Forgery attack against CBC-MAC

Modes of operations

Slide attacks

Conclusion

Breaking Symmetric Cryptosystems using Quantum Period Finding

Marc Kaplan^{1,2} Gaëtan Leurent³ Anthony Leverrier³ María Naya-Plasencia³

¹LTCI, Télécom ParisTech

²School of Informatics, University of Edinburgh

³Inria Paris

Crypto 2016

Kaplan, Leurent, Leverrier & Naya-Plasencia

Breaking Symmetric Crypto using Quantum Period Finding

Crypto 2016 1 / 24

Modes of operations

Slide attacks

Conclusion

Motivation

What would be the impact of quantum computers on symmetric cryptography?

Some physicists think they can build quantum computers

NSA thinks we need quantum-resistant crypto (or do they?)

Kaplan, Leurent, Leverrier & Naya-Plasencia

Breaking Symmetric Crypto using Quantum Period Finding

Crypto 2016 2 / 24

Modes of operations

Slide attacks

Conclusion

Motivation

What would be the impact of quantum computers on symmetric cryptography?

- Some physicists think they can build quantum computers
- NSA thinks we need quantum-resistant crypto (or do they?)

Conclusion

Expected impact of quantum computers

Some problems can be solved much faster with quantum computers

- Up to exponential gains
- But we don't expect to solve all NP problems

Impact on public-key cryptography

- RSA, DH, ECC broken by Shor's algorithm
 - Breaks factoring and discrete log in polynomial time
 - Large effort to develop quantum-resistant algorithms

Impact on symmetric cryptography

- Exhaustive search of a *n*-bit key in time $2^{n/2}$ with Grover's algorithm
 - Common recommendation: double the key length (AES-256)
 - Is there more?

Conclusion

Expected impact of quantum computers

Some problems can be solved much faster with quantum computers

- Up to exponential gains
- But we don't expect to solve all NP problems

Impact on public-key cryptography

- RSA, DH, ECC broken by Shor's algorithm
 - Breaks factoring and discrete log in polynomial time
 - Large effort to develop quantum-resistant algorithms

Impact on symmetric cryptography

- Exhaustive search of a *n*-bit key in time $2^{n/2}$ with Grover's algorithm
 - Common recommendation: double the key length (AES-256)
 - Is there more?

Expected impact of quantum computers

Some problems can be solved much faster with quantum computers

- Up to exponential gains
- But we don't expect to solve all NP problems

Impact on public-key cryptography

- RSA, DH, ECC broken by Shor's algorithm
 - Breaks factoring and discrete log in polynomial time
 - Large effort to develop quantum-resistant algorithms

Impact on symmetric cryptography

- Exhaustive search of a *n*-bit key in time $2^{n/2}$ with Grover's algorithm
 - Common recommendation: double the key length (AES-256)
 - Is there more?

Forgery attack against CBC-MAC

Modes of operations 0000000 olide attacks

Conclusion

Previous work: breaking Even-Mansour encryption

Kuwakado & Morii

[ISITA '12]

The Even-Mansour cipher can be broken with quantum queries

Even-Mansour cipher

- Simple block cipher construction, from a public permutation P
 - $E_k(x) = P(x \oplus k_1) \oplus k_2$

Security proof

- Attacker is given oracle access to *P* and *E*
- "If P is a random permutation, attacks against E_k with time T and data D are possible only if DT > 2ⁿ"

Forgery attack against CBC-MAC

Modes of operations 0000000 lide attacks

Conclusion

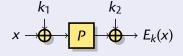
Previous work: breaking Even-Mansour encryption

Kuwakado & Morii

The Even-Mansour cipher can be broken with quantum queries

Even-Mansour cipher

- Simple block cipher construction, from a public permutation P
 - $E_k(x) = P(x \oplus k_1) \oplus k_2$



Security proof

- Attacker is given oracle access to P and E
- "If P is a random permutation, attacks against E_k with time T and data D are possible only if DT > 2ⁿ"

[ISITA '12]

[Even & Mansour, Crypto '97]

