X3)←−−−−−−−−−−→
= (X2, X3, X0, X1)

←−−−−−−−−−−→
(X0, X1, X2, X3)←−−−−−−−−−−→

= (X3, X2, X1, X0)

We now consider two messages M and M ′. We use y to denote the NTT output for M , and y′ to
denote the NTT output for M ′. The equality constraints on the NTT output that are necessary
to build a pair of symmetric expanded messages are (we use E to denote the message expansion):

yi = y′i⊕2 ⇔ E(M) =
←−−→
E(M ′)

yi = y′i⊕4 ⇔ E(M) = E(M ′)
←−−→

yi = y′i⊕6 ⇔ E(M) =
←−−→
E(M ′)
←−−→

In Appendix B we solve the linear systems involved, and we describe the sets of symmetric
messages. For SIMD-256 we have the following results:

Symmetry class # msg # pairs
←→• yi = y′i⊕2 Wi =W ′i⊕1 28 256 · 255
•←→ yi = y′i⊕4 Wi =W ′i⊕2 216 (256 · 255)2
←→•←→ yi = y′i⊕6 Wi =W ′i⊕3 28 256 · 255

there are about 216 symmetric messages, and less than 232 symmetric pairs.
For SIMD-512 the results are:

Symmetry class # msg # pairs

yi = y′i⊕2 Wi =W ′i⊕1 28 256 · 255
yi = y′i⊕4 Wi =W ′i⊕2 216 (256 · 255)2

yi = y′i⊕6 Wi =W ′i⊕3 28 256 · 255
yi = y′i⊕8 Wi =W ′i⊕4 232 (256 · 255)4

yi = y′i⊕10 Wi =W ′i⊕5 28 256 · 255
yi = y′i⊕12 Wi =W ′i⊕6 216 (256 · 255)2

yi = y′i⊕14 Wi =W ′i⊕7 28 256 · 255

there are about 232 symmetric messages, and less than 264 symmetric pairs. An important property
of these message classes is that they are all disjoint: it is not possible to use the intersection of
two symmetry classes.

1This design choice was guided by implementation efficiency



2.2 Symmetry Property on the Compression Function

Let us consider a pair of symmetric messages for one of the symmetry relations (without loss
of generality, we assume it’s the ←→• symmetry): E(M ′) =

←−−→
E(M). We can take advantage of the

symmetry of the Feistel part using those messages. If we have a pair of states S(i),S ′(i) with
S ′(i) =

←→
S(i) and we compute one Feistel step with messages W and W ′ such that W ′ =

←→
W , we

obtain a new pair of states with S ′(i+1) =
←−−→
S(i+1). The xor-based symmetry classes commute with

the xor-based permutations p(i) used to mix the Feistels (and they are the only symmetry classes
to do so).

Because the compression function is built using a modified Davies-Meyer mode (Figure 1), we
need to start with Hi−1 such that Hi−1⊕M is symmetric: H ′i−1⊕M ′ =

←−−−−−→
Hi−1 ⊕M . Then, in the

feed-forward, Hi−1 is used as the key to a few Feistel rounds, and since Hi−1 is not symmetric,
those rounds will break the symmetry. However, it turns out the symmetric messages are very
sparse, so Hi will be almost symmetric, and the feed-forward will mostly preserve the symmetry
of the outputs.

This gives a distinguisher on the compression function: an almost symmetric chaining value is
transformed into a somewhat symmetric chaining value. See Appendix A for a concrete example.

The distinguisher can be used either with a pair of messages and chaining values with
E(M ′) =

←−−→
E(M) and H ′i−1 ⊕M ′ =

←−−−−−→
Hi−1 ⊕M , or with a single chaining value and message, with

E(M) =
←−−→
E(M) and Hi−1 ⊕M =

←−−−−−→
Hi−1 ⊕M .

2.3 Non-Ideality of the Compression Function

Here we define the bias of the compression function with the notations that will be used in
Section 3. For each symmetric message M under a symmetry relation (denoted by←→• without loss
of generality), we have a first order relation between the inputs and output of the compression
function:

RM1 (h,m, h′) :=
(
m =M ∧ h⊕m =

←−−→
h⊕m

)
⇒ P−1(h′, h) =

←−−−−−→
P−1(h′, h)

We use the feed-forward permutation P to define the relation, because it is tricky to describe
exactly the somewhat symmetry of h′ after the feed-forward. We have about 216 such relations for
SIMD-256 and about 232 relations for SIMD-512. We can capture all of them in a single relation:

R1(h,m, h
′) :=

∧
M

RM1 (h,m, h′).

Similarly, for each symmetric message pair M,M ′, this gives a second order relation (there are
about 232 such relations for SIMD-256 and 264 for SIMD-512):

RM,M ′

2 (h1,m1, h2,m2, h
′
1, h
′
2) :=(

m1 =M ∧m2 =M ′ ∧ h1 ⊕m1 =
←−−−−→
h2 ⊕m2

)
⇒ P−1(h′1, h1) =

←−−−−−−−→
P−1(h′2, h2)

R2(h1,m1, h2,m2, h
′
1, h
′
2) :=

∧
M,M ′

RM,M ′

2 (h1,m1, h2,m2, h
′
1, h
′
2)



The corresponding weak states are:

WM
1 := {M ⊕ x | x =←→x } W1 :=

⋃
M

WM
1

WM,M ′

2 :=
{
(h,
←→
h ⊕M ′ ⊕

←→
M )
}

W2 :=
⋃
M,M ′

WM,M ′

2

The study of the symmetry classes of SIMD, in Appendix B shows that:

|W1| = 2256 · 2562 + 2 · 256 ≈ 2256 · 216 for SIMD-256

|W1| = 2512 · 2564 + 2 · 2562 + 4 · 256 ≈ 2512 · 232 for SIMD-512

|W2| = 2512 · ((256 · 255)2 + 2 · 256 · 255) < 2512 · 232 for SIMD-256

|W2| = 21024 · ((256 · 255)4 + 2 · (256 · 255)2 + 4 · 256 · 255) < 21024 · 264 for SIMD-512

Each chaining value can be used with less than 232 related chaining values (less than 264 for
SIMD-512) and each such pair can be used with a single message.

2.4 Impact of the Symmetry-based Distinguisher

There are two main classes of attacks based on symmetric properties of the compression function.
To attack the compression function, one can use the symmetry property to force the output of
the compression function into a small subspace. This allows to find collisions in the compression
function more efficiently than brute force, with the efficiency of this attack depending on the size
of the symmetry classes. On the other hand, to attack the hash function, one can first try to
reach a symmetric state using random messages, and then use symmetric messages to build a
large set of symmetric states. To expand the set, the attacker will build a tree, starting with the
symmetric state that was reached randomly. The degree and the depth of the tree can be limited
depending on the symmetry property. In the case of SIMD, none of these attacks are effective for
the following reasons:

– First, the modified Davies-Meyer mode of operation means that the compression function
does not transform a symmetric state into a symmetric state, but it transforms an almost
symmetric state into a somewhat symmetric state. We show in Appendix B that a “somewhat
symmetric” output pair can only be used as an “almost symmetric” input pair with a very
small probability. This prevents attacks based on building long chains of symmetric messages,
like the attacks on CubeHash [1,8].

– Second, if a pair of almost symmetric states is reached, there is only a single message pair
that can be used to reach a symmetric state in the Feistel rounds. This prevents attacks like
the herding attack on Lesamnta [4], where one reaches a symmetric state and then uses a lot
of different messages in order to explore the subset of symmetric outputs.

– Third, the final transformation of SIMD uses the message length as input. Therefore, the
symmetry property can only be seen in the output of the hash function with messages of
unrealistic length (almost 2512 bits for SIMD-256 and almost 21024 bits for SIMD-512). Note
that computing the hash of such a message is vastly more expensive than finding a preimage.

– Moreover the symmetry classes do not intersect. It is not possible to build a smaller symmetry
classes in order to show collisions in the compression function, as was done for CubeHash [1,8].
Finding collisions in the compression function using the symmetry property costs 2n/2. It is
more efficient than generic attacks on the compression function, but cannot be used to find
collisions in the hash function faster than the birthday attack. We also note that the initial
state of the SIMD hash function is not symmetric.



Table 2. Comparison of symmetry properties in several hash functions.

Reach Max. Max. Free-start
Function symm. state length degree Collisions

Lesamnta-512 2256 1 2256 2128 (semi-free-start)
CubeHash (symm C1..C7) 2384 ∞ 2128 232 (semi-free-start)
CubeHash (symm C8..C15) 2256 ∞ 1 264 (semi-free-start)

SIMD-512 2480 1 1 2256

To summarize, reaching a symmetric state in SIMD is far less interesting than reaching a
symmetric state in CubeHash or in Lesamnta. Table 2 gives a comparison of the symmetry
properties found in these functions.

Another very important factor is that SIMD is a wide-pipe design. Therefore reaching a
symmetric state is about as hard a finding a preimage for the hash function. In the next section,
we provide a formal proof that this distinguisher has only a small effect on the security of SIMD.
We can prove that the hash function behaves as a random oracle under the assumption that the
compression function is a weak perfect function having this symmetry property.

3 Free-start Distinguishers, Non-Ideal Compression Functions and
Wide-Pipe Designs

In this section, we discuss the security of the prefix-free iteration of non-ideal compression
functions. While our primary objective is to show that the distinguisher for the compression
function of SIMD presented in Section 2 does not void the security proof of SIMD, the reasoning
and the proof presented here are pretty general and could very well be adapted to other functions.

Let H = {0, 1}p denote the set of chaining values,M = {0, 1}m denote the set of message
blocks, and F be the set of all functions H ×M → H. Let F ∈ F be a compression function
taking as input an p-bit chaining value and an m-bit message block. A mode of operation for a
hash function H · combined with a compression function F yields a full hash function HF .

