New distinguisher for SIMD

Security proof with distinguishers

Analysis of differential paths 0000000

Security Analysis of SIMD

Charles Bouillaguet, Pierre-Alain Fouque, Gaëtan Leurent

École Normale Supérieure Paris, France

SAC 2010 – University of Waterloo

G. Leurent (ENS)

Security Analysis of SIMD

SAC 2010 1 / 29

New distinguisher for SIMD

Security proof with distinguishers 000000

Analysis of differential paths 0000000

Hash functions

• A public function with no structural properties.

Cryptographic strength without keys!

▶
$$F: \{0, 1\}^* \to \{0, 1\}^n$$

0x1d66ca77ab361c6f

New distinguisher for SIMD

Security proof with distinguishers

Analysis of differential paths 0000000

Hash functions

- A public function with no structural properties.
 - Cryptographic strength without keys!

▶
$$F: \{0,1\}^* \to \{0,1\}^n$$

0x1d66ca77ab361c6f

New distinguisher for SIMD

Security proof with distinguishers

Analysis of differential paths 0000000

The SHA-3 competition

- Similar to the AES competition
- Organized by NIST
- Submission dead-line was October 2008: 64 candidiates
- 51 valid submissions
- 14 in the second round (July 2009)
- 5 finalists in September 2010?
- Winner in 2012?

 $\begin{array}{c} Introduction \\ \circ \circ \bullet \circ \circ \circ \circ \end{array}$

New distinguisher for SIMD

Security proof with distinguishers 000000 Analysis of differential paths 0000000

SIMD

- Merkle-Damgård with a Davies-Meyer compression function
- Strong message expansion
- Several Parallel MD-like Feistel

Gaëtan Leurent, Charles Bouillaguet, Pierre-Alain Fouque SIMD Is a Message Digest Submission to the NIST SHA-3 competition

New distinguisher for SIMD

Security proof with distinguishers

Analysis of differential paths 0000000

SIMD Iteration Mode

- Wide-pipe
- Finalisation function
- Use only the message length as input in the last block
 - Acts as a kind of blank round
 - Can break unexpected properties

G. Leurent (ENS)

New distinguisher for SIMD

Security proof with distinguishers

Analysis of differential paths 0000000

SIMD Compression Function

- Block cipher based
 - Well understood
- Davies-Meyer
 - Allows a strong message expansion
- Add the message at the start
 - Prevents some message modifications
- Modified feed-forward: Feistel rounds instead of XOR
 - Avoids some fixed point and multi-block attacks

New distinguisher for SIMD

Security proof with distinguishers

Analysis of differential paths 0000000

SIMD Feistel Rounds

- Follows the SHA/MD legacy
 - Additions, rotations, boolean functions
- 4 Parallel lanes for SIMD-256, 8 for SIMD-512
- Parallel Feistel rounds allow vectorized implementation

G. Leurent (ENS)

New distinguisher for SIMD

Security proof with distinguishers

Analysis of differential paths 0000000

Outline

New distinguisher for SIMD

Security proof with distinguishers

Analysis of differential paths

G. Leurent (ENS)

Security Analysis of SIMD

SAC 2010 8 / 29

New distinguisher for SIMD

Security proof with distinguishers

Analysis of differential paths 0000000

Outline

New distinguisher for SIMD

Security proof with distinguishers

Analysis of differential paths

G. Leurent (ENS)

New distinguisher for SIMD ••••• Security proof with distinguishers

Analysis of differential paths 0000000

Symmetry based distinguisher

- Put the same values in two lanes
- Put the same message
- Need a special message...

New distinguisher for SIMD

Security proof with distinguishers 000000

Analysis of differential paths 0000000

Message pairs

- Let $\overleftarrow{\bullet}$ be a symmetry relation swapping pairs of lanes
- Let M, M' be such that $\mathcal{E}(M') = \overleftarrow{\mathcal{E}(M)}$
- Let $\mathcal{S}^{(0)}$, $\mathcal{S}'^{(0)}$ be such that $\mathcal{S}'^{(0)} = \overleftarrow{\mathcal{S}}^{(0)}$
- Then $\mathcal{S}'^{(31)} = \overleftrightarrow{\mathcal{S}^{(31)}}$
- We can use a single message
- We can use a single state