Forgery attack against CBC-MAC 00000

Modes of operations 0000000 lide attacks

Conclusion

Classical attack against Even-Mansour

Slide with a twist attack Using $2^{n/2}$ known plaintext $y_i = E_k(x_i)$ [Biryukov & Wagner, Eurocrypt '00]

1 Assume that a pair of plaintext satisfy $x' = x \oplus k_1$

$$E_k(x) = P(\underbrace{x \oplus k_1}_{x'}) \oplus k_2, \qquad E_k(x') = P(\underbrace{x' \oplus k_1}_{x}) \oplus k_2$$

$$E_k(x) \oplus E_k(x') = P(x) \oplus P(x') = k_2$$

$$\bullet \quad E_k(x) \oplus E_k(x') = P(x) \oplus P(x') = k_2$$

•
$$E_k(x) \oplus P(x) = E_k(x') \oplus P(x')$$

2 Attacker computes $y_i \oplus P(x_i) = E_k(x_i) \oplus P(x_i)$, looks for collisions

3 When
$$y_i \oplus P(x_i) = y_j \oplus P(x_j)$$
, try $k_1 = x_i \oplus x_j$

Forgery attack against CBC-MAC 00000

Modes of operations

lide attacks

Conclusion

Quantum attack against Even-Mansour

Kuwakado & Morii, [ISITA '12]

The Even-Mansour cipher can be broken with quantum queries

Build the same function as in the classical attack:

$$\begin{split} f: \{0,1\}^n &\to \{0,1\}^n \\ x &\mapsto E_{k_1,k_2}(x) \oplus P(x) = P(x \oplus k_1) \oplus P(x) \oplus k_2. \end{split}$$

 $f(x) = f(x \oplus k_1)$

- There is a quantum algorithm to recover k₁ with O(n) queries
 - Simon's algorithm (period-finding)
 - Superposition queries to $f: \sum_{x} \psi_{x} |x\rangle |0\rangle \mapsto \sum_{x} \psi_{x} |x\rangle |f(x)\rangle$

Kaplan, Leurent, Leverrier & Naya-Plasencia

Breaking Symmetric Crypto using Quantum Period Finding

Forgery attack against CBC-MAC 00000

Modes of operations

lide attacks

Conclusion

Quantum attack against Even-Mansour

Kuwakado & Morii, [ISITA '12]

The Even-Mansour cipher can be broken with quantum queries

Build the same function as in the classical attack:

$$\begin{split} f: \{0,1\}^n &\to \{0,1\}^n \\ x &\mapsto E_{k_1,k_2}(x) \oplus P(x) = P(x \oplus k_1) \oplus P(x) \oplus k_2. \end{split}$$

 $f(x) = f(x \oplus k_1)$

- ► There is a quantum algorithm to recover *k*₁ with *O*(*n*) queries
 - Simon's algorithm (period-finding)
 - Superposition queries to $f: \sum_{x} \psi_{x} |x\rangle |0\rangle \mapsto \sum_{x} \psi_{x} |x\rangle |f(x)\rangle$

Forgery attack against CBC-MAC 00000

Modes of operations

lide attacks

Conclusion

Quantum attack against Even-Mansour

Kuwakado & Morii, [ISITA '12]

The Even-Mansour cipher can be broken with quantum queries

Build the same function as in the classical attack:

$$\begin{split} f: \{0,1\}^n &\to \{0,1\}^n \\ x &\mapsto E_{k_1,k_2}(x) \oplus P(x) = P(x \oplus k_1) \oplus P(x) \oplus k_2. \end{split}$$

 $f(x) = f(x \oplus k_1)$

1 Build a quantum circuit for f, from a circuit for E_k

2 Apply Simon's algorithm to recover k_1

Kaplan, Leurent, Leverrier & Naya-Plasencia Breaking Symmetric Crypto using Quantum Period Finding

Forgery attack against CBC-MAC

Modes of operations

Slide attacks

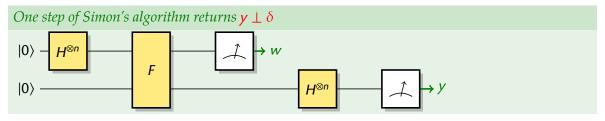
Conclusion

Simon's Algorithm

Definition (Simon's problem)

Given $f: \{0,1\}^n \to \{0,1\}^n$ such that there exists $\delta \in \{0,1\}^n$ with $f(x) = f(x') \Leftrightarrow x \oplus x' \in \{0^n, \delta\}$, find δ .