Following [13,7], we rely on the notion of indifferentiability of systems to reduce the security
of SIMD to that of its compression function. The usual way of establishing the soundness of a
mode of operation H · is to show that it is indifferentiable from a random oracle. This is done by
constructing a simulator S such that any distinguisher D cannot tell apart (HF , F ) and (RO,S)
without a considerable effort, where RO is a variable-input-length random oracle (VIL-RO, for
short). When this is established, it is shown in [13] that any cryptosystem making use of a
VIL-RO is not less secure when the random oracle is replaced by the hash function HF , where
F is an ideal compression function (i.e., a fixed-input-length random oracle, FIL-RO for short).
Informally, if F is ideal (i.e., has no special property that a random function would not have),
then HF is secure up to the level offered by the indifferentiability proof. More precisely, if H ·
is (tD, tS , qS , q0, ε)-indifferentiable from a VIL-RO when the compression function is assumed to
be a FIL-RO, then this means that there exists a simulator running in time tS , such that any
distinguisher running in time tD and issuing at most qS (resp. q0) queries to the FIL-RO (resp.
VIL-RO) has success probability at most ε.

A property of this methodology is that as soon as the compression function used in a hash
function turns out to be non-ideal, then the security argument offered by the indifferentiability
proof becomes vacuous. For instance, distinguishers exhibiting a “non-random” behavior of the
compression function are usually advertised by their authors to nullify the security proof of the
full hash function.



This problematic situation was first tackled by the designers of Shabal, who provided a security
proof taking into account the existence of an efficient distinguisher on the internal permutation of
their proposal [5]. We will follow their track and demonstrate that the security of SIMD can be
proved despite the existence of an efficient distinguisher on its compression function.

The mode of operation of SIMD can be “concisely” described as being the wide-pipe prefix-free2
iteration of the compression function. Let HF therefore denote the prefix-free Merkle-Damgård
iteration of F . Formally, g : {0, 1}∗ →M∗ is a prefix-free encoding if for all x, x′, g(x) is not a
prefix of g(x′). The mode of operation H · simply applies the Merkle-Damgård iteration of F to
the prefix-free encoding of the message.

The original security argument was that if the internal state and the hash are both p-bit
wide, then prefix-free Merkle-Damgård is indifferentiable from a random oracle up to about 2p/2
queries [7]. Theorem 1 below gives a formal statement of this result.

Theorem 1. Prefix-Free Merkle-Damgård is (tD, tS , qS , qO, ε)-indifferentiable from a VIL-RO
when the compression function is modeled by a FIL-RO, for any running time tD of the dis-
tinguisher, and tS = O

(
(qO + κ · qS)2

)
where κ is an upper-bound on the size of the queries

sent to the VIL-RO. If q = qS + κ · qO + 1, then the success probability of the distinguisher is
upper-bounded by:

ε = 8 · q
2

2p

In SIMD where the internal state is 2n bits, this ensures the indifferentiability of the whole
function up to roughly 2n queries (if H is indifferentiable up to q queries, then the composition
of a truncation that truncates half of the output and of H is also secure up to q queries).

To restore the security argument damaged by the distinguisher, we will show that the prefix-
free iteration of a non-ideal compression function is to some extent still indifferentiable from a
VIL-RO.

3.1 Deterministic Distinguishers for the Compression Function

Let us consider a non-ideal compression function F .

– For instance, it may have weak states, that are such that querying F thereon with a well-chosen
message block produces a “special” output allowing to distinguish F from random in one
query. Known examples include for instance the symmetry on the compression function of
Lesamnta [4], CubeHash [1,8], and SIMD (described in Section 2).

– But F can also have bad second-order properties, meaning that the output of F on correlated
input states (with well-chosen message blocks) produces correlated outputs, allowing to
distinguish F from random in two queries. A notable example of this property include the
existence of differential paths with probability one in the compression function of Shabal [2].
Symmetry properties also give second order relations, which means that Lesamnta, CubeHash
and SIMD have bad second-order properties as well.

Following the methodology introduced in [5], we model this situation by saying that there are
two relations R1 and R2 such that:

∀(h,m) ∈ H ×M : R1(h,m,F (h,m)) = 1

∀(h1, h2,m1,m2) ∈ H2 ×M2 : R2(h1,m1, h2,m2, F (h1,m1), F (h2,m2)) = 1

2this is not explicitly stated in the submission document, but SIMD has a different finalization function
that effectively acts as a prefix-free encoding.



We denote by R the relation formed by the union of R1 and R2, and we will denote by F [R]
the subset of F such that the above two equations hold. We require the relations to be efficiently
checkable, i.e., that given h,m and h′, it is efficient to check whether R1(h,m, h

′) = 1. The
relation can thus be used as an efficient distinguishing algorithm that tells F [R] apart from F .

A weak state is a state on which it is possible to falsify the relation R1. We formally define
the set of weak states for R1 in the following way:

W = {h ∈ H | ∃m,h′ ∈M×H such that R1(h,m, h
′) = 0}

W should be a relatively small subset of H because the loss of security will be related to the size
of W. Moreover, we require that the IV is not in W.

In the same vein, a weak pair is a pair of states on which it is possible to falsify the relation
R2. We therefore define the set of weak pairs for R2 by an undirected graph GR2 = (H,WP),
where WP is defined by:

WP =
{
h1 ↔ h2 | ∃m1,m2, h

′
1, h
′
2 ∈M2 ×H2such thatR2(h1,m1, h2,m2, h

′
1, h
′
2) = 0

}
Similarly, WP should be a relatively small subset of H2 because the security loss will be related
to the size of WP . For the sake of expressing things conveniently, we define a variant of the same
graph, G′R2

= (H×M,WP ′), where WP ′ is defined by:

WP ′ =
{
(h1,m1)↔ (h2,m2) | ∃h′1, h′2 ∈ H2such thatR2(h1,m1, h2,m2, h

′
1, h
′
2) = 0

}
To simplify the proof we also require that the connected component of G′R2

have size at most
two. This rules out some second-order relations, but it includes for instance the existence of a
differential path with probability one with a non-zero difference in the input chaining value, as
well as the symmetry in the compression function of SIMD or Lesamnta. We expect a similar
result with larger connected components, but there will be a loss of security related to their size.

We also require the existence of sampling algorithms for R, namely of two efficient algorithms
Sampler1 and Sampler2 such that:

Sampler1(h,m)

h′
$←− {f(h,m) | f ∈ F [R]} ; return h′

Sampler2(h1,m1, h2,m2, h
′
1)

h′2
$←− {f(h2,m2) | f ∈ F [R] and F (h1,m1) = h′1} ; return h′2

Informally, the sampling algorithms should produce an output that looks as if it were produced
by a random function constrained to conform to R.

3.2 Adapting the Indifferentiability Proof to Non-Ideal Compression Functions

We now assume that the compression function is a public function chosen uniformly at random
in F [R], and for the sake of convenience we will call it a “biased FIL-RO”. We show that the
prefix-free iteration of biased FIL-RO is indifferentiable from a VIL-RO. In fact, we extend
Theorem 1 to the case where the compression function is biased.

Theorem 2. Prefix-Free Merkle-Damgård is (tD, tS , qS , qO, ε)-indifferentiable from a VIL-RO,
when the compression function is modeled by a biased FIL-RO conforming to the relation R, for
any running time tD of the distinguisher, and tS = O

(
(qO + κ · qS)2

)
where κ is an upper-bound



on the size of the queries sent to the VIL-RO. If q = qS + κ · qo+1, then the probability of success
of the distinguisher is upper-bounded by:

ε = 16 · q
2

2p
+ 4 · |W| · q

2p
+ 4 · |WP| · q2

(2p − q)2

The first term of the expression of ε is similar to the result given in Theorem 1, when the
compression function is ideal (up to a factor two that could be avoided by making the argument
slightly more involved). The two other terms reflect the fact that the compression function is
biased. The relation induces a security loss if |W| is at least of order 2p/2, or if |WP| is at least
of order 2p. Informally, it seems possible to iterate compression functions having a relatively high
bias in a secure way.

Application to Free-start Differential Attacks. Let us assume that the compression function
is weak because of the existence of a good differential path with a non-zero difference in the input
chaining value. Even if the probability of the differential path is 1, this has a very limited effect
on the security of the hash function: this leads to W = ∅ and |WP| = 2p−1. The advantage of the
distinguisher is at most twice as high, compared to the iteration of an ideal FIL-RO.

Application to SIMD. In SIMD-256 (resp. SIMD-512), the internal state has p = 512 bits (resp.
p = 1024 bits), and the distinguisher of Section 2 yields |W| = 2p/2+16, |WP| = 2p+32 (resp.
|W| = 2p/2+32, |WP| = 2p+64). Therefore the advantage of any distinguisher in telling apart
SIMD-256 from a VIL-RO with q queries is upper-bounded by:

ε = 16 · q
2

2p
+ 4 · 2

p/2+16 · q
2p

+ 4 · 2p+32 · q2

(2p − q)2

SIMD-256 is then secure up to roughly 2256−16 queries (SIMD-512 is secure up to 2512−32 queries).

Application to Lesamnta. Lesamnta follows the prefix-free Merkle-Damgård mode of operation
due to its special finalization function. An efficient distinguisher based on symmetries was shown
in [4], with |W| = 2p/2 and |WP| = 2p−1. According to Theorem 2, the advantage of any
distinguisher in telling apart Lesamnta-256 from a random oracle with q queries is upper-bounded
by:

ε = 16 · q
2

2p
+ 4 · 2

p/2 · q
2p

+ 4 · 2p−1 · q2

(2p − q)2
≈ 22 · q

2p/2

Note that since Lesamnta is a narrow-pipe design, we have p = n. Our result shows that Lesamnta
remains secure against generic attacks up to the birthday bound. This is the best achievable proof
for Lesamnta, since it does not behave as a good narrow-pipe hash function beyond that bound: a
dedicated herding attack based on the symmetry property is shown in [4], with complexity 2n/2.

