Building characteristics

Results

Conclusion

Construction of Differential Characteristics in ARX Designs

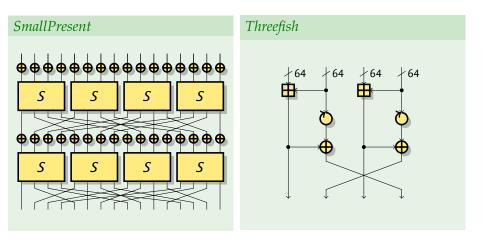
Application to Skein

Gaëtan Leurent

UCL Crypto Group

Crypto 2013

UCL Crypto Group


Construction of Differential Characteristics in ARX Designs – Application to Skein

Building characteristics

Results 000 Conclusion

Symmetric key designs: two main categories

UCL Crypto Group

Construction of Differential Characteristics in ARX Designs – Application to Skein

Building characteristics 00000

Results 000 Conclusion

Symmetric key designs: two main categories

SBox designs

- S-Boxes and Linear Layers
- Important example: AES
- Few heavy rounds
- S S-Boxes
- ► XXXX Wire-crossing
- MDS matrices

ARX designs

- Additions, Rotations, Xors (32/64-bit words)
- Inspired by MD/SHA
- Lots of light rounds
- Addition
- OR Rotation

UCL Crypto Group

Construction of Differential Characteristics in ARX Designs – Application to Skein

Building	characteristics
00000	

Results 000 Conclusion

Addition, Rotation, Xor

- Interaction between incompatible structures:
 - \mathbb{Z}_{2^n} -linear: Addition \blacksquare
 - \mathbb{F}_2^{-} -linear: Rotation \circlearrowright , Xor \bigoplus
- ▶ Very efficient designs: Salsa20/12, BLAKE2, SIMON/SPECK

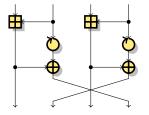
ARX designs

Hash functions Skein, BLAKE (2 of the 5 SHA-3 finalists) Stream ciphers Slasa20, ChaCha Block ciphers TEA, XTEA, HIGHT, Specк PRF SipHash

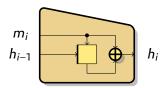
ARX with bitwise Boolean function: MD/SHA, Siмон

UCL Crypto Group

Construction of Differential Characteristics in ARX Designs – Application to Skein



Building characteristics


Results

Conclusion

Skein

Threefish-256 round

ARX design

- 64-bit words
- $MIX_r(a, b) := ((a \boxplus b), (b \lll r) \oplus c)$
- Word permutations
- Key addition every four rounds
- Threefish-256:
 - 256-bit key: K₀, K₁, K₂, K₃
 - 128-bit tweak: T₀, T₁
 - 256-bit text
- MMO mode
 - Chaining value is the key

MMO mode

UCL Crypto Group

Construction of Differential Characteristics in ARX Designs – Application to Skein

Introduction 000000

Building characteristics

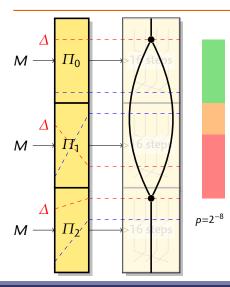
Results 000 Conclusion

Differential attacks

- ► Take an input pair P, P' $C = E_K(P), C' = E_K(P')$
- ► Look for Δ_P , Δ_C with large p: $p = \Pr[\Delta_P \rightsquigarrow \Delta_C]$ $= \Pr[C' = C + \Delta_C | P' = P + \Delta_P]$
- Specify ∆_{Xi} at each step: Δ_P → Δ_{X1} → Δ_{X2} → ··· → Δ_C
 Pr [Δ_{X0} → Δ_{Xn}] ≥ ∏_i Pr [Δ_{Xi} → Δ_{Xi+1}]
- Iterated structure

UCL Crypto Group

Construction of Differential Characteristics in ARX Designs – Application to Skein



Building characteristics

Results

Conclusion 00

Differential collision attack

[Chabaud & Joux, Скурто 1998] [Wang & al, Скурто & ЕС 2005]

Precomputation:

- Choose a message difference.
- Build a differential path.
- Derive a set of sufficient conditions.