- Classical algorithms require O(2^{n/2}) queries (finding collisions)
- Simon's algorithm require O(n) quantum queries



Kaplan, Leurent, Leverrier & Naya-Plasencia

Breaking Symmetric Crypto using Quantum Period Finding

Forgery attack against CBC-MAC

Modes of operations

Slide attacks

Conclusion

Simon's Algorithm

Definition (Simon's problem)

Given $f: \{0,1\}^n \to \{0,1\}^n$ such that there exists $\delta \in \{0,1\}^n$ with $f(x) = f(x') \Leftrightarrow x \oplus x' \in \{0^n, \delta\}$, find δ .

- Classical algorithms require O(2^{n/2}) queries (finding collisions)
- Simon's algorithm require O(n) quantum queries

Weaker promise

- $f(x) = f(x') \Leftarrow x \oplus x' \in \{0^n, \delta\} \text{ i.e. } \forall x, f(x) = f(x \oplus \delta)$
 - There are extra collisions f(x) = f(x') with arbitrary $x \oplus x'$
 - If there is no structure in these collisions, we can still recover δ
 - Complexity increase by a factor $O(1/(1 \varepsilon))$, with $\varepsilon = \max_{t \neq \{0, \delta\}} \Pr_x[f(x) = f(x \oplus t)]$

Introduction
00000000

Modes of operations 0000000 Slide attacks 00 Conclusion

About the model

Superposition queries

- Access quantum circuit implementing the primitive with a secret key
- Stronger assumption than building a circuit from public values (e.g. Shor's algorithm to break RSA, ECC)
- Simple and clean generalisation of classical oracle
- Very powerful model (for the adversary)
 - But there exist secure schemes
 - Aim for security in the strongest possible model
- Not a threat against classical crypto devices
 - But... Are we sure a classical device has no quantum effects?
 - Also interesting for black-box crypto

Forgery attack against CBC-MAC

Modes of operations

Slide attacks

Conclusion

Outline

Introduction

Quantum Computing Simon's Algorithm

Forgery attack against CBC-MAC

CBC-MAC Quantum Attack

Modes of operations

Breaking modes of operations Nonce-based modes

Slide attacks

Classical slide attacks Quantum slide attacks

Conclusion

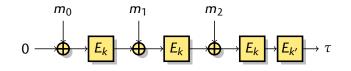
Forgery attack against CBC-MAC

Modes of operations

Slide attacks

Conclusion

CBC-MAC



- One of the first MAC
- Based on CBC encryption mode
- Security proof
 - "If E is a secure block cipher, there are no forgery attacks against CBC-MAC with less than 2^{n/2} blocs"

Kaplan, Leurent, Leverrier & Naya-Plasencia

Breaking Symmetric Crypto using Quantum Period Finding

[NIST, ANSI, ISO, '85?]

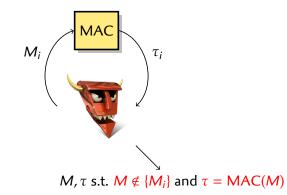
[Bellare, Kilian & Rogaway '94]

Forgery attack against CBC-MAC 00000

Modes of operations 0000000 Slide attacks 00 Conclusion

Classical security notions: CPA security

- Key-recovery: given access to a MAC oracle, extract the key
- Forgery: given access to a MAC oracle, forge a valid pair



Breaking Symmetric Crypto using Quantum Period Finding

Forgery attack against CBC-MAC

Modes of operations

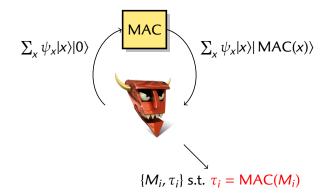
Slide attacks 00 Conclusion

Quantum Security Notion

qCPA: quantum Chosen Plain Attack

[Boneh & Zhandry, EC'13]