3.3 Proof Sketch of Theorem 2.

We give a sketch of the proof, while a more formal proof can be found in Appendix D. The proof
is heavily based on the proof in the extended version of [7]. The heart of the proof is a simulator
S which has oracle access to the VIL-RO, and whose task is to simulate a biased FIL-RO. The
pseudo-code of the simulator is shown in Figure 3, but a few preliminary remarks are in order.
The simulator maintains a log of the queries it has answered to. This knowledge is maintained



1: function Simulator(h,m)
2: if there exist a vertex h′ ∈ V and an edge h m−→ h′ in E then
3: return this h′

4: else
5: return FreshValue(h,m)
6: end if
7: end function

8: function FreshValue(h,m)
9: if there exist (u, v)↔ (h,m) ∈ G′R2

then (h,m)← (u, v)

10: if IV M−→∗ h ∈ Reach then Swap (h,m) and (h,m) . (only if h is defined)
11: if IV M−→∗ h ∈ Reach then
12: if there exist M ′ such that M‖m = g(M ′) then
13: h′ ← RO(M ′)
14: else
15: h′

$←− H
16: end if
17: h′ ← Sampler2

(
h,m, h,m, h′

)
. (only if h is defined)

18: if h′ ∈ W or h′ ∈ V or Reach ∪ {h′} covers an edge of GR2 then Abort
19: Reach← Reach ∪

{
h

m−→ h′
}

20: else
21: h′ ← Sampler1(h,m)

22: h
′ ← Sampler2

(
h,m, h,m, h′

)
. (only if h is defined)

23: end if
24: V ← V ∪

{
h, h′, h, h′

}
. (only add h and h′ if defined)

25: E ← E ∪
{
h

m−→ h′, h
m−→ h′

}
. idem.

26: return h′ (or h′ if they were swapped in line 10)
27: end function

Fig. 3. Pseudo-code of the Simulator S0, with abort conditions

under the form of a graph G = (V,E), where the set of vertices V is a subset of H, and where the
edges are labelled by message blocks fromM. The semantic of this graph is that there is an edge
labelled by m between h and h′ if the simulator let the distinguisher know that f(h,m) = h′. We
will use the notation h m−→ h′ to say that there is an edge between h and h′ labelled by m in G.
Initially, the graph contains only a single vertex IV . The simulator also maintains a subset of
V denoted by Reach, consisting of the vertices that are reachable from IV . It also associates to
each vertex v in Reach an ancestor in Reach. This allows to efficiently reconstruct the sequence
of message blocks that map IV on v, given v ∈ Reach. We will note IV M−→∗ v when there is such
a path between IV and v. In the beginning, Reach only contains the IV .

Now, a distinguisher D interacts with either HF and F (we say that it is in the “construction
world”), or with RO (which is a VIL-RO) and S (and we say that it is in the “random oracle
world”), and it has to tell in which world it is. More formally, D is a Turing machine which has
two interfaces. It should output “1” if HF and F are answering its oracle queries, or “0” if RO
and S are. Our objective is to show that for all distinguisher D the following holds for a small ε:∣∣∣P[DHF ,F = 1

]
− P

[
DRO,S = 1

]∣∣∣ ≤ ε
The main idea of the proof is that our simulator aborts as soon as a state (or pair of states)

on which the relation could be falsified becomes reachable (that is to say, a state in W or a pair



of states in WP). Therefore we do not have to study exactly how much information is revealed
by the relation. We use the sampling algorithms to simulate the weakness of the compression
function, but the adversary can never compare the outputs of the samplers with the output of
the VIL-RO, because that would cause the simulator to abort. Moreover, when queried on (h,m),
the simulator looks for a symmetric query (h,m) so that the relation R2 could be falsified (i.e.,
(h,m)↔ (h,m) ∈ G′R2

). If such a symmetric query exists, the simulator computes both queries
at the same time to ensure that they respect the relation R2.

The proof uses a hybrid argument through a sequence of games, which we summarize.

Game 1: The distinguisher is in the random oracle world. It has access to RO and S.

Game 2: We introduce a dummy relay algorithm T , which sits between the distinguisher and
the RO. Given a random oracle query from the distinguisher, T just sends the query to RO, and
transmits the answer of RO back to D. This leaves the view of D unchanged.

Game 3: We modify the simulator S, by making it abort in some cases, and report failure.
The failure of S ensures that specific invariants of its internal data structures hold. Specifically,
when queried on a reachable chaining value, S fails if its answer was already “known” by the
distinguisher from a previous and different query. Thus, a (reachable) collision on the internal
state, or the “connection” to some internal state already known would make S fail. Moreover, S
will also fail if a weak state becomes reachable, or if the two members of a pair of weak states
become reachable (these two events could be observed on the iteration if S did not fail).

An important point is that when queried on non-reachable chaining values, S uses the samplers
to answer in conformance to the relation R. However, when queried on reachable chaining values,
it answers either randomly, or using the VIL-RO for consistency (but the result is still random).
Thanks to this, Reach is a random subset of H, and this allows to establish an upper-bound
on the probability of failure, which directly depends on the number of weak states, and on the
density of the graph representing the weak pairs of states. The view of D only changes if S aborts,
and it can be shown that:

P
[
S aborts

]
≤ 4 · (qS + 1)

2

2p
+ |W| · qS + 1

2p
+ |WP| · (qS + 1)

2

(2p − qS − 1)
2

Game 4: In this game, we modify the relay algorithm and leave the simulator unchanged. Instead
of querying the VIL-RO, the new relay algorithm T1 now applies the Merkle-Damgård construction
to the prefix-free encoding of its query. It uses the simulator to evaluate the compression function.
Thus the relay algorithm T1 is essentially the same as H ·, except that it is based on the simulator
S instead of random function F .

The key argument is that the answers of S are consistent with those of RO: when S receives a
sequence of queries corresponding to the prefix-free encoding of a message, it decodes it, queries
the VIL-RO on the decoded message, and returns the answer of the VIL-RO. Another important
detail is that before S fails, Reach exactly describes the reachable chaining values, and forms a
tree rooted in IV . This latter property means that when a sequence of queries completes the
prefix-free encoding of a message, then the message can be decoded in a unique way, which is
critical in order to keep the simulator consistent with the VIL-RO.

So, all-in-all, the VIL-RO gives the same answers in Games 3 and 4, the simulator is consistent
with the VIL-RO in both games, and conforms to the relation in both games. Therefore, when



proceeding from Game 3 to Game 4, the view of the distinguisher only changes when S fails in
either one of the games, but it fails more often in game 4 (because it also receives the queries of
the relay algorithm).

Game 5: In this game, the VIL-RO is removed completely and the new simulator S1 always
chooses a random p-bit response, even in situations where S would have consulted the VIL-RO.
We also remove all the failure conditions from the new simulator S1.

The view of the distinguisher may only change if S would have failed (because now S1 does
not).

Game 6: This is the final game of our argument. Here we finally replace the simulator S1 with the
biased FIL-RO. Since the relay algorithm T1 simply implemented the prefix-free Merkle-Damgård
construction, the view of the distinguisher is in fact in the construction world.

All-in-all, we find that the advantage of the distinguisher is upper-bounded by:

ε = 2 · P
[
S fails in G3

]
+ 2 · P

[
S fails in G4

]
And for the sake of obtaining a simpler expression, since S fails more often in G4 than in G3, we
find:

ε ≤ 4 · P
[
S fails in G4

]
This yields the result announced in the Theorem.

4 On Differential Attacks against SIMD

In this section we will present our results concerning differential paths in SIMD. Using Integer
Linear Programming, we show that if there is a difference in the message, then the probability of
the path will be at most of the order of 2−n/2. We stress that this result is not tight, but the
computational power needed to improve the bound using this technique grows exponentially.

Related Work. The first attempt to avoid differential attack in a SHA/MD-like hash function
was proposed in [10], where Jutla and Patthak described a linear code similar to the message
expansion of SHA-1, and proved that it has a much better minimal distance than the original
SHA-1 message expansion. They proposed to use SHA-1 with this new message expansion and
called the new design SHA-1-IME.

Our Results. The design of SIMD follows the same idea, using a strong message expansion with
a high minimal distance. In this paper we show that we can prove the security of SIMD more
rigorously than the security of SHA-1-IME. While the security of SHA-1-IME is based on the
heuristic assumption that the path is built out of local collisions, our proof gives an upper bound
on the probability of any differential characteristic with a non-zero difference in the message.

Our results prove the following: for any message pair with a non-zero difference, the probability
of going from an input difference ∆in to an output difference ∆out is bounded by 2−132 for
SIMD-256, and 2−253 for SIMD-512.



4.1 Modeling Differential Paths

To study differential attacks against SIMD, we assume that the attacker builds a differential path.
The differential path specifies the message difference and the state difference at each step. For
each step i, we study the probability p(i) that the new step difference conforms to the differential
path, assuming that the previous state difference and the message difference conforms to the
path, but that the values themselves are random. Since SIMD heavily uses modular additions, our
analysis is based on a signed differential, as used by Wang et al. [18]. A signed difference gives
better differential paths than an XOR difference if two active bits cancel each other out: with an
XOR difference this gives a probability 1/2, but with a signed difference we have a probability 1
if the signs are opposed.

To study differential paths, we will consider the inner state of SIMD, and the Boolean functions
φ(i). A state bit A(i)

j is called active if it takes two different values for a message pair following
the differential path. Similarly, a Boolean function is called active if at least one of its inputs is
active. A differential path consists of a set of active message bits, active state bits, active Boolean
function, and the sign of each active element. We assume that the adversary first builds such a
differential path, and then looks for a conforming pair of messages and chaining values. If we
disregard the first and last rounds, each Boolean function has three inputs, and each state bit
enters three Boolean functions. We use this simplification in Section 4.4.

