Security Analysis of SIMD

Charles Bouillaguet, Pierre-Alain Fouque, Gaëtan Leurent

École Normale Supérieure
Paris, France

SAC 2010 - University of Waterloo

Hash functions

- A public function with no structural properties.
- Cryptographic strength without keys!
- $F:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$

0x1d66ca77ab361c6f

Hash functions

- A public function with no structural properties.
- Cryptographic strength without keys!
- $F:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$

0x1d66ca77ab361c6f

The SHA-3 competition

- Similar to the AES competition
- Organized by NIST
- Submission dead-line was October 2008: 64 candidiates
- 51 valid submissions
- 14 in the second round (July 2009)
- 5 finalists in September 2010?
- Winner in 2012?

SIMD

- Merkle-Damgård with a Davies-Meyer compression function
- Strong message expansion
- Several Parallel MD-like Feistel

國 Gaëtan Leurent, Charles Bouillaguet, Pierre-Alain Fouque SIMD Is a Message Digest Submission to the NIST SHA-3 competition

SIMD Iteration Mode

- Wide-pipe
- Finalisation function
- Use only the message length as input in the last block
- Acts as a kind of blank round
- Can break unexpected properties

SIMD Compression Function

- Block cipher based
- Well understood
- Davies-Meyer
- Allows a strong message expansion
- Add the message at the start
- Prevents some message modifications
- Modified feed-forward: Feistel rounds instead of XOR
- Avoids some fixed point and multi-block attacks

SIMD Feistel Rounds

- Follows the SHA/MD legacy
- Additions, rotations, boolean functions
- 4 Parallel lanes for SIMD-256, 8 for SIMD-512
- Parallel Feistel rounds allow vectorized implementation

Outline

New distinguisher for SIMD

Security proof with distinguishers

Analysis of differential paths

Outline

New distinguisher for SIMD

Security proof with distinguishers

Analysis of differential paths

Symmetry based distinguisher

- Put the same values in two lanes
- Put the same message
- Need a special message...

Message pairs

- Let $\overleftrightarrow{\bullet}$ be a symmetry relation swapping pairs of lanes
- Let M, M^{\prime} be such that $\mathcal{E}\left(M^{\prime}\right)=\overleftrightarrow{\mathcal{E}(M)}$
- Let $\mathcal{S}^{(0)}, \mathcal{S}^{(0)}$ be such that $\mathcal{S}^{\prime(0)}=\overleftrightarrow{\mathcal{S}^{(0)}}$
- Then $\mathcal{S}^{\prime(31)}=\overleftrightarrow{\mathcal{S}^{(31)}}$
- We can use a single message
- We can use a single state

Message pairs

- Let $\overleftrightarrow{\bullet}$ be a symmetry relation swapping pairs of lanes
- Let $M M^{\prime}$ be such that $\mathcal{E}(M)=\overleftrightarrow{\mathcal{E}(M)}$
- Let $\mathcal{S}^{(0)}, \mathcal{S}^{(0)}$ be such that $\mathcal{S}^{\prime(0)}=\overleftrightarrow{\mathcal{S}^{(0)}}$
- Then $\mathcal{S}^{\prime(31)}=\overleftrightarrow{\mathcal{S}^{(31)}}$
- We can use a single message
- We can use a single state

Message pairs

- Let $\overleftrightarrow{\bullet}$ be a symmetry relation swapping pairs of lanes
- Let $M M^{\prime}$ be such that $\mathcal{E}(M)=\overleftrightarrow{\mathcal{E}(M)}$
- Let $\mathcal{S}^{(0)}, \mathcal{S}^{(0)}$ be such that $\mathcal{S}^{(0)}=\overleftrightarrow{\mathcal{S}^{(0)}}$
- Then $\mathcal{S}^{(31)}=\overleftrightarrow{\mathcal{S}^{(31)}}$
- We can use a single message
- We can use a single state

Message expansion

1 FFT transform over \mathbb{F}_{257} doubles the size of the message.
2 Make two copies of the FFT output.
3 Multiply by $185 / 233$ (from \mathbb{F}_{257} to 16-bit words).
4 Permute and pack into 32-bit words.

- Constant are only in the first layer.
- FFT is linear: easy to enforce linear conditions.
- Enough degrees of freedom for equality constraints.
- Equality is preserved by the remaining steps.
- Permutations are nice wrt. to this.
- We can easily generate those messages.
- Obvious fix: add constants at the end of the expansion.