- Access to a quantum MAC oracle (superposition queries)
- Output k + 1 valid message/tags after k queries



Kaplan, Leurent, Leverrier & Naya-Plasencia

Breaking Symmetric Crypto using Quantum Period Finding

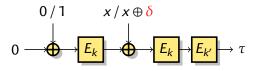
Forgery attack against CBC-MAC

Modes of operations

Slide attacks

Conclusion

Quantum attack against CBC-MAC



Consider the following function:

f

$$F: \{0,1\} \times \{0,1\}^n \to \{0,1\}^n$$

$$b, x \mapsto \mathsf{MAC}(b \parallel x) = E_{k'} \left(E_k \left(x \oplus E_k(b) \right) \right)$$

$$f(0,x) = E_{K'} (E_k (x \oplus E_k(1)))$$

$$f(1,x) = E_{K'} (E_k (x \oplus E_k(0)))$$

- $f(b,x) = f(b \oplus 1, x \oplus \delta)$, with $\delta = E_k(0) \oplus E_k(1)$
 - Simon's algorithm recovers 1 $\parallel \delta$
 - ▶ Produce forgeries: $MAC(0 || m) = MAC(1 || m \oplus \delta)$

Forgery attack against CBC-MAC

Modes of operations

Slide attacks 00 Conclusion

Attack structure

1 Define a function f with $f(x \oplus \delta) = f(x)$ for some interesting δ

2 Build quantum circuit for f, use Simon's algorithm to recover δ

► t = O(n) quantum queries

3 Use δ to produce forgeries

- One classical query gives two messages/MAC pairs
- Repeat until more valid messages than queries

Applications of Simon's algorithm

- Breaks most common MAC and AEAD modes
- Corresponds to classical attacks with 2^{n/2} queries
 - Query f with 2^{n/2} values, look for collisions

(*t* + 1 times)

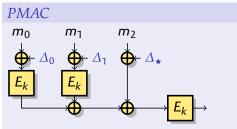
Forgery attack against CBC-MAC 00000

Modes of operations

lide attacks

Conclusion

PMAC: Parallelisable MAC with secret offsets



- CBC-MAC structure for 2-block M
- Same attack

 $f: \{0,1\} \times \{0,1\}^n \to \{0,1\}^n$ $b, x \mapsto \mathsf{MAC}(b \parallel x)$ $f(b,x) = E_k(E_k(m_0 \oplus \Delta_0) \oplus m_1 \oplus \Delta_{\star})$ $f(b,x) = f(b \oplus 1, x \oplus \delta)$ $\delta = E_k(\Delta_0) \oplus E_K(\Delta_0 \oplus 1)$

- No message goes directly into the state
- Alternative attack

 $F: \{0, 1\}^n \to \{0, 1\}^n$ $x \mapsto \mathsf{MAC}(x \parallel x)$ $f(x) = E_k(E_k(x \oplus \Delta_0) \oplus E_k(x \oplus \Delta_1)))$ $f(x) = f(x \oplus \delta)$ $\delta = A \oplus A$

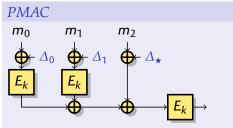
Forgery attack against CBC-MAC 00000

Modes of operations

lide attacks

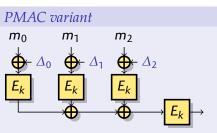
Conclusion

PMAC: Parallelisable MAC with secret offsets



- CBC-MAC structure for 2-block M
- Same attack

 $f: \{0,1\} \times \{0,1\}^n \to \{0,1\}^n$ $b, x \mapsto \mathsf{MAC}(b \parallel x)$ $f(b,x) = E_k(E_k(m_0 \oplus \Delta_0) \oplus m_1 \oplus \Delta_{\star})$ $f(b,x) = f(b \oplus 1, x \oplus \delta)$ $\delta = E_k(\Delta_0) \oplus E_K(\Delta_0 \oplus 1)$