4.2 The Message Expansion

Table 3 shows the minimal distance of the message expansion of SIMD compared to the message
expansion of SHA-1 and SHA-1-IME. We know that the message expansion of SIMD has a minimal
distance of 520, but this is the Hamming distance, i.e. an XOR difference. Since we assume that
the attacker will use a signed difference to build the differential path, we must study the distance
of the code when the difference is given by signed binary representation. The problem is that
consecutive active bits might be used as a single modular difference. For instance 0b0111 and
0b1001 differ in three bit positions, but the modular difference is only 21 and it can introduce a
single difference in the output of a modular addition.

To compute the minimal number of modular differences introduced by the message, we use
the non-adjacent form (NAF). The NAF is a signed binary representation, i.e. a sum of signed
powers of two. It is unique and can be efficiently computed. The good property of the NAF is
that it is a signed binary representation of minimal weight. For each pair of input to the inner
code, we can compute the NAF of the difference, and we see that the minimal distance is 4. This
means that each active word in the output of the Reed-Solomon code will introduce at least 4
differences in the state, even when we consider a differential attack using modular difference.

However, two outputs of the inner code are packed together into a 32-bit word. If we have a
difference in the MSB of the low order word and in the LSB of the high order word, they can
collapse to a single modular difference. In Section 4.4, we disregard this property and we just
consider that the message introduces 520 differences through the message expansion. However, in
Section 4.5, our model will account for that.

4.3 Structure of a Differential Path

The basic idea of our analysis is to use the lower bound on the number of active message bits to
derive a lower bound on the number of active state bits. Each message difference must either
introduce a new difference in the state, or cancel the propagation of a previous state difference. A
single difference propagates to between 2 and 5 differences, depending on whether the Boolean



Table 3. Minimal distance of the message expansion.

Message block Expanded message Minimal distance

SHA-11 512 bits 1920 bits 25 bits
SHA-1-IME1 512 bits 1920 bits 75 bits

SIMD-256/162 512 bits 2048 bits 260 bits
SIMD-512/162 1024 bits 4096 bits 516 bits

SIMD-256 512 bits 4096 bits 520 bits
SIMD-512 1024 bits 8192 bits 1032 bits

1 SHA-1 and SHA-1-IME codes are projected to the last 60 words.
2 SIMD-n/16 is a reduced version using a single copy of the encoded message.

functions absorb it or let it go through. This means that a collision corresponds to between 3 and
6 message differences.

For instance, if a difference is introduced in the state A(5)
1 by W (5)

1 , it will appear in A(5)
1 ,

B
(6)
1 , C(7)

1 , D(8)
1 . Each of the Boolean function φ(6)1 , φ

(7)
1 , φ

(8)
1 can either absorb it or pass it. This

difference will propagate to A(6)
0 , and to A(9)

1 . Moreover, it can propagate to A(6)
1 , A(7)

1 and A(8)
1

if the Boolean functions do not absorb it. Up to five active message bits can be used to cancel
this propagation: W (4)

1 , W (8)
1 , W (5)

0 , and possibly W (5)
1 , W (6)

1 , W (7)
1 if the corresponding Boolean

functions are not absorbing.
We consider two parts of the compression function: the computation of φ, and the modular

sum. In order to study the probabilities associated with these computations, we will count the
conditions needed for a message pair to follow the characteristic.

φ-conditions. The Boolean functions MAJ and IF used in SIMD can either absorb or pass
differences. When there is a single active input, the probability to absorb and to pass is 1/2.
Each time a state difference enters a Boolean function, the differential characteristic specifies
whether the difference should be passed or absorbed, and this gives one condition if the Boolean
functions have a single active input. Thus, each isolated difference in the state will account for 3
φ-conditions: one for each Boolean function they enter. For instance, a difference in A(4)

1 generates
conditions for φ(6)1 , φ(7)1 , φ(8)1 .

�-conditions. When a difference is introduced in the state, it has to come from one of the
inputs of the round function:

A
(i)
j =

(
D

(i−1)
j �W

(i)
j � φ(i)(A

(i−1)
j , B

(i−1)
j , C

(i−1)
j )

)≪s(i)

�
(
A

(i−1)
p(i)(j)

)≪r(i)

The round function is essentially a sum of 4 terms, and the differential characteristic will
specify which input bits and which output bits are active. Thus, the differential characteristic
specifies how the carry should propagate, and this gives at least one condition per state difference.

In the end, a state difference accounts for 4 conditions.

4.4 Heuristics

We first give some results based on heuristics. We assume that the adversary can find message
pairs that give a minimal distance in the expanded message, and we allow him to add some more



constraints to the expanded message. Note that finding a message pair with a low difference in
the expanded message is already quite difficult with the message expansion of SIMD.

Heuristic I assumes that the adversary can find message pairs with minimal distance, but no
other useful property. The adversary gets a message pair with minimal distance, and connects
the dots to build a differential characteristic.

Heuristic II assumes that the adversary can find message pairs with minimal distance and
controls the relative positions of the message difference. He will use that ability to create
local collisions.

Heuristic III assumes that the adversary can find a message pair with any message difference,
limited only by the minimal weight of the code. He will cluster local collisions to avoid many
conditions.

Heuristic I. In this section, we assume that the adversary can find a message pair such that the
expanded messages reach the minimal distance of the code, but we assume that the message pair
has no further useful properties.

In this case, this adversary gets a message pair with a small difference and he has to connect
the dots to build a differential path. This is somewhat similar to the attacks on MD4 [17]: the
messages are chosen so as to make a local collision in the last round, and the attacker has to
connect all the remaining differences into a path with a good probability.

It seems safe to assume that such a differential path will at least have as many active state
bits as active message bits. Since an isolated difference in the state costs 4 conditions, we expect
at least 2080 conditions (resp. 4128 for SIMD-512), which is very high.

This shows that the adversary needs some control over the expanded message. If he wants to
succeed, he needs to find message pairs with some extra properties.

Heuristic II. We now assume that the adversary can force some structure in the expanded
message difference. Namely, he can choose the relative location of the differences in the expanded
message. Since the probability of the path is essentially given by the number of active bits in
the state, the path should minimize this. This is achieved with local collisions, and each local
collision will use as many message differences as possible. Due to the structure of the round
function of SIMD, a local collision can use between 3 and 6 message differences, depending on
whether the Boolean functions absorb or pass the differences. In order to minimize the number
of state differences, the path will make all the Boolean functions pass the differences, yielding
six message differences per state difference. This is somewhat counter-intuitive because most
attacks try to minimize the propagation of differences by absorbing them. However, in our case it
is more efficient to let the differences go through the Boolean functions, and to use more message
differences to cancel them, because we have a lower bound on the number of message differences.

Since the adversary only controls the relative position of the message differences, we assume
that most local collisions will be isolated, so that each local collision gives 4 conditions. Thus,
a differential is expected to have at least 520× 4/6 ≈ 347 conditions (688 for SIMD-512). This
leaves a significant security margin, and even if the adversary can use message modifications in
the first 16 rounds, it can only avoid half of those conditions.

This can be compared to the attacks on SHA-1 [6,18]. These attacks are based on local
collisions, but we do not know how to find a message pair which would have both minimal distance
and yield a series of local collisions in SHA-1. Instead, attacks on SHA-1 use the fact that the
message expansion is linear and circulant : given a codeword, if we shift it by a few rounds we
get another valid codeword and similarly if we rotate each word we get another valid codeword.
Then we can combine a few rotated and/or shifted codewords so as to build local collisions. The



Program 1 Linear Program
Minimize S + α− β with the constraints:

3S = α+ β + γ (1)
520 ≤ 3S + α (2)
γ ≤ β ≤ α (3)

α ≥ 0 is the number of Boolean functions with at least one active input
β ≥ 0 is the number of Boolean functions with at least two active inputs
γ ≥ 0 is the number of Boolean functions with at least three active inputs
S ≥ 0 is the number of active state bits

attacks on SHA-1 start with a codeword of minimal distance, and combines 6 rotated versions.
Thus the weight of the actual expanded message difference used in the attack is six times the
minimal weight of the code.

Note that message expansion of SIMD is more complex than the one from SHA-1, and it seems
very hard to find this kind of message pairs in SIMD. Moreover, the trick used in SHA-1 cannot
be used here because the message expansion is neither linear nor circulant.

Heuristic III. We now remove all heuristic assumptions and we try to give a bound on any
differential trail. However, to keep this analysis simple, we still disregard the specificities of the
first round, and the fact that one can combine some of the message differences.

The adversary will still use local collisions to minimize the number of differences in the state,
but he will also try to reduce the number of conditions for each local collision by clustering them.
We have seen that an isolated state difference costs 4 conditions, but if two state differences are
next to each other, the cost can be reduced when using a signed difference. For instance, if two
inputs of the MAJ function are active, the adversary does not have to pay any probability: if
both active inputs have the same sign, then the output is active with the same sign, but if the
inputs have opposite signs then the output will be inactive. In this section we consider that a
Boolean function with more than one active input does not cost any probability.

Thus, the best strategy for the adversary is to place the state differences so that each
active Boolean function has two active inputs, in order to avoid any φ-conditions. Each state
difference costs only one �-condition, and gets 4.5 message differences (these message differences
corresponding to the Boolean functions are shared between two Boolean functions). This gives a
lower bound of 116 conditions.

More rigorously, this can be described by a linear program, as shown in Linear Program 1.
Equation (1) comes from counting the number of active inputs to the Boolean functions in two
different ways, while Equation (2) counts the number of message differences that can be used.
The objective value S + α− β counts the conditions: one for each state difference, plus one for
each Boolean function with exactly one active input. The optimal solution to this program is
520/4.5 ≈ 115.55.

In the next section we will see how to improve this bound and get a bound on the probability
of any differential path.