2 Collision search:

- Start with a random message, check the conditions
- Use message modifications

UCL Crypto Group

Construction of Differential Characteristics in ARX Designs – Application to Skein

Introduction	
000000	

Building characteristics

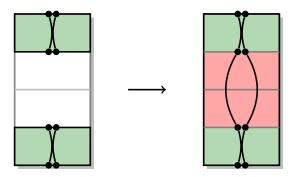
Results 000 Conclusion

Differential attacks against ARX

- Most of the cryptanalysis of ARX designs is bit-twiddling
 - As opposed to SBox based designs
- Building/verifying differential trails for ARX designs is hard
 - Many trails built by hand
 - Problems with several attacks
 - Hard to evaluate a design
- Later, automatic search
 - Mostly for MD/SHA designs. Pure ARX harder?
 - Better paths
 - New applications: HMAC attacks, rogue certificates
- Not all tools are public

UCL Crypto Group

Construction of Differential Characteristics in ARX Designs – Application to Skein



Building characteristics

Results 000 Conclusion

Main Setting

- We target hash-function attacks
- We aim to connect two high-probability trails
- We will use degrees of freedom on the low probability section

Construction of Differential Characteristics in ARX Designs – Application to Skein

Building characteristics

Results 000

Conclusion

Main Setting

- We target hash-function attacks
- We aim to connect two high-probability trails
- We will use degrees of freedom on the low probability section

Using the algorithm

- Set input/output difference, and key difference
 - Select simple high probability trails by hand
- 2 Algorithm find intermediate difference
 - Complex trail in the middle
- **3** Find a pair of input values
 - Easy using degree of freedom

UCL Crypto Group

Construction of Differential Characteristics in ARX Designs – Application to Skein

Building characteristics

Results

Conclusion 00

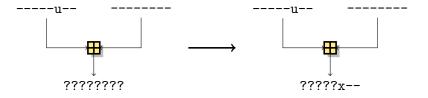
Propagation

• We want to propagate information:

- Input difference given
- Goal: infer output difference

UCL Crypto Group

Construction of Differential Characteristics in ARX Designs – Application to Skein



Building characteristics

Results 000 Conclusior 00

Propagation

• We want to propagate information:

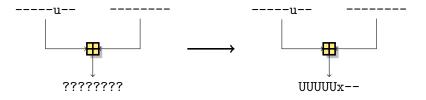
- Input difference given
- Goal: infer output difference

With single-bit constraints:

- We don't know if there is a carry
- Output bits can be active or inactive

UCL Crypto Group

Construction of Differential Characteristics in ARX Designs – Application to Skein


Building characteristics

Results

Conclusio 00

Propagation

• We want to propagate information:

- Input difference given
- Goal: infer output difference

With multi-bit constraints:

- Carry bit can be active only if previous bit is active:
 - x if previous bit is n
 - if previous bit is or u

UCL Crypto Group

Construction of Differential Characteristics in ARX Designs – Application to Skein


Building characteristics

Results

Conclusion 00

Algorithm

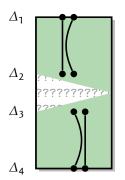
- Guess active bits in the middle and propagate
- Propagation will add necessary constraints (forced guess)

1 Initial characteristic

- 2 Propagation
- 3 Guessing
- 4 Propagation
- 5 ...
- 6 Final characteristic

UCL Crypto Group

Construction of Differential Characteristics in ARX Designs – Application to Skein


Building characteristics

Results

Conclusion 00

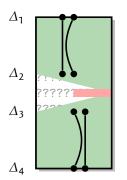
Algorithm

- Guess active bits in the middle and propagate
- Propagation will add necessary constraints (forced guess)

- Initial characteristic
- 2 Propagation
- 3 Guessing
- 4 Propagation
- 5 ...
- 6 Final characteristic

UCL Crypto Group

Construction of Differential Characteristics in ARX Designs – Application to Skein


Building characteristics

Results

Conclusion 00

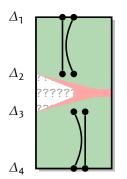
Algorithm

- Guess active bits in the middle and propagate
- Propagation will add necessary constraints (forced guess)

- Initial characteristic
- 2 Propagation
- 3 Guessing
- 4 Propagation
- 5 ...
- 6 Final characteristic

UCL Crypto Group

Construction of Differential Characteristics in ARX Designs – Application to Skein


Building characteristics

Results

Conclusion 00

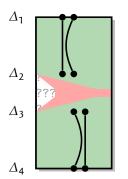
Algorithm

- Guess active bits in the middle and propagate
- Propagation will add necessary constraints (forced guess)

- Initial characteristic
- 2 Propagation
- 3 Guessing
- 4 Propagation
- 5 ...
- 6 Final characteristic

UCL Crypto Group

Construction of Differential Characteristics in ARX Designs – Application to Skein