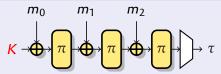
- No message goes directly into the state
- Alternative attack

 $f: \{0,1\}^n \to \{0,1\}^n$ $x \longmapsto \mathsf{MAC}(x \parallel x)$ $f(x) = E_k(E_k(x \oplus \Delta_0) \oplus E_k(x \oplus \Delta_1)))$ $f(x) = f(x \oplus \delta)$ $\delta = \Delta_0 \oplus \Delta_1$

Forgery attack against CBC-MAC 00000 Modes of operations

Slide attacks 00 Conclusion

Sponge-based modes



Same structure as CBC-MAC

Same attack

 $f: \{0,1\} \times \{0,1\}^n \to \{0,1\}^n$ $b, x \mapsto \mathsf{MAC}(b \parallel x)$ $f(b,x) = \pi(\pi(K \oplus b) \oplus x)$ $f(b,x) = f(b \oplus 1, x \oplus \delta)$ $\delta = \pi(K) \oplus \pi(K \oplus 1)$

Normal sponge

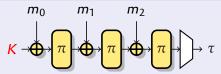
- Can't cancel the full state difference
- No attack found

Forgery attack against CBC-MAC 00000

Modes of operations

Slide attacks 00 Conclusion

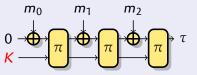
Sponge-based modes



Same structure as CBC-MAC

Same attack

 $f: \{0,1\} \times \{0,1\}^n \to \{0,1\}^n$ $b, x \mapsto \mathsf{MAC}(b \parallel x)$ $f(b,x) = \pi(\pi(K \oplus b) \oplus x)$ $f(b,x) = f(b \oplus 1, x \oplus \delta)$ $\delta = \pi(K) \oplus \pi(K \oplus 1)$



Can't cancel the full state difference

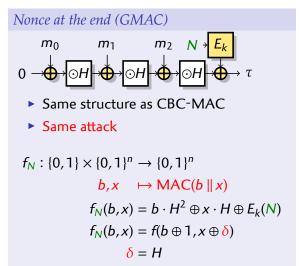
No attack found

Forgery attack against CBC-MAC

Modes of operations

Slide attacks 00 Conclusion

Nonce-based modes



Nonce at the beginning (CCM)

- State difference depend on N
- No fixed period δ
- No attack found

Forgery attack against CBC-MAC

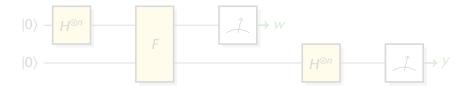
Modes of operations

Slide attacks

Conclusion

Dealing with the nonce

- We can't really apply Simon's algorithm to f_N
 - We don't choose N
 - Each oracle call will use a different N
- Luckily, one step of Simon's algorithm makes a single call to *f_N*
 - The family f_N satisfies Simon's promise with the same δ
 - One step gives y with $y \perp \delta$
 - Classical repetition, classical linear algebra



Breaking Symmetric Crypto using Quantum Period Finding

Forgery attack against CBC-MAC 00000

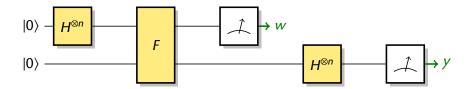
Modes of operations

Slide attacks

Conclusion

Dealing with the nonce

- We can't really apply Simon's algorithm to f_N
 - We don't choose N
 - Each oracle call will use a different N
- Luckily, one step of Simon's algorithm makes a single call to f_N
 - The family f_N satisfies Simon's promise with the same δ
 - One step gives y with $y \perp \delta$
 - Classical repetition, classical linear algebra



Forgery attack against CBC-MAC 00000

Modes of operations

Slide attacks 00 Conclusion

Nonce-based modes

Nonce at the end (GMAC) $m_0 \qquad m_1 \qquad m_2 \qquad N \rightarrow E_k$ $0 \qquad \clubsuit \qquad OH \qquad \clubsuit \qquad OH \qquad \clubsuit$