New distinguisher for SIMD

Security proof with distinguishers

Analysis of differential paths 0000000

Message pairs

- Let $\overleftarrow{\bullet}$ be a symmetry relation swapping pairs of lanes
- Let M, M' be such that $\mathcal{E}(M') = \overleftarrow{\mathcal{E}(M)}$
- Let $\mathcal{S}^{(0)}$, $\mathcal{S}'^{(0)}$ be such that $\mathcal{S}'^{(0)} = \overleftarrow{\mathcal{S}}^{(0)}$
- Then $\mathcal{S}'^{(31)} = \overleftrightarrow{\mathcal{S}^{(31)}}$
- We can use a single message
- We can use a single state

New distinguisher for SIMD

Security proof with distinguishers 000000

Analysis of differential paths 0000000

Message pairs

- Let $\overleftarrow{\bullet}$ be a symmetry relation swapping pairs of lanes
- Let M, M' be such that $\mathcal{E}(M') = \overleftarrow{\mathcal{E}(M)}$
- Let $\mathcal{S}^{(0)}$, $\mathcal{S}'^{(0)}$ be such that $\mathcal{S}'^{(0)} = \overleftrightarrow{\mathcal{S}^{(0)}}$
- Then $\mathcal{S}^{\prime(31)} = \overleftrightarrow{\mathcal{S}^{(31)}}$
- We can use a single message
- We can use a single state

New distinguisher for SIMD

Security proof with distinguishers

Analysis of differential paths 0000000

Message expansion

- **1** FFT transform over \mathbb{F}_{257} doubles the size of the message.
- 2 Make two copies of the FFT output.
- 3 Multiply by 185/233 (from \mathbb{F}_{257} to 16-bit words).
- **4** Permute and pack into 32-bit words.

• Constant are only in the first layer.

- ▶ FFT is linear: easy to enforce linear conditions.
- Enough degrees of freedom for equality constraints.
- Equality is preserved by the remaining steps.
- Permutations are nice wrt. to this.
- We can easily generate those messages.

• Obvious fix: add constants at the end of the expansion.

G. Leurent (ENS)

New distinguisher for SIMD

Security proof with distinguishers

Analysis of differential paths 0000000

Message expansion

- **1** FFT transform over \mathbb{F}_{257} doubles the size of the message.
- 2 Make two copies of the FFT output.
- 3 Multiply by 185/233 (from \mathbb{F}_{257} to 16-bit words).
- **4** Permute and pack into 32-bit words.
- Constant are only in the first layer.
- FFT is linear: easy to enforce linear conditions.
- Enough degrees of freedom for equality constraints.
- Equality is preserved by the remaining steps.
- Permutations are nice wrt. to this.
- We can easily generate those messages.

• Obvious fix: add constants at the end of the expansion.

G. Leurent (ENS)

New distinguisher for SIMD

Security proof with distinguishers

Analysis of differential paths 0000000

Message expansion

- **1** FFT transform over \mathbb{F}_{257} doubles the size of the message.
- 2 Make two copies of the FFT output.
- 3 Multiply by 185/233 (from \mathbb{F}_{257} to 16-bit words).
- **4** Permute and pack into 32-bit words.
- Constant are only in the first layer.
- ▶ FFT is linear: easy to enforce linear conditions.
- Enough degrees of freedom for equality constraints.
- Equality is preserved by the remaining steps.
- Permutations are nice wrt. to this.
- We can easily generate those messages.

• Obvious fix: add constants at the end of the expansion.

G. Leurent (ENS)

New distinguisher for SIMD

Security proof with distinguishers

Analysis of differential paths 0000000

Message expansion

- 1 FFT transform over \mathbb{F}_{257} doubles the size of the message.
- 2 Make two copies of the FFT output.
- 3 Multiply by 185/233 (from \mathbb{F}_{257} to 16-bit words).
- **4** Permute and pack into 32-bit words.
- Constant are only in the first layer.
- ▶ FFT is linear: easy to enforce linear conditions.
- Enough degrees of freedom for equality constraints.
- Equality is preserved by the remaining steps.
- Permutations are nice wrt. to this.
- We can easily generate those messages.
- Obvious fix: add constants at the end of the expansion.