Comparison with SHA-1-IME. The security of SHA-1-IME is based on a heuristic that is
quite similar to our Heuristic I. Jutla and Patthak assume that the adversary will use the same
technique as the attacks on SHA-1, i.e. create local collisions using the fact that the code is
linear and circulant. They deduce that the probability of a differential characteristic will be about



275×2.5. They implicitly assume that the adversary cannot find minimal codewords that would
already give local collisions. Our Heuristic II assumes that the attacker can find such codewords,
and if we apply it to SHA-1-IME, it would only guarantee that we have at least 13 local collisions
(each local collision accounts for 6 message differences). Since a local collision in SHA-1 has an
average probability of 2−2.5, this would only prove that an attack has at least a complexity
213×2.5 = 232.5.

This shows that our Heuristic II and III are much weaker than the heuristic used in SHA-1-IME.

4.5 Upper Bounding the Probability of a Differential Path

The bound given by Heuristic III is slightly lower than n/2 so we would like to improve it. To
find a better bound, we will follow the approach of Linear Program 1. Note that in the optimal
solution, all the Boolean functions have either zero or two active inputs, but it is unlikely that
such a path actually exists because of the way the Boolean functions share inputs. In order to
remove some impossible solutions, we use a more detailed modeling of differential paths where
each individual state bit is treated separately. This also allows us to express some extra constraints
that will help to improve the lower bound.

Program 2 Integer Linear Program (simplified)

Minimize
∑
S

(j)[k]
i +

∑
α
(j)[k]
i −

∑
β
(j)[k]
i with the constraints:

S
(j−1)[k]
i + S

(j−2)[k]
i + S

(j−3)[k]
i = α

(j)[k]
i + β

(j)[k]
i + γ

(j)[k]
i (1’)

W
(j)[k]
i ≤ S(j)[k+sj ]

i + S
(j−4)[k−rj ]

i + S
(j−1)[k−rj+sj ]

pj(i)
+ α

(j)[k]
i (2’)

γ
(j)[k]
i ≤ β

(j)[k]
i ≤ α

(j)[k]
i (3’)

15∑
k=0

W
(j)[k]
i ≥ 4YP1(i,j)

31∑
k=16

W
(j)[k]
i ≥ 4YP0(i,j) (4)∑

Yi ≥ 65 (5)

α
(j)[k]
i ∈ B is true iff φ(j)[k]

i has at least one active input
β
(j)[k]
i ∈ B is true iff φ(j)[k]

i has at least two active input
γ
(j)[k]
i ∈ B is true iff φ(j)[k]

i has at least three active input
S

(j)[k]
i ∈ B is true iff the state bit A(j)[k]

i is active
W

(j)[k]
i ∈ B is true iff the expended message bit W (j)[k]

i is active
Yi ∈ B is true iff the word i is active in the output of the NTT

Constraints related to the message expansion. We know that the message expansion gives at
least 520 differences in the expanded message, but there are some constraints on the positions of
these differences. Namely, we have at least 65 active words in each copy of the message, and each
active word has at least 4 active bits. For instance, a difference pattern with 3 active bits in each
word would have 768 bit differences, but it is not a valid pattern. Moreover, the active words in
both copies have to be the same up to the permutation P . To include these constraints in our
model, we add a set of binary variables Yi which encode whether word i is active in the output of
the NTT. This is modeled by Equations (4) and (5). Note that this still allows many difference
patterns that cannot be the output of a real message pair.



Better cost estimation. In Program 1, we only count a condition for the Boolean functions with a
single active input. In fact, if we look at the truth table of the Boolean functions we see that the
IF function still needs a condition when inputs 1 and 2, or 1 and 3 are active. Since we are using
distinct variables for each of these inputs, we can include this in our description.

We can write all these constraints as a huge optimisation problem, but we need some tool to
find the optimal solution of the system, or at least find a lower bound. We decided to write our
problem as an Integer Linear Program.

Integer Linear Programming. Integer Linear Programming (ILP) is a generalisation of Linear
Programming (LP) where some variables are restricted to integer values. While LP is solvable in
polynomial time, ILP is NP-complete. ILP solvers usually use some variants of the branch-and-
bound algorithm. In the case of minimization problem, the branch-and-bound algorithm computes
a lower bound to the optimal solution and incrementally raises this lower bound. Meanwhile,
non-optimal solutions give an upper bound, and when the two bounds meet, the search is over.

To compute a lower bound, the problem is relaxed by considering all variables as real numbers
instead of integers. This gives a Linear Program which can be solved efficiently, and the optimal
solution of the Linear Program is a lower bound of the Integer Linear Program. To improve
this lower bound, the search space is divided into two or more subspaces, and a lower bound is
computed recursively for each subproblem. For instance, Figure 4 shows how to solve Program 1
as an ILP.

Results. A simplified version of the ILP is given by Program 2. The first equations and the
objective value mirrors Program 1, but use many variables to allow for more precise extra
constraints. The full program has 28,576 variables and 80,162 equations for SIMD-256. We used
the solver SYMPHONY, an open-source solver for mixed-integer linear programs, available at
http://www.coin-or.org/SYMPHONY/. The solver could not find an optimal solution to the
program, but it reached an interesting lower bound after some time: a differential path for
SIMD-256 has at least 132 conditions, while a differential path for SIMD-512 has at least 253.
The computation for SIMD-512 took one month on a bi-quadcore machine.

Summary. The optimal strategy of the attacker is to use local collisions (avoiding any difference
propagation) and to cluster the local collisions so as to avoid most conditions. Our modeling
allows the adversary to do this because he can choose the message difference and the expanded
message difference independently, and he can position the differences arbitrarily in the inner code.
However, this is not possible in practice, and most solutions of the Integer Linear Program will
require an expanded message difference that is not actually feasible. It should also be noted that
we do not model the sign of the differences, and we always assume that the sign is correct when
two differences cancel out.

Therefore, we expect that the best differential path in SIMD is much worse that the optimal
solution of our Integer Linear Program. Moreover, the program is too large to be solved to
optimality, and we only have a lower bound on the number of conditions (this lower bound keep
improving if we let the solver run).

Limitations

http://www.coin-or.org/SYMPHONY/


ILP: Minimize S + α− β with:

3S = α+ β + γ

520 ≤ 3S + α

γ ≤ β ≤ α

Optimal LP solution: 115.55

α = 173.33 β = 173.33

γ = 0 S = 115.55

Optimal LP solution: 120

α = 175 β = 170

γ = 0 S = 115

Optimal LP solution: 116

α = 172 β = 172

γ = 4 S = 116

S ≤ 115 S ≥ 116

Optimal ILP solution: 116

α = 172 β = 172

γ = 4 S = 116

Fig. 4. Solving Program 1 as a ILP. The problem is divided into two subproblems: S ≤ 115 ans
S ≥ 116. For each of these subproblems, the optimal solution of the relaxed problem is integral
so this gives us the optimal solution of the ILP.

About Message Modifications When we consider the Heuristic III, our proof does not leave enough
margin to account for message modifications. However the mode of operation of the compression
function is designed to make message modification difficult, by XORing the message and the
chaining value in the very beginning. This prevents usual message modification techniques, because
the adversary has to commit to some message before he can begin the real computation of the
compression function.

We note that given a message M , one can compute a new message M∗ so that the expanded
message W ∗ is identical to W in the first steps, up to almost 8 steps. However in order to keep
the same state in the Feistel rounds, one has to counter the modification of the message by a
modification of the input chaining value. Therefore it is only applicable to free-start attacks. Since
SIMD is a wide-pipe design, free-start attacks on the compression function cannot be turned into
attacks on the hash function.

Redundant Conditions There might be some redundant φ-conditions in a differential path. As
opposed to MD4 or MD5, we can never have the same condition for two different Boolean functions
(because of the rotations), but there might still be some redundant conditions. However, since
most of the conditions are �-conditions, we believe this is negligible.



5 Security Status of SIMD

5.1 On the Symmetry-based Distinguisher

The distinguisher of Section 2 shows that the compression function of SIMD is not ideal. It does
not affect the security of the hash function, but it is nonetheless an unwanted property. Since
this distinguisher is based on symmetry properties, it is easy to avoid this property by slightly
changing the design. Therefore, we plan to tweak the SIMD design by adding non-symmetric
constants, if given such an opportunity. We also note that other SHA-3 candidates are in a similar
situation:

– CubeHash has strong symmetry properties in its round transformation [1,8]. It is thought
that since the initial state in not symmetric, it is not possible to reach a symmetric state.

– Shabal has strong distinguishers on its compression function: there are differential paths with
probability 1 [2], and the inverse permutation does not have full diffusion (some input bits do
not depend on all output bits). The Shabal team has shown that these distinguishers do not
affect the security [5].

Countermeasures. An interesting way to avoid the symmetry properties would be to add a
counter to the expanded message after the multiplication by a constant (step 3 of the message
expansion). This would ensure that each expanded message word has a different value modulo 185
(respectively modulo 223), and it prevents equality constraints between the expanded message
words.

5.2 On Differential Attacks

Concerning differential attacks, our results are two-fold:

1. A differential path with a non-zero difference in the input chaining value does not affect the
security of the hash function because it is wide-pipe

2. A differential path with a non-zero difference in the message cannot have a high success
probability, because of the strong message expansion.