Same structure as CBC-MAC

Same attack

$$f_{N} : \{0,1\} \times \{0,1\}^{n} \rightarrow \{0,1\}^{n}$$

$$b, x \mapsto \mathsf{MAC}(b \parallel x)$$

$$f_{N}(b,x) = b \cdot H^{2} \oplus x \cdot H \oplus E_{k}(N)$$

$$f_{N}(b,x) = f(b \oplus 1, x \oplus \delta)$$

$$\delta = H$$

Nonce at the beginning (CCM)

$$0 \xrightarrow{N} \underbrace{E_k}_{E_k} \xrightarrow{m_1} \underbrace{E_{k'}}_{E_{k'}} \tau$$

- State difference depend on N
- No fixed period δ
- No attack found

Forgery attack against CBC-MAC 00000

Modes of operations

Slide attacks

Conclusion

Quantum attack against AEAD

- When M is empty, AEAD becomes MAC
- A lot of AEAD modes process A before N
 - Structure similar to GMAC
 - $\bullet \ \tau = \mathsf{MAC}(A, N, C) = \phi(A) * \psi(M, N)$
 - Efficiency argument: pre-computation
 - Notable counter-example: CCM
- Previous attack on MACs can be applied
 - $f_{AEAD}(x) = f_{MAC}(x) * g(N)$
 - $f_{MAC}(x) = f_{MAC}(x \oplus \overline{\delta}) \Rightarrow f_{AEAD}(x) = f_{AEAD}(x \oplus \delta)$
 - $PMAC \rightarrow OCB$
 - $GMAC \rightarrow GCM$
- Also attacks not based on this property in the paper
 - Alternative attack against OCB

Forgery attack against CBC-MAC 00000

Modes of operations

Slide attacks

Conclusion

Quantum attack against AEAD

- When M is empty, AEAD becomes MAC
- A lot of AEAD modes process A before N
 - Structure similar to GMAC
 - $\bullet \ \tau = \mathsf{MAC}(A, N, C) = \phi(A) * \psi(M, N)$
 - Efficiency argument: pre-computation
 - Notable counter-example: CCM
- Previous attack on MACs can be applied
 - $f_{AEAD}(x) = f_{MAC}(x) * g(N)$
 - $f_{MAC}(x) = f_{MAC}(x \oplus \overline{\delta}) \Rightarrow f_{AEAD}(x) = f_{AEAD}(x \oplus \delta)$
 - $PMAC \rightarrow OCB$
 - $GMAC \rightarrow GCM$
- Also attacks not based on this property in the paper
 - Alternative attack against OCB

Forgery attack against CBC-MAC

Modes of operations

lide attacks

Conclusion

Quantum security of modes of operations

Applications of Simon's algorithm

Common MAC and AEAD modes broken with superposition queries:

- CBC-MAC, PMAC, GMAC, GCM, OCB
- ▶ 8 CAESAR candidates: AEZ, CLOC, COLM, Minalpher, OCB, OMD, OTR, POET

Secure modes

Common encryption modes are mostly quantum-secure

- Efficient MACs & AEAD secure against quantum attacks?
 - Boneh & Zhandry: quantum safe Carter-Wegman MAC, where the randomness depend on the message
- Do we have the right security definition?

[[]Unruh, Targhi, Tabia & Anand, PQC'16]

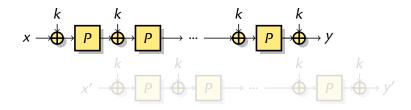
Forgery attack against CBC-MAC

Modes of operations

Slide attacks

Conclusion

Classical slide attacks



- Cryptanalysis of block ciphers
- Applicable if all rounds are identical

1 Assume a pair
$$x' = P(x \oplus k)$$
, then $y' = P(y) \oplus k$
 $\Rightarrow x \oplus P^{-1}(x') = P(y) \oplus y' = k$
 $\Rightarrow x \oplus P(y) = P^{-1}(y') \oplus y'$