G. Leurent (ENS)

New distinguisher for SIMD

Security proof with distinguishers

Analysis of differential paths 0000000

Application to the Compression Function

- There are a few messages giving a symmetric expanded message
- Symmetric expanded message
- Symmetric state in the Feistel
- Message not symmetric
- Almost symmetric input
- Somewhat symmetric output

New distinguisher for SIMD

Security proof with distinguishers

Analysis of differential paths 0000000

Important properties

- 2¹⁶ weak messages (2³² for SIMD-512)
 - 2²⁵⁶⁺¹⁶ weak chaining values (2⁵¹²⁺³² for SIMD-512)
- 2³² weak pairs of messages (2⁶⁴ for SIMD-512)
 - ▶ 2⁵¹²⁺³² pairs of weak chaining values (2¹⁰²⁴⁺⁶⁴ for SIMD-512)
- ► Wide-pipe: It is hard to get into a symmetric state / pair of states
 - Takes time 2^{256–16} (2^{512–32} for SIMD-512)
- There is no intersection between the symmetry classes
- Each pair only works with a single message pair
- An output pair can not be used as input pair
- It cannot be used in the final transform
- Getting into a symmetric state is not really useful...

G. Leurent (ENS)

New distinguisher for SIMD

Security proof with distinguishers

Analysis of differential paths 0000000

Outline

New distinguisher for SIMD

Security proof with distinguishers

Analysis of differential paths

G. Leurent (ENS)

Security Analysis of SIMD

SAC 2010 15 / 29

New distinguisher for SIMD

Security proof with distinguishers •••••• Analysis of differential paths 0000000

Prefix-free Merkle-Damgård

Used by several SHA-3 candidates

Indistinguishable up to 2^{p/2} queries
 [Coron, Dodis, Malinaud, and Puniya]

Assuming that the compression function is perfect

G. Leurent (ENS)

New distinguisher for SIMD

Security proof with distinguishers •••••• Analysis of differential paths 0000000

Prefix-free Merkle-Damgård

Used by several SHA-3 candidates

Indistinguishable up to 2^{p/2} queries
 [Coron, Dodis, Malinaud, and Puniya]

Assuming that the compression function is perfect

G. Leurent (ENS)

New distinguisher for SIMD 00000 Security proof with distinguishers 00000

Analysis of differential paths 0000000

Weak random oracle

- Random oracle with some efficient distinguishers
- We model the compression function as a random oracle, constrained to satisfy some relations:

 $\begin{aligned} \forall (h,m): & \mathcal{R}_1(h,m,F(h,m)) = 1 \\ \forall (h_1,h_2,m_1,m_2): & \mathcal{R}_2(h_1,m_1,h_2,m_2,F(h_1,m_1),F(h_2,m_2)) = 1 \end{aligned}$

- Examples:
 - Symmetric states:

$$\mathcal{R}_1 := \left(m = \overleftrightarrow{m} \land h = \widecheck{h} \right) \Rightarrow h' = \overleftarrow{h'}$$

• Deterministic differential path $\mathcal{R}_2 := (m_1 \oplus m_2 = \Delta_m \land h_1 \oplus h_2 = \Delta_{in}) \Rightarrow h'_1 \oplus h'_2 = \Delta_{out}$

New distinguisher for SIMD

Security proof with distinguishers 000000

Analysis of differential paths 0000000

Proof of Security

Definition (Weak states)

 $\mathcal{W} = \{h \mid \exists m, h' \text{ s.t. } \mathcal{R}_1(h, m, h') = 0\}$

Definition (Weak pairs of states)

 $\mathcal{WP} = \{h_1 \leftrightarrow h_2 \mid \exists m_1, m_2, h'_1, h'_2 \text{ s.t. } \mathcal{R}_2(h_1, m_1, h_2, m_2, h'_1, h'_2) = 0\}$

- In order to distinguish the weak RO from a real RO, the adversary needs to reach W or WP.
- ▶ If they are small enough, we can simulate the weakness.