This shows that successful attacks on the hash function based on differential properties are very
unlikely.
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A Example of Weak Message

Here is an example of a weak message, and the output of the compression function when used
with the same value for the message and chaining value (this ensures that the XOR is symmetric).
Notice that the output is mostly symmetric.
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Message = Chaining Value
A0..3 00000000 00000000 00000000 00000000
B0..3 00000000 00000000 00000000 a2000000
C0..3 00000000 00000000 00000000 00000000
D0..3 00000000 00000000 00000000 f1000000

Output
A0..3 0e0618e6 0ee618e6 ec5a3cee fbdc48ae
B0..3 17bde794 17bddbd4 5a0a59f2 5a2a59f2
C0..3 12a9c015 12a9c015 be7d3df1 be775df1
D0..3 15f9cb8d 15f9cb8d 2efef45c 2efef45c

Expanded Message
W

(0)
0..3 0a1ee3d1 0a1ee3d1 bc12531b bc12531b W

(1)
0..3 a5abca86 a5abca86 4be14335 4be14335

W
(2)
0..3 e827b082 e827b082 1b761da1 1b761da1 W

(3)
0..3 287848fd 287848fd aa01d8fa aa01d8fa

W
(4)
0..3 2fb2e543 2fb2e543 c914c4be c914c4be W

(5)
0..3 050f4ec5 050f4ec5 de09ccb1 de09ccb1

W
(6)
0..3 143cc7a2 143cc7a2 31ddec7d 31ddec7d W

(7)
0..3 50f0d841 50f0d841 0dbbb1f4 0dbbb1f4

W
(8)
0..3 d04e1abd d04e1abd 36ec3b42 36ec3b42 W

(9)
0..3 ebc4385e ebc4385e ce231383 ce231383

W
(10)
0..3 f5e21c2f f5e21c2f 43eeace5 43eeace5 W

(11)
0..3 17d94f7e 17d94f7e e48ae25f e48ae25f

W
(12)
0..3 af1027bf af1027bf f2454e0c f2454e0c W

(13)
0..3 faf1b13b faf1b13b 21f7334f 21f7334f

W
(14)
0..3 d788b703 d788b703 55ff2706 55ff2706 W

(15)
0..3 5a55357a 5a55357a b41fbccb b41fbccb

W
(16)
0..3 320fcdf1 320fcdf1 624c9db4 624c9db4 W

(17)
0..3 a4135bed a4135bed 3126ceda 3126ceda

W
(18)
0..3 21adde53 21adde53 4aa2b55e 4aa2b55e W

(19)
0..3 237fdc81 237fdc81 975568ab 975568ab

W
(20)
0..3 435abca6 435abca6 ab5b54a5 ab5b54a5 W

(21)
0..3 9ccb6335 9ccb6335 409fbf61 409fbf61

W
(22)
0..3 641e9be2 641e9be2 daaf2551 daaf2551 W

(23)
0..3 46feb902 46feb902 1893e76d 1893e76d

W
(24)
0..3 71c58e3b 71c58e3b a06f5f91 a06f5f91 W

(25)
0..3 1e09e1f7 1e09e1f7 dd6a2296 dd6a2296

W
(26)
0..3 9a1065f0 9a1065f0 eeb5114b eeb5114b W

(27)
0..3 c3ee3c12 c3ee3c12 452cbad4 452cbad4

W
(28)
0..3 e684197c e684197c c1333ecd c1333ecd W

(29)
0..3 f9a1065f f9a1065f 2ac7d539 2ac7d539

W
(30)
0..3 f3420cbe f3420cbe 558eaa72 558eaa72 W

(31)
0..3 cd0832f8 cd0832f8 6c4f93b1 6c4f93b1

B Study of the Symmetry Classes

In this section we study the sets of messages than be used for the symmetry property of SIMD by
solving the equation on the NTT. We give an explicit description of the sets, and we show that for
a given symmetry relation, a pair of output cannot be used as input for the symmetry property.

B.1 Symmetries for SIMD-256

There are three symmetry classes in SIMD-256.

Class 1:←→• (yi = y′i⊕2, Wi = W ′i⊕1). For this symmetry relation, the pairs of suitable
messages are in an affine space of dimension 2:

Mα,β = 162× e31 + 241× e63 + α× e0 + β × e32
M ′α,β = 162× e31 + 241× e63 + α× e0 − β × e32

Note that if β = 1 we have −β = −1 and the corresponding M ′ is not a valid message. So we
have only 256 · 255 valid message pairs.

When β = 0, we have Mα,β =Mα,β and this gives a symmetric message instead of a pair of
symmetric message.



Class 2: •←→ (yi = y′i⊕4, Wi = W ′i⊕2). For this symmetry relation, the pairs of suitable
messages are in an affine space of dimension 4:

Mα,β,γ,δ = 55× e15 + 232× e31 + 37× e47 + 16× e63 + α× e0 + β × e32 + γ × e16 + δ × e48
M ′α,β,γ,δ = 55× e15 + 232× e31 + 37× e47 + 16× e63 + α× e0 + β × e32 − γ × e16 − δ × e48

Class 3: ←→•←→ (yi = y′i⊕6, Wi = W ′i⊕3). For this symmetry relation, the pairs of suitable
messages are in an affine space of dimension 2:

Mα,β = 212× e15 + 181× e31 + 139× e47 + 20× e63 + α× e0 + β × e32
M ′α,β = 212× e15 + 181× e31 + 139× e47 + 20× e63 + α× e0 − β × e32

Input and Output Pairs. Let M,M ′ be a message in one of these classes. Without loss of
generality, we denote the symmetry class by ←→• .

Let h, h′ be a pair of chaining values that can used with this message, i.e., h′ =
←→
h ⊕M⊕M ′. We

denote the inputs to the Feistel compression part by S(0) = A
(0)
[0,1,2,3], B

(0)
[0,1,2,3], C

(0)
[0,1,2,3], D

(0)
[0,1,2,3]

(respectively S ′(0)). Similarly, S(31) is the state after the 32 Feistel rounds using the message, and
S(35) if the final state after the Feed-forward.

We can express D(35)
3 in terms of S(31):

D
′(35)
3 =

((
D
′(31)
3 � IV ′3 � IF(A

′(31)
3 , B

′(31)
3 , C

′(31)
3 )

)≪13

�A
′(31)
0

≪4
)≪13

←→
D

(35)
3 =

((←→
D

(31)
3 �

←→
IV 3 � IF(

←→
A

(31)
3 ,
←→
B

(31)
3 ,
←→
C

(31)
3 )

)≪13

�
←→
A

(31)
0

≪4
)≪13

Since S(31) and S ′(31) are symmetric, we have:

A
′(31)
3 =

←→
A 31

3 B
′(31)
3 =

←→
B 31

3 C
′(31)
3 =

←→
C 31

3 D
′(31)
3 =

←→
D 31

3 A
′(31)
0 =

←→
A 31

0

Therefore, the difference between D′(35)3 and
←→
D

(35)
3 comes from the difference between IV ′3 and

←→
IV 3. By looking at those differences, we can see that they are not compatible, because of the
rotation by 26 bits:

Class 1 IV ′3 ⊕
←→
IV 3 = 0 , D′(35)3 ⊕

←→
D

(35)
3 = 241× 224

Class 2 IV ′3 ⊕
←→
IV 3 = 55× 224, D′(35)3 ⊕

←→
D

(35)
3 = 16× 224

Class 3 IV ′3 ⊕
←→
IV 3 = 212× 224, D′(35)3 ⊕

←→
D

(35)
3 = 20× 224

B.2 Symmetries for SIMD-512

There are seven symmetry classes for SIMD-512.

Class 1 (yi = y′i⊕2, Wi = W ′i⊕1). For this symmetry relation, the pairs of suitable messages
are in an affine space of dimension 2:

Mα,β = 180× e63 + 241× e127 + α× e0 + β × e64
M ′α,β = 180× e63 + 241× e127 + α× e0 − β × e64



Class 2 (yi = y′i⊕4, Wi = W ′i⊕2). For this symmetry relation, the pairs of suitable messages
are in an affine space of dimension 4:

Mα,β,γ,δ = 74× e31 + 232× e63 + 218× e95 + 16× e127 + α× e0 + β × e64 + γ × e32 + δ × e96
M ′α,β,γ,δ = 74× e31 + 232× e63 + 218× e95 + 16× e127 + α× e0 + β × e64 − γ × e32 − δ × e96

Class 3 (yi = y′i⊕6, Wi = W ′i⊕3). For this symmetry relation, the pairs of suitable messages
are in an affine space of dimension 2:

Mα,β = 58× e31 + 16× e63 + 150× e95 + 122× e127 + α× e0 + β × e64
M ′α,β = 58× e31 + 16× e63 + 150× e95 + 122× e127 + α× e0 − β × e64

Class 4 (yi = y′i⊕8, Wi = W ′i⊕4). For this symmetry relation, the pairs of suitable messages
are in an affine space of dimension 8:

Mα,β,γ,δ,ε,ζ,η,θ = 211× e15 + 8× e31 + 199× e47 + 234× e63 + 116× e79 + 32× e95 + 111× e111 + 16× e127
+ α× e0 + β × e64 + γ × e32 + δ × e96 + ε× e16 + ζ × e48 + η × e80 + θ × e112

M ′α,β,γ,δ,ε,ζ,η,θ = 211× e15 + 8× e31 + 199× e47 + 234× e63 + 116× e79 + 32× e95 + 111× e111 + 16× e127
+ α× e0 + β × e64 + γ × e32 + δ × e96 − ε× e16 − ζ × e48 − η × e80 − θ × e112

Class 5 (yi = y′i⊕10, Wi = W ′i⊕5). For this symmetry relation, the pairs of suitable messages
are in an affine space of dimension 2:

Mα,β = 195× e15 + 237× e31 + 154× e47 + 254× e63 + 70× e79 + 40× e95 + 121× e111 + 195× e127
+ α× e0 + β × e64

M ′α,β = 195× e15 + 237× e31 + 154× e47 + 254× e63 + 70× e79 + 40× e95 + 121× e111 + 195× e127
+ α× e0 − β × e64

Class 6 (yi = y′i⊕12, Wi = W ′i⊕6). For this symmetry relation, the pairs of suitable messages
are in an affine space of dimension 4:

Mα,β,γ,δ = 251× e15 + 35× e31 + 36× e47 + 223× e63 + 57× e79 + 159× e95 + 0× e111 + 114× e127
+ α× e0 + β × e64 + γ × e32 + δ × e96

M ′α,β,γ,δ = 251× e15 + 35× e31 + 36× e47 + 223× e63 + 57× e79 + 159× e95 + 0× e111 + 114× e127
+ α× e0 + β × e64 − γ × e32 − δ × e96

Class 7 (yi = y′i⊕14, Wi = W ′i⊕7). For this symmetry relation, the pairs of suitable messages
are in an affine space of dimension 2:

Mα,β = 32× e15 + 212× e31 + 157× e47 + 218× e63 + 129× e79 + 162× e95 + 174× e111 + 199× e127
+ α× e0 + β × e64

M ′α,β = 32× e15 + 212× e31 + 157× e47 + 218× e63 + 129× e79 + 162× e95 + 174× e111 + 199× e127
+ α× e0 − β × e64



Input and Output Pairs. Like in SIMD-256, we can show than a pair of output cannot be a
valid input pair for the symmetry relation. We have:

D
′(35)
7 =

((
D
′(31)
7 � IV ′7 � IF(A

′(31)
7 , B

′(31)
7 , C

′(31)
7 )

)≪13

�A
′(31)
2

≪4
)≪13

←→
D

(35)
7 =

((←→
D

(31)
7 �

←→
IV 7 � IF(

←→
A

(31)
7 ,
←→
B

(31)
7 ,
←→
C

(31)
7 )

)≪13

�
←→
A

(31)
2

≪4
)≪13

Since S(31) and S ′(31) are symmetric, we have:

A
′(31)
7 =

←→
A 31

7 B
′(31)
7 =

←→
B 31

7 C
′(31)
7 =

←→
C 31

7 D
′(31)
7 =

←→
D 31

7 A
′(31)
2 =

←→
A 31

2

Again, the differences in D(35)
7 and in IV 7 are not compatible:

Class 1 IV ′7 ⊕
←→
IV 7 = 0 , D′(35)7 ⊕

←→
D

(35)
7 = 241× 224

Class 2 IV ′7 ⊕
←→
IV 7 = 74× 224, D′(35)7 ⊕

←→
D

(35)
7 = 16× 224

Class 3 IV ′7 ⊕
←→
IV 7 = 58× 224, D′(35)7 ⊕

←→
D

(35)
7 = 122× 224

Class 4 IV ′7 ⊕
←→
IV 7 = 219× 224, D′(35)7 ⊕

←→
D

(35)
7 = 127× 224

Class 5 IV ′7 ⊕
←→
IV 7 = 237× 224, D′(35)7 ⊕

←→
D

(35)
7 = 195× 224

Class 6 IV ′7 ⊕
←→
IV 7 = 35× 224, D′(35)7 ⊕

←→
D

(35)
7 = 114× 224

Class 7 IV ′7 ⊕
←→
IV 7 = 212× 224, D′(35)7 ⊕

←→
D

(35)
7 = 199× 224

B.3 Symmetry Classes for the Final Transformation

The final transformation is based on a slightly modified compression function and similar symmetry
classes can be found. However, we note that all the messages and message pairs than can give
a symmetric expanded message have a non zero value in the last message byte (M [63] for
SIMD-256, or M [127] for SIMD-512). Since the message input of the final compression function
is in fact the length of the message being hashed, this means that the message length must be
at least 2504 for SIMD-256, and at least 21016 for SIMD-512. Hashing such a long message is
completely meaningless3, so it is safe to say that the distinguisher cannot be used against the
final transformation.

C Proof of Theorem 1

In this section we show that the prefix-free iteration of an ideal compression function is indifferen-
tiable from a random oracle, thus proving Theorem 1. The content of this section borrows very
much to the proof in the extended version of [7].

We consider a simulator S, which has oracle access to a random oracle RO : {0, 1}∗ → {0, 1}p,
and whose task is to simulate a random compression function. The pseudo-code of the simulator
is shown in Figure 5 page 28, but here are a few comments. The simulator maintains a log of the
queries it has answered to. This knowledge is maintained under the form of a graph G = (V,E),
where the set of vertices V is a subset of H, and where the edges are labelled by message blocks
fromM. The semantic of this graph is that there is an edge labelled by m between h and h′ if
the simulator let the distinguisher know that f(h,m) = h′. We denote this by h m−→ h′. Initially,

3If it is feasible to hash these messages, then the hash function can be broken by brute force and does
not offer any kind of security.



the graph contains only a single vertex IV . The simulator also maintains a subset of V denoted
by Reach, consisting of the vertices that are reachable from IV . It also associates to each vertex
v in Reach an ancestor in Reach. This allows to efficiently reconstruct the sequence of message
blocks that maps IV to v, given v. We will note IV M−→∗ v when there is such a path between IV
and v. At the beginning, Reach only contains the IV .

1: function FreshValue(h,m)
2: if IV M−→∗ h ∈ Reach then
3: if there exist M ′ such that M‖m = g(M ′) then
4: h′ ← RO(M ′)
5: else
6: h′

$←− H
7: end if
8: Reach← Reach ∪

{
h

m−→ h′
}

9: else
10: h′

$←− H
11: end if
12: V ← V ∪ {h, h′}
13: E ← E ∪

{
h

m−→ h′
}

14: return h′

15: end function

16: function Simulator(h,m)
17: if there exist a vertex h′ ∈ V and an edge h m−→ h′ in E then
18: return this h′

19: else
20: h′ ← FreshValue(h,m)
21: return h′

22: end if
23: end function

Fig. 5. Pseudo-code of the Simulator S

Let F be a random function. Now, a distinguisher D interacts with either HF and F (we say
that it is in the “construction world”), or with RO and S (and we say that it is in the “random
oracle world”), and it has to tell in which world it is. More formally, D is a Turing machine that
has two interfaces. It should output “1” if HF and F are answering its oracle queries, and “0” if
RO and S are. Our objective is to show that the following holds for a small ε:∣∣∣P[DHF ,F = 1

]
− P

[
DRO,S = 1

]∣∣∣ ≤ ε
The proof uses a hybrid argument through a sequence of games. We will denote by qS and qO

the number of queries sent to the Simulator and the Oracle respectively, by the distinguisher.

Game 1: The distinguisher is in the random oracle world. It has access to RO and S. Let G1 be
the event that D outputs “1” in this setting:

P
[
G1

]
= P

[
DRO,S = 1

]
Game 2: We introduce a dummy relay algorithm T , which has oracle access to RO. Given a
random oracle query from the distinguisher, T just send the query to RO, and transmits the



answer of RO back to D. Let G2 be the event that D outputs “1” in this case. Since the view of
D is left unchanged, we have:

P
[
G2

]
= P

[
DT

RO,S = 1
]
= P

[
G1

]
Game 3: In this game, we modify the simulator S. In particular, we restrict the responses of the
simulator such that they never satisfy certain specific failure conditions. If the simulator comes up
with a response that would result in an inconsistent state, then it fails explicitly instead of sending
that response. The failure conditions describe certain situations that could be exploited by the
distinguisher, such as collisions on the internal state. We just slightly change the FreshValue
function:
1: function FreshValue(h,m)
2: if IV M−→∗ h ∈ Reach then
3: if there exist M ′ such that M‖m = g(M ′) then
4: h′ ← RO(M ′)
5: else
6: h′

$←− H
7: end if
8: if h′ ∈ V then
9: Abort

10: end if
11: Reach← Reach ∪

{
h

m−→ h′
}

12: else
13: h′

$←− H
14: end if
15: V ← V ∪ {h, h′}
16: E ← E ∪

{
h

m−→ h′
}

17: return h′

18: end function
It should be clear that until no abort occur, the subgraph Reach is in fact a tree rooted in IV .

This follows from the fact that the simulator aborts as soon as a collision in the internal state is
detected. The new value h′ is always drawn uniformly at random. It should be clear that as long
as the simulator does not abort, the number of nodes in V is upper-bounded by 2qS + 1.

Therefore, for a given query, the probability of failure is upper-bounded by (2qS + 1)/2p.
For all the qS queries sent by the distinguisher, the probability of failure is therefore less than
qS · (2 · qs + 1)/2p. Let G3 be the event that D outputs “1” in this case. Since the view of D only
changes when the simulator aborts, we have:

∣∣P[G3

]
− P

[
G2

]∣∣ ≤ 2 · (qS + 1)
2

2p

Game 4: In this game, we modify the relay algorithm and leave the simulator unchanged. The
underlying idea is to make the responses of the relay algorithm directly dependent on the simulator.
Thus, instead of giving the new relay algorithm T1 an oracle access to the random oracle RO, it is
now given oracle access to the simulator S0. On a random oracle query X, the relay algorithm T1
computes the prefix-free encoding of X, g(X). It then applies the Merkle-Damgård construction to
g(X) and queries the simulator S0 to evaluate the compression function. Thus the relay algorithm
T1 is essentially the same as the random oracle construction pf-MD, except that it is based on



the simulator S0 instead of random function F . Let G4 denote the event that the distinguisher D
outputs “1” when given oracle access to T1 and S0 in this game. Thus, we know that

P
[
G4

]
= P

[
DT1,S0 = 1

]
Before going further, we establish two key properties of S0. Let us consider the sequence Q of

queries (hi,mi, h
′
i) sent to S0, where h′i is the answer and (hi,mi) is the question. We say that

the IV is reachable, and at a given point in the simulation h′i is reachable if there has been a
previous query (hi,mi, h

′
i) where hi was reachable. Then:

i) Until S0 fails, Reach precisely describes the set of reachable chaining values.
ii) Until S0 fails, Reach describes a tree.

These two properties are easy to establish by induction on the number of queries. When the
simulator detects that hi is reachable, it puts its answer h′i in Reach. What guarantees that our
two properties hold is that S0 aborts if h′i was already “known”. Thus, the set of reachable values
can only be extended by one element, namely h′i, and Reach is updated accordingly.