- 2 Attacker looks for collision betweer
 - $x_i \oplus P(y_i)$
 - $\blacktriangleright P^{-1}(x_j) \oplus y_j$

3 When $x_i \oplus P(y_i) = P^{-1}(x_j) \oplus y_j$, try $k = x_i \oplus P^{-1}(x_j)$

Kaplan, Leurent, Leverrier & Naya-Plasencia

[Biryukov & Wagner, FSE '99] $E_k(P(x \oplus k)) = P(E_k(x)) \oplus k$

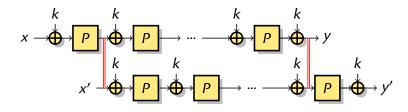
Forgery attack against CBC-MAC

Modes of operations

Slide attacks

Conclusion

Classical slide attacks



- Cryptanalysis of block ciphers
- Applicable if all rounds are identical

1 Assume a pair
$$x' = P(x \oplus k)$$
, then $y' = P(y) \oplus k$

- $x \oplus P^{-1}(x') = P(y) \oplus y' = k$
- $x \oplus P(y) = P^{-1}(x') \oplus y'$
- 2 Attacker looks for collision between
 - $x_i \oplus P(y_i)$
 - $P^{-1}(x_j) \oplus y_j$

3 When
$$x_i \oplus P(y_i) = P^{-1}(x_j) \oplus y_j$$
, try $k = x_i \oplus P^{-1}(x_j)$

Kaplan, Leurent, Leverrier & Naya-Plasencia

[Biryukov & Wagner, FSE '99] $E_k(P(x \oplus k)) = P(E_k(x)) \oplus k$

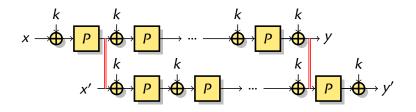
Forgery attack against CBC-MAC

Modes of operations

Slide attacks

Conclusion

Quantum slide attacks



- $E_k(P(x \oplus k)) = P(E_k(x)) \oplus k$
- Build the same function as in the classical attack:

$$f: \{0,1\} \times \{0,1\}^n \to \{0,1\}^n$$
$$b, x \mapsto \begin{cases} x \oplus P(E_k(x)) & \text{if } b = 0, \\ x \oplus E_k(P(x)) & \text{if } b = 1. \end{cases}$$

- ► $f(0,x) = P(E_k(x)) \oplus x = E_k(P(x \oplus k)) \oplus k \oplus x = f(1,x \oplus k)$
 - Simon's algorithm recovers 1 || k

Intro	oduction	

Modes of operations

Slide attacks

Conclusion

Conclusion

About Simon's algorithm

- Simon's algorithm breaks real problems!
- Simon's algorithm can be extended
 - **1** Find a *t* s.t. $f(x \oplus t) = f(x)$ with high probability
 - 2 Recover δ with a weaker promise:
 - $f(x) = f(x \oplus \delta)$
 - $\Pr_x[f(x) = f(x \oplus t)]$ small for $t \neq 0, \delta$

3 Recover δ from a nonce-based family of functions with $f_N(x) = f_N(x') \Leftrightarrow x \oplus x' \in \{0^n, \delta\}$

Intro	oduction	

Modes of operations

Slide attacks

Conclusion

Conclusion

About Simon's algorithm

- Simon's algorithm breaks real problems!
- Simon's algorithm can be extended

Applications to crypto

- Common MAC and AE modes broken with superposition queries
- Some cryptanalysis techniques can also be improved
- Impact:
 - There are better quantum attacks than Grover for symmetric crypto
 - Even if the NSA has a quantum computer, they can NOT break current symmetric cryptosystems with this attack.

Intro	oduction	

Modes of operations

Slide attacks

Conclusion

Conclusion

About Simon's algorithm

- Simon's algorithm breaks real problems!
- Simon's algorithm can be extended

Applications to crypto

- Common MAC and AE modes broken with superposition queries
- Some cryptanalysis techniques can also be improved
- Impact:
 - There are better quantum attacks than Grover for symmetric crypto
 - Even if the NSA has a quantum computer, they can NOT break current symmetric cryptosystems with this attack.