New distinguisher for SIMD

Security proof with distinguishers 000000

Analysis of differential paths 0000000

Proof of Security

Definition (Weak states)

 $\mathcal{W} = \{h \mid \exists m, h' \text{ s.t. } \mathcal{R}_1(h, m, h') = 0\}$

Definition (Weak pairs of states)

 $\mathcal{WP} = \{h_1 \leftrightarrow h_2 \mid \exists m_1, m_2, h'_1, h'_2 \text{ s.t. } \mathcal{R}_2(h_1, m_1, h_2, m_2, h'_1, h'_2) = 0\}$

Definition (Weak pairs of state+message)

 $\mathcal{WP}' = \{(h_1, m_1) \leftrightarrow (h_2, m_2) \mid \exists m_1, m_2, h'_1, h'_2 \text{ s.t. } \mathcal{R}_2(\ldots) = \mathbf{0}\}$

- Connected components in \mathcal{WP}' must be of size 2 at most
 - Evaluation on one input gives information about a single extra input

G. Leurent (ENS)

New distinguisher for SIMD

Security proof with distinguishers 000000

Analysis of differential paths 0000000

Proof of Security

Definition (Weak states)

 $\mathcal{W} = \{h \mid \exists m, h' \text{ s.t. } \mathcal{R}_1(h, m, h') = 0\}$

Definition (Weak pairs of states)

 $\mathcal{WP} = \{h_1 \leftrightarrow h_2 \mid \exists m_1, m_2, h'_1, h'_2 \text{ s.t. } \mathcal{R}_2(h_1, m_1, h_2, m_2, h'_1, h'_2) = 0\}$

Definition (Weak pairs of state+message)

 $\mathcal{WP}' = \{(h_1, m_1) \leftrightarrow (h_2, m_2) \mid \exists m_1, m_2, h'_1, h'_2 \text{ s.t. } \mathcal{R}_2(\ldots) = \mathbf{0}\}$

- Connected components in WP' must be of size 2 at most
 - Evaluation on one input gives information about a single extra input

• Adv
$$\leq 16 \cdot \frac{q^2}{2^p} + 4 \cdot |\mathcal{W}| \cdot \frac{q}{2^p} + 4 \cdot |\mathcal{WP}| \cdot \frac{q^2}{(2^p - q)^2}$$

G. Leurent (ENS)

New distinguisher for SIMD

Security proof with distinguishers

Analysis of differential paths 0000000

Results

Iterating a random oracle

[Coron, Dodis, Malinaud, and Puniya]

$$\mathrm{Adv}=\mathcal{O}\left(\tfrac{q^2}{2^p}\right)$$

• Secure up to $q = \mathcal{O}(2^{p/2})$

Iterating a weak random oracle

$$\mathrm{Adv} = \mathcal{O}\left(rac{q^2}{2^p} + |\mathcal{W}| \cdot rac{q}{2^p} + |\mathcal{WP}| \cdot rac{q^2}{\left(2^p - q
ight)^2}
ight)$$

- Indifferentiability proofs are quite resilient: many defects in the compression function have a small impact
- Can we extent this result by allowing other kinds of weaknesses?

G. Leurent (ENS)

New distinguisher for SIMD

Security proof with distinguishers

Analysis of differential paths 0000000

Application

Symmetry based distinguishers

- Lesamnta-256 is secure up to 2¹²⁷ queries
- Lesamnta-512 is secure up to 2²⁵⁵ queries
- ▶ SIMD-256 is secure up to 2²⁵⁶⁻¹⁶ queries
- ▶ SIMD-512 is secure up to 2⁵¹²⁻³² queries
- Free-start differential paths
 - A differential path with a non-zero difference in h costs one bit of security
- Rotational distinguisher, ...

New distinguisher for SIMD 00000

Security proof with distinguishers $00000 \bullet$

Analysis of differential paths 0000000

Wide-pipe vs Narrow-pipe

In a wide-pipe design, the indifferentiability proof implies:

- Collision resistance
- Preimage resistance (up to a small loss)
- No other attack (up to a small loss)

In a narrow-pipe design, the indifferentiability proof implies:

- Collision resistance (up to a small loss)
- Some distinguishers can be used for non-standard attack:
 - Herding attack on *Lesamnta* with a symmetry based distinguisher
 - Distinguishing-H attack on HMAC-MD5 with a free-start differential path