Next, we claim that the following three statements hold:

i) In Game 3, i.e., when D interacts with
(
T RO,S0

)
, the answers of S0 are consistent with those

of RO as long as S0 does not abort.
ii) In Game 4, i.e., when D interacts with

(
T pf−MD(S0)
1 ,S0

)
, the answers of S0 are consistent

with those of RO as long as S0 does not abort.
iii) T RO and T pf−MD(S0)

1 give the same answers until the simulator aborts.

From these three points, we can deduce that the view of the distinguisher D remains unchanged
from game 3 to game 4 if the simulator S0 does not fail in either of the two games.

Proof. i) To detect an inconsistency between S0 and RO, one has to build a chain of queries
corresponding to a valid message, and compare with the output of RO with the last query of
the chain. Note that if the chain is built out-of-order, then the simulator will abort. Therefore
the last query to be sent to S0 is the final block of the prefix free encoding of M . When S0
detects the final block of a message, it queries RO on the decoded message, which is unique
because Reach is a tree. The answers of RO and S0 are thus consistent.

ii) The justification is the same as in the previous point. The fact that T1 sends extra queries
does not change the fact that S0 answers are consistent with the Random Oracle.

iii) Since S0 is consistent with the VIL-RO, the relay algorithm T1 does in fact return RO(M)
by applying the pf-MD construction with S0. ut

We can finally complete the argument by observing that if the maximum length of the
prefix-free encoding of a random oracle query made by D is κ blocks, then,∣∣P[G4

]
− P

[
G3

]∣∣ ≤ P
[
S0 fails in Game 3

]
+ P

[
S0 fails in Game 4

]
≤ 2 · (qS + 1)

2
+ (qS + κ · qO + 1)

2

2p

Game 5: In this game, we modify the simulator S0 so as to make its responses independent of the
random oracle RO. For this purpose, we remove the random oracle RO from this game entirely
and the new simulator S1 always chooses a random p-bit response itself, even in situations where
S0 would have consulted RO. We also remove all the failure conditions from the new simulator
S1. More precisely, we change the simulator in the following way:



1: function FreshValue(h,m)
2: h′

$←− H
3: V ← V ∪ {h, h′}
4: E ← E ∪

{
h

m−→ h′
}

5: return h′

6: end function
The responses of these two simulators are identical apart from the failure conditions which are

used by S0 and not by S1: even when S0 consults the random oracle, its response is still uniformly
distributed. Thus, the distinguisher does not notice a difference between these games if in game 4,
the simulator S0 does not fail.

Let G5 denote the event that the distinguisher D outputs “1” in game 5, so that

P
[
G5

]
= P

[
DT1,S1 = 1

]
Then we can deduce that:∣∣P[G5

]
− P

[
G4

]∣∣ ≤ P
[
S0 fails in game 4

]
≤ 2 · (qS + κ · qO + 1)

2

2p

Game 6: This is the final game of our argument. Here we finally replace the simulator S1
with the random function F . Since the relay algorithm T1 simply implemented the prefix-free
Merkle-Damgård construction, then the view of the distinguisher is in fact the construction world.

Now, by combining games 1 to 6, we can show that∣∣∣P[DHF ,F = 1
]
− P

[
DRO,S = 1

]∣∣∣ ≤ 4 · (qS + 1)
2
+ (qS + κ · qO + 1)

2

2p

D Proof of Theorem 2

The proof proceed in the same way as the proof of Theorem 1, given in Appendix C. The simulator
is shown in Figure 3 page 12. The pseudo-code shows S0 with the failure conditions. Before going
further, a few comments on S0 are in order. When it receives a query (h,m), it checks whether
there exist a symmetric query

(
h,m

)
, that would trigger the symmetry relation (i.e., it checks

whether the node (h,m) is connected to something in G′R2
). If such a query exist, then both

are treated simultaneously in a “symmetric” way. In particular, if either one of these concerns a
reachable state, then it is treated specially, even if it not the original query, but the “symmetric”
one.

Game 3: Let us discuss the probability that S0 fails. It can only happen if h is reachable,
which in turn means that h′ is randomly distributed in H. S0 aborts when h′ ∈ W, h′ ∈ V or
Reach ∪ {h′} covers an edge of GR2

. The probability that h′ ∈ W is |W|/2p, and the probability
that h′ ∈ V is upper-bounded by (4 · qS + 1)/2p, since |V | ≤ 4 · qs + 1. Let us now discuss the
probability that an edge of GR2

is covered by Reach.
A simple induction on the number of queries shows that the chaining values in Reach are all

randomly and independently distributed in H (this is because Reach is always extended by h′ on
line 19, and h′ is itself always generated randomly). If we ignore the abort conditions, Reach is a
random subset of H of size k ≤ qs + 1 after qS queries. There are

(
2p

k

)
such subsets, and amongst



these
(

2p

k−2
)
cover a given edge. The probability that at least one edge out of |WP| is covered is

thus upper-bounded by |WP| ·
(

2p

k−2
)
/
(
2p

k

)
, which it itself upper-bounded by |WP| · k2/(2p − k)2.

After qs queries, the probability of failure is therefore bounded by:

∣∣P[G3

]
− P

[
G2

]∣∣ ≤ 4 · (qS + 1)
2

2p
+ |W| · qS + 1

2p
+ |WP| · qS + 12

(2p − qS − 1)
2

Game 4: We claim that the following four statements hold:

i) In Game 3, i.e., when D interacts with
(
T RO,S0

)
, the answers of S0 are consistent with those

of RO as long as S0 does not abort.
ii) In Game 4, i.e., when D interacts with

(
T pf−MD(S0)
1 ,S0

)
, the answers of S0 are consistent

with those of RO as long as S0 does not abort.
iii) T RO and T pf−MD(S0)

1 give the same answers until the simulator aborts.
iv) As long as it does not abort, the answer of S0 always comply with the relation R.

Consistency with the VIL-RO. Establishing the first three points can be done in the same as it
was done in the proof of Theorem 1. The simulator relies on the fact that Reach is a tree, and
that it exactly describes the reachable chaining values in V . This can be established by arguing
that if S does not abort, then h′ is the only new reachable chaining value created by the current
invocation of FreshValue. Note that h, if it exists, is not reachable.

Conformance to the Relation. The main point is that the relation can never be falsified on
reachable states, and that the samplers are used on non-reachable states to ensure that the
answers are consistent with the relation. More precisely, the simulator aborts as soon as a state
in W becomes reachable, or a pair of states in WP becomes reachable.

Let us assume that the distinguisher can find a query (h,m, h′) with h
m−→ h′ such that

R1(h,m, h
′) does not hold. Then we have h ∈ W by definition of W, therefore h cannot be

reachable and h′ has necessarily been build by Sampler1. By definition of Sampler1, R1(h,m, h
′)

must hold.
Similarly, let us assume that the distinguisher finds h1

m1−−→ h′1 and h2
m2−−→ h′2 such that

R2(h1,m1, h2,m2, h
′
1, h
′
2) does not hold. By definition ofWP we have (h1, h2) ∈ WP therefore h1

and h2 cannot both be reachable. Moreover, we have (h1,m1)↔ (h2,m2) ∈ G′R2
. Without loos of

generality, we assume that h2 is not reachable. When the first query involving (h1,m1) or (h2,m2)
was sent to S0, the simulator built the second query. If h1 was reachable, h′1 has been built by calling
the VIL-RO and h′2 has been built by Sampler2, with assures that R2(h1,m1, h2,m2, h

′
1, h
′
2)

holds. Similarly, if h1 is not reachable, h′1 has been built by Sampler1, and h′2 by Sampler2.
We note that if h1 was not reachable at the time when it was queried, it cannot become reachable
later without causing the simulator to abort.

Finally, we obtain that the view of the distinguisher does not change as long as the simulator
does not abort:∣∣P[G4

]
− P

[
G3

]∣∣ ≤ P
[
S0 fails in Game 3

]
+ P

[
S0 fails in Game 4

]
≤ 2 · P

[
S0 fails in Game 4

]
≤ 8 · (qS + κ · qO)2

2p
+ 2|W| · qS + κ · qO

2p
+ 2|WP| · (qS + κ · qO)2

(2p − qS − κ · qO)2



And we conclude:∣∣∣P[DHF ,F = 1
]
− P

[
DRO,S = 1

]∣∣∣ ≤ ∣∣P[G1

]
− P

[
G6

]∣∣
≤ 4P

[
S0 fails in Game 4

]
≤ 16 · (qS + κ · qO)2

2p
+ 4 · |W| · qS + κ · qO

2p
+4 · |WP| · (qS + κ · qO)2

(2p − qS − κ · qO)2


	Security Analysis of SIMD 
	Introduction
	Brief Description of SIMD
	Previous Cryptanalysis Results

	A Distinguisher for the Compression Function of SIMD
	Building the Symmetric Messages
	Symmetry Property on the Compression Function
	Non-Ideality of the Compression Function
	Impact of the Symmetry-based Distinguisher

	Free-start Distinguishers, Non-Ideal Compression Functions and Wide-Pipe Designs
	Deterministic Distinguishers for the Compression Function
	Adapting the Indifferentiability Proof to Non-Ideal Compression Functions
	Proof Sketch of Theorem 2.

	On Differential Attacks against SIMD
	Modeling Differential Paths
	The Message Expansion
	Structure of a Differential Path
	Heuristics
	Upper Bounding the Probability of a Differential Path

	Security Status of SIMD
	On the Symmetry-based Distinguisher
	On Differential Attacks

	Example of Weak Message
	Study of the Symmetry Classes
	Symmetries for SIMD-256
	Symmetries for SIMD-512
	Symmetry Classes for the Final Transformation

	Proof of Theorem 1
	Proof of Theorem 2