Building characteristics

Results

Conclusion 00

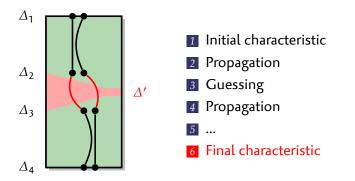
Algorithm

- Guess active bits in the middle and propagate
- Propagation will add necessary constraints (forced guess)

- Initial characteristic
- 2 Propagation
- 3 Guessing
- 4 Propagation
- 5
- 6 Final characteristic

UCL Crypto Group

Construction of Differential Characteristics in ARX Designs – Application to Skein


Building characteristics

Results

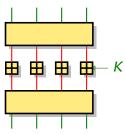
Conclusion

Algorithm

- Guess active bits in the middle and propagate
- Propagation will add necessary constraints (forced guess)

UCL Crypto Group

Construction of Differential Characteristics in ARX Designs – Application to Skein


Building characteristics

Results

Conclusion

Degrees of freedom

- Without degree of freedom, connecting trails does not make sense
 - For a fixed permutation, one pair on average with a given input/output difference
- Use key addition as the meeting point:

Fixed sparse difference (input)

Guessed Fixed sparse difference (input) Guessed

Fixed sparse difference (input)

Construction of Differential Characteristics in ARX Designs – Application to Skein

Building	characteristics
00000	

Results 000

General results

- Some tweaking necessary
 - Number of rounds in the search section
 - Search parameters

Extra tricks

- We specify in advance the words to be guessed
- We guess from LSB to MSB
- Use backtracking, stop after some time
- When it fails, remember the best guess and restart
 - simulated annealing

UCL Crypto Group

Construction of Differential Characteristics in ARX Designs – Application to Skein

Λ

Building characteristics

Results ●○○ Conclusion

Semi-free-start Collision Attack

- Trails with no key difference
- Select a small difference Δ in the state
 - Build a trail $\Delta \rightarrow \Delta$
 - Collisions with the feed-forward
- Algorithm finds 12-round characteristics
- Practical attack

Limitations

- Dense path: low probability
- Many key conditions
 - Only valid for some IVs.
 - Semi-free-start collision.

UCL Crypto Group

Construction of Differential Characteristics in ARX Designs – Application to Skein

Λ

Building characteristics

Results ●00 Conclusion

Semi-free-start Collision Attack

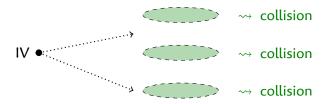
- Trails with no key difference
- Select a small difference Δ in the state
 - Build a trail $\Delta \rightarrow \Delta$
 - Collisions with the feed-forward
- Algorithm finds 12-round characteristics
- Practical attack

Limitations

- Dense path: low probability
- Many key conditions
 - Only valid for some IVs.
 - Semi-free-start collision.

UCL Crypto Group

Construction of Differential Characteristics in ARX Designs – Application to Skein


Building	characteristics
00000	

Results

Conclusion

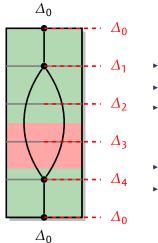
Full Collision Attack

- \blacktriangleright We build a collision characteristic valid for 2^{106} keys for a cost of $\approx 2^{50}$
- **1** Build many characteristics (2⁵⁰)
- **2** Use random message blocks to reach a valid CV for one path.

 Collision attack for 12-round Skein-256 with complexity ≈ 2¹⁰⁰

UCL Crypto Group

Construction of Differential Characteristics in ARX Designs – Application to Skein



Building characteristics

Results

Conclusion

Free-start Collision Attack

- Trails with small key difference
- This allows inactive rounds
- The key schedule repeats after 5 block
 - Collisions with the feed-forward
- Algorithm finds 20-round characteristics
- Practical attack

UCL Crypto Group

Construction of Differential Characteristics in ARX Designs – Application to Skein

Building characteristics

Results

Conclusion

Our results

1 Automatic search of differential trails for ARX functions

- Multi-bit constraints
- Guess in the middle
- Simulated annealing
- 2 Application to Skein-256
 - Collisions for 12 rounds: complexity $\approx 2^{100}$
 - Semi-free-start collisions for 12 rounds: practical
 - Free-start collisions for 20 rounds: practical
 - Huge security margin: 72 rounds for full version
- 3 Code available:

http://www.di.ens.fr/~leurent/arxtools.html

UCL Crypto Group

Construction of Differential Characteristics in ARX Designs – Application to Skein

Building characteristics

Results

Thanks

Questions?

With the support of ERC project CRASH

European Research Council

Established by the European Commission

Supporting top researchers from anywhere in the world

UCL Crypto Group

Construction of Differential Characteristics in ARX Designs – Application to Skein

Crypto 2013 G. Leurent

Conclusion