New distinguisher for SIMD

Security proof with distinguishers

Analysis of differential paths

Outline

New distinguisher for SIMD

Security proof with distinguishers

Analysis of differential paths

G. Leurent (ENS)

Security Analysis of SIMD

SAC 2010 22 / 29

New distinguisher for SIMD

Security proof with distinguishers 000000

Analysis of differential paths •000000

Local Collisions

A single active state bit

- Introduced by a difference in m₄
- Cancelled by a difference in m₈
- Cancelled on the neighbour lane
- At least 3 active messages
- At most 6 active messages
- 3 ϕ -conditions + 1 carry condition

New distinguisher for SIMD

Security proof with distinguishers 000000

Analysis of differential paths •000000

Local Collisions

A single active state bit

- Introduced by a difference in m₄
- Cancelled by a difference in m₈
- Cancelled on the neighbour lane
- At least 3 active messages
- At most 6 active messages

• 3 ϕ -conditions + 1 carry condition

New distinguisher for SIMD

Security proof with distinguishers 000000

Analysis of differential paths •000000

Local Collisions

A single active state bit

- Introduced by a difference in m₄
- Cancelled by a difference in m₈
- Cancelled on the neighbour lane
- At least 3 active messages
- At most 6 active messages
- 3 ϕ -conditions + 1 carry condition

New distinguisher for SIMD

Security proof with distinguishers

Analysis of differential paths 000000

Differential Attacks

- We assume that the adversary builds a differential path with a signed difference.
- We consider paths with a non-zero message difference
 - paths with no message difference only give free-start attacks
- Each active state bit lowers the probability
 - Minimize active state bits
- The message expansion gives many message differences
 - 520 for SIMD-256
 - 1032 for SIMD-512

New distinguisher for SIMD

Security proof with distinguishers

Analysis of differential paths 000000

Heuristic

Heuristic

The adversary can build an expanded message of minimal weight

- such that the differences create local collisions
- but without extra properties

- Optimal path: all Boolean function transmit differences
 - Minimizes the number of active state bits
- 6 active message bits per active state bit
 - 87 active state bits for SIMD-256 / 172 for SIMD-512
- 4 conditions per active state bit
 - 348 conditions for SIMD-256 / 688 for SIMD-512

G. Leurent (ENS)

New distinguisher for SIMD

Security proof with distinguishers

Analysis of differential paths

Comparison with SHA-1

- Differential attacks on SHA-1 use local collisions.
- Use the fact that the code is linear and circulant
 - Start with an expanded message of minimal weight
 - Make 6 shifted copy to create local collisions
 - > The final expanded message has weight 6 times the minimal distance
- Our heuristic is quite weak.

The message expansion of SIMD is neither circulant nor linear

New distinguisher for SIMD

Security proof with distinguishers

Analysis of differential paths 0000000

Comparison with SHA-1

- Differential attacks on SHA-1 use local collisions.
- Use the fact that the code is linear and circulant
 - Start with an expanded message of minimal weight
 - Make 6 shifted copy to create local collisions
 - > The final expanded message has weight 6 times the minimal distance
- Our heuristic is quite weak.
- The message expansion of SIMD is neither circulant nor linear

New distinguisher for SIMD

Security proof with distinguishers

Analysis of differential paths 0000000

Weaker assumptions

Strong adversary

The adversary can build an expanded message with any difference pattern

- If active state words are adjacent, some ϕ conditions disappear
 - If two inputs of the MAJ function are active we know the output
- 1 active state bit gives
 - 4.5 active message bits
 - 1 conditions
- SIMD-256: 116 conditions
- SIMD-512: 230 conditions

New distinguisher for SIMD

Security proof with distinguishers

Analysis of differential paths

Modeling Differential Paths

- Impossible to have two active inputs for all active function
- Hard to proof any usefull bound...
- We model the this problem as an Integer Linear Program
 - about 30,000 variables, 80,000 equations
- Solver computes a lower bound, and tries to improve the lower bound
 SIMD-256 p ≤ 2⁻¹³² SIMD-512 p ≤ 2⁻²⁵³ (several w

(several weeks of computation)

New distinguisher for SIMD

Security proof with distinguishers

Analysis of differential paths 000000

Conclusion

- SIMD security
 - Differential paths with a difference in the message are unlikely
 - Differential paths with a difference in the chaining value do not affect the iterated hash function.
- Security with distinguishers
 - Not specific to SIMD
 - A class of distinguishers does not affect the indifferentiability proof
 - Interesting for wide-pipe design
- *Full version*: ePrint report 2010/323.