Message expansion

1 FFT transform over \mathbb{F}_{257} doubles the size of the message.
2 Make two copies of the FFT output.
3 Multiply by $185 / 233$ (from \mathbb{F}_{257} to 16 -bit words).
4 Permute and pack into 32-bit words.

- Constant are only in the first layer.
- FFT is linear: easy to enforce linear conditions.
- Enough degrees of freedom for equality constraints.
- Equality is preserved by the remaining steps.
- Permutations are nice wrt. to this.
- We can easily generate those messages.
- Obvious fix: add constants at the end of the expansion.

Message expansion

1 FFT transform over \mathbb{F}_{257} doubles the size of the message.
2 Make two copies of the FFT output.
3 Multiply by $185 / 233$ (from \mathbb{F}_{257} to 16 -bit words).
4 Permute and pack into 32-bit words.

- Constant are only in the first layer.
- FFT is linear: easy to enforce linear conditions.
- Enough degrees of freedom for equality constraints.
- Equality is preserved by the remaining steps.
- Permutations are nice wrt. to this.
- We can easily generate those messages.
- Obvious fix: add constants at the end of the expansion.

Message expansion

1 FFT transform over \mathbb{F}_{257} doubles the size of the message.
2 Make two copies of the FFT output.
3 Multiply by $185 / 233$ (from \mathbb{F}_{257} to 16 -bit words).
4 Permute and pack into 32-bit words.

- Constant are only in the first layer.
- FFT is linear: easy to enforce linear conditions.
- Enough degrees of freedom for equality constraints.
- Equality is preserved by the remaining steps.
- Permutations are nice wrt. to this.
- We can easily generate those messages.
- Obvious fix: add constants at the end of the expansion.

Application to the Compression Function

- There are a few messages giving a symmetric expanded message
- Symmetric expanded message
- Symmetric state in the Feistel
- Message not symmetric
- Almost symmetric input
- Somewhat symmetric output

Important properties

- 2^{16} weak messages (2^{32} for SIMD-512)
- 2^{256+16} weak chaining values (2^{512+32} for SIMD-512)
- 2^{32} weak pairs of messages (2^{64} for SIMD-512)
- 2^{512+32} pairs of weak chaining values ($2^{1024+64}$ for SIMD-512)
- Wide-pipe: It is hard to get into a symmetric state / pair of states
- Takes time $2^{256-16}\left(2^{512-32}\right.$ for SIMD-512)
- There is no intersection between the symmetry classes
- Each pair only works with a single message pair
- An output pair can not be used as input pair
- It cannot be used in the final transform
- Getting into a symmetric state is not really useful...

Outline

New distinguisher for SIMD

Security proof with distinguishers

Analysis of differential paths

Prefix-free Merkle-Damgård

- Used by several SHA-3 candidates
- Indistinguishable up to $2^{p / 2}$ queries
[Coron, Dodis, Malinaud, and Puniya]
- Assuming that the compression function is perfect

Prefix-free Merkle-Damgård

- Used by several SHA-3 candidates
- Indistinguishable up to $2^{p / 2}$ queries
[Coron, Dodis, Malinaud, and Puniya]
- Assuming that the compression function is perfect

Weak random oracle

- Random oracle with some efficient distinguishers
- We model the compression function as a random oracle, constrained to satisfy some relations:

$$
\begin{aligned}
\forall(h, m): & \mathcal{R}_{1}(h, m, F(h, m))=1 \\
\forall\left(h_{1}, h_{2}, m_{1}, m_{2}\right): & \mathcal{R}_{2}\left(h_{1}, m_{1}, h_{2}, m_{2}, F\left(h_{1}, m_{1}\right), F\left(h_{2}, m_{2}\right)\right)=1
\end{aligned}
$$

- Examples:
- Symmetric states:

$$
\mathcal{R}_{1}:=(m=\overleftrightarrow{m} \wedge h=\overleftrightarrow{h}) \Rightarrow h^{\prime}=\overleftrightarrow{h^{\prime}}
$$

- Deterministic differential path

$$
\mathcal{R}_{2}:=\left(m_{1} \oplus m_{2}=\Delta_{m} \wedge h_{1} \oplus h_{2}=\Delta_{\text {in }}\right) \Rightarrow h_{1}^{\prime} \oplus h_{2}^{\prime}=\Delta_{\mathrm{out}}
$$

Proof of Security

Definition (Weak states)

$\mathcal{W}=\left\{h \mid \exists m, h^{\prime}\right.$ s.t. $\left.\mathcal{R}_{1}\left(h, m, h^{\prime}\right)=0\right\}$
Definition (Weak pairs of states)
$\mathcal{W P}=\left\{h_{1} \leftrightarrow h_{2} \mid \exists m_{1}, m_{2}, h_{1}^{\prime}, h_{2}^{\prime}\right.$ s.t. $\left.\mathcal{R}_{2}\left(h_{1}, m_{1}, h_{2}, m_{2}, h_{1}^{\prime}, h_{2}^{\prime}\right)=0\right\}$

- In order to distinguish the weak RO from a real RO, the adversary needs to reach \mathcal{W} or $\mathcal{W P}$.
- If they are small enough, we can simulate the weakness.

Proof of Security

Definition (Weak states)

$\mathcal{W}=\left\{h \mid \exists m, h^{\prime}\right.$ s.t. $\left.\mathcal{R}_{1}\left(h, m, h^{\prime}\right)=0\right\}$
Definition (Weak pairs of states)
$\mathcal{W P}=\left\{h_{1} \leftrightarrow h_{2} \mid \exists m_{1}, m_{2}, h_{1}^{\prime}, h_{2}^{\prime}\right.$ s.t. $\left.\mathcal{R}_{2}\left(h_{1}, m_{1}, h_{2}, m_{2}, h_{1}^{\prime}, h_{2}^{\prime}\right)=0\right\}$
Definition (Weak pairs of state+message)
$\mathcal{W} \mathcal{P}^{\prime}=\left\{\left(h_{1}, m_{1}\right) \leftrightarrow\left(h_{2}, m_{2}\right) \mid \exists m_{1}, m_{2}, h_{1}^{\prime}, h_{2}^{\prime}\right.$ s.t. $\left.\mathcal{R}_{2}(\ldots)=0\right\}$

- Connected components in $\mathcal{W} \mathcal{P}^{\prime}$ must be of size 2 at most
- Evaluation on one input gives information about a single extra input

Proof of Security

Definition (Weak states)

$\mathcal{W}=\left\{h \mid \exists m, h^{\prime}\right.$ s.t. $\left.\mathcal{R}_{1}\left(h, m, h^{\prime}\right)=0\right\}$
Definition (Weak pairs of states)
$\mathcal{W P}=\left\{h_{1} \leftrightarrow h_{2} \mid \exists m_{1}, m_{2}, h_{1}^{\prime}, h_{2}^{\prime}\right.$ s.t. $\left.\mathcal{R}_{2}\left(h_{1}, m_{1}, h_{2}, m_{2}, h_{1}^{\prime}, h_{2}^{\prime}\right)=0\right\}$
Definition (Weak pairs of state+message)
$\mathcal{W} \mathcal{P}^{\prime}=\left\{\left(h_{1}, m_{1}\right) \leftrightarrow\left(h_{2}, m_{2}\right) \mid \exists m_{1}, m_{2}, h_{1}^{\prime}, h_{2}^{\prime}\right.$ s.t. $\left.\mathcal{R}_{2}(\ldots)=0\right\}$

- Connected components in $\mathcal{W} \mathcal{P}^{\prime}$ must be of size 2 at most
- Evaluation on one input gives information about a single extra input
- $\operatorname{Adv} \leq 16 \cdot \frac{q^{2}}{2^{p}}+4 \cdot|\mathcal{W}| \cdot \frac{q}{2^{p}}+4 \cdot|\mathcal{W P}| \cdot \frac{q^{2}}{\left(2^{p}-q\right)^{2}}$

Results

Iterating a random oracle
[Coron, Dodis, Malinaud, and Puniya]

$$
\operatorname{Adv}=\mathcal{O}\left(\frac{q^{2}}{2^{p}}\right)
$$

- Secure up to $q=\mathcal{O}\left(2^{p / 2}\right)$

Iterating a weak random oracle

$$
\operatorname{Adv}=\mathcal{O}\left(\frac{q^{2}}{2^{p}}+|\mathcal{W}| \cdot \frac{q}{2^{p}}+|\mathcal{W} \mathcal{P}| \cdot \frac{q^{2}}{\left(2^{p}-q\right)^{2}}\right)
$$

- Secure up to $q=\mathcal{O}\left(2^{p / 2}\right)$ if $|\mathcal{W}|=\mathcal{O}\left(2^{p / 2}\right)$ and $|\mathcal{W} \mathcal{P}|=\mathcal{O}\left(2^{p}\right)$
- Indifferentiability proofs are quite resilient: many defects in the compression function have a small impact
- Can we extent this result by allowing other kinds of weaknesses?

Application

- Symmetry based distinguishers
- Lesamnta-256 is secure up to 2^{127} queries
- Lesamnta-512 is secure up to 2^{255} queries
- SIMD-256 is secure up to 2^{256-16} queries
- SIMD-512 is secure up to 2^{512-32} queries
- Free-start differential paths
- A differential path with a non-zero difference in h costs one bit of security
- Rotational distinguisher, ...

Wide-pipe vs Narrow-pipe

- In a wide-pipe design, the indifferentiability proof implies:
- Collision resistance
- Preimage resistance (up to a small loss)
- No other attack (up to a small loss)
- In a narrow-pipe design, the indifferentiability proof implies:
- Collision resistance (up to a small loss)
- Some distinguishers can be used for non-standard attack:
- Herding attack on Lesamnta with a symmetry based distinguisher
- Distinguishing-H attack on HMAC-MD5 with a free-start differential path

Outline

New distinguisher for SIMD

Security proof with distinguishers

Analysis of differential paths

Local Collisions

A single active state bit

- Introduced by a difference in m_{4}
- Cancelled by a difference in m_{8}
- Cancelled on the neighbour lane
- At least 3 active messages
- At most 6 active messages

Local Collisions

A single active state bit

- Introduced by a difference in m_{4}
- Cancelled by a difference in m_{8}
- Cancelled on the neighbour lane
- At least 3 active messages

Local Collisions

A single active state bit

- Introduced by a difference in m_{4}
- Cancelled by a difference in m_{8}
- Cancelled on the neighbour lane
- At least 3 active messages
- At most 6 active messages
- 3ϕ-conditions + 1 carry condition

Differential Attacks

- We assume that the adversary builds a differential path with a signed difference.
- We consider paths with a non-zero message difference
- paths with no message difference only give free-start attacks
- Each active state bit lowers the probability
- Minimize active state bits
- The message expansion gives many message differences
- 520 for SIMD-256
- 1032 for SIMD-512

Heuristic

Heuristic

The adversary can build an expanded message of minimal weight

- such that the differences create local collisions
- but without extra properties
- Optimal path: all Boolean function transmit differences
- Minimizes the number of active state bits
- 6 active message bits per active state bit
- 87 active state bits for SIMD-256 / 172 for SIMD-512
- 4 conditions per active state bit
- 348 conditions for SIMD-256 / 688 for SIMD-512

Comparison with SHA-1

- Differential attacks on SHA-1 use local collisions.
- Use the fact that the code is linear and circulant
- Start with an expanded message of minimal weight
- Make 6 shifted copy to create local collisions
- The final expanded message has weight 6 times the minimal distance
- Our heuristic is quite weak.
- The message expansion of SIMD is neither circulant nor linear

Comparison with SHA-1

- Differential attacks on SHA-1 use local collisions.
- Use the fact that the code is linear and circulant
- Start with an expanded message of minimal weight
- Make 6 shifted copy to create local collisions
- The final expanded message has weight 6 times the minimal distance
- Our heuristic is quite weak.
- The message expansion of SIMD is neither circulant nor linear

Weaker assumptions

Strong adversary

The adversary can build an expanded message with any difference pattern

- If active state words are adjacent, some ϕ conditions disappear
- If two inputs of the MAJ function are active we know the output
- 1 active state bit gives
- 4.5 active message bits
- 1 conditions
- SIMD-256: 116 conditions
- SIMD-512: 230 conditions

Modeling Differential Paths

- Impossible to have two active inputs for all active function
- Hard to proof any usefull bound...
- We model the this problem as an Integer Linear Program
- about 30,000 variables, 80,000 equations
- Solver computes a lower bound, and tries to improve the lower bound

$$
\text { SIMD-256 } p \leq 2^{-132}
$$

$$
\text { SIMD-512 } \leq 2^{-253} \quad \text { (several weeks of computation) }
$$

Conclusion

- SIMD security
- Differential paths with a difference in the message are unlikely
- Differential paths with a difference in the chaining value do not affect the iterated hash function.
- Security with distinguishers
- Not specific to SIMD
- A class of distinguishers does not affect the indifferentiability proof
- Interesting for wide-pipe design
- Full version: ePrint report 2010/323.

