Memoryless 0000000 Time-memory trade-offs

Combining trunc & codes

Conclusion

Time-memory Trade-offs for Near-collisions

Gaëtan Leurent

UCL Crypto Group

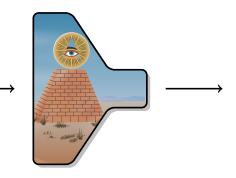
FSE 2013

Memoryless 0000000 *Time-memory trade-offs* 00000

Combining trunc & codes

Conclusion

An Ideal Hash Function: the Random Oracle



- Public Random Oracle
- The output can be used as a fingerprint of the document

UCL Crypto Group

Memoryless 0000000 *Time-memory trade-offs* 00000

Combining trunc & codes

Conclusion

An Ideal Hash Function: the Random Oracle

0x1d66ca77ab361c6f

- Public Random Oracle
- The output can be used as a fingerprint of the document

UCL Crypto Group

Memoryless 0000000 *Time-memory trade-offs* 00000

Combining trunc & codes

Conclusion

Concrete security goals

Preimage attack

Given F and \overline{H} , find M s.t. $F(M) = \overline{H}$. Ideal security: 2^n .

Second-preimage attack

Given F and M_1 , find $M_2 \neq M_1$ s.t. $F(M_1) = F(M_2)$. Ideal security: 2^n .

Collision attack

Given *F*, find $M_1 \neq M_2$ s.t. $F(M_1) = F(M_2)$. Ideal security: $2^{n/2}$.

UCL Crypto Group

Memoryless

Time-memory trade-offs 00000

Combining trunc & codes

Conclusion

Extra goals

Hash functions are used in many different contexts, with various assumptions:

- MAC security
- Multi-collision resistance
- Herding resistance
- Partial-collisions
- Random looking output
- Near-collisions
- ▶ ...

Memoryless 0000000 *Time-memory trade-offs* 00000

Combining trunc & codes

Conclusion

Near-collisions

Near-collision attack

Given F, w, find $M_1 \neq M_2$ s.t. $||F(M_1) \oplus F(M_2)|| \leq w$.

- Relaxation of a collision attack
- Similar techniques than collision
 - Security margin
 - Turning near-collisions into collisions
- Many attack papers

Topic of this talk

What is the complexity of generic near-collision attacks?

Memoryless

Time-memory trade-offs 00000

State of the art

Combining trunc & codes

Conclusion

- Lower bound
- Memory-full algorithm
- Time-memory trade-off?
 - Truncate more, TMT for many collisions

 $2^{\tau}/\mathcal{B}_w(\tau) \approx M \qquad 2^{n/2}/\sqrt{\mathcal{B}_w(\tau)}$

- Memory-less algorithms
 - Truncation based
 - Covering codes based
 - Combine both?
 - Truncate and find truncated near-collisions with covering code

Memoryless

Time-memory trade-offs 00000

Combining trunc & codes

Conclusion

Lower bound

- After *i* hash evaluations, about i^2 pairs.
- Each pair is a *w*-near-collision with probability $\mathcal{B}_w(n)/2^n$
- Lower bound: $i^2 \approx 2^n / \mathcal{B}_w(n)$, i.e. $i \approx 2^{n/2} / \sqrt{\mathcal{B}_w(n)}$
 - Easier than collisions by a factor $\sqrt{\mathcal{B}_w(n)}$

Definition (size of a Hamming ball)

 $\mathcal{B}_w(n) = \# \left\{ x \in \{0,1\}^n : ||x|| \le w \right\}.$

Memoryless

Time-memory trade-offs 00000

Combining trunc & codes

Conclusion

Naive algorithm

Near-collision algorithm

for $0 \le a < i$ do $L[a] \leftarrow h(a)$ end for for $0 \le a < b < i$ do if $||L[a] \oplus L[b]|| \le w$ then return (a, b)end if end for

▷ *i* computations

⊳ *i*² comparisons

• *i* hash computations

i² comparisons, memory accesses

i memory

Can we avoid this?

Memoryless

Time-memory trade-offs 00000

Combining trunc & codes

Conclusion

Naive algorithm

Near-collision algorithm

for $0 \le a < i$ do $L[a] \leftarrow h(a)$ end for for $0 \le a < b < i$ do if $||L[a] \oplus L[b]|| \le w$ then return (a, b)end if end for

▷ *i* computations

⊳ *i*² comparisons

• *i* hash computations

- i² comparisons, memory accesses
- ▶ *i* memory

Can we avoid this?

Memoryless

Time-memory trade-offs 00000

Combining trunc & codes

Conclusion

Naive algorithm

Near-collision algorithm

for $0 \le a < i$ do $L[a] \leftarrow h(a)$ end for for $0 \le a < b < i$ do if $||L[a] \oplus L[b]|| \le w$ then return (a, b)end if end for

▷ *i* computations

 \triangleright *i*² comparisons

- *i* hash computations
- i² comparisons, memory accesses
- i memory

Can we avoid this?

UCL Crypto Group

Memoryless

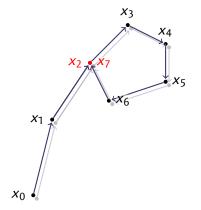
Time-memory trade-offs 00000

Combining trunc & codes

Conclusion

Memoryless collision finding

Memoryless algorithms are known for full collisions: Pollard's rho



- Iterate $h: x_i = f(x_{i-1})$
- Collision after $\approx 2^{n/2}$ iterations
 - Iteration cycles
- Memoryless cycle detection
 - Floyd (tortoise and hare)
 - Brent
 - Nivasch
 - Distinguished points

▶ ...

Memoryless

Time-memory trade-offs 00000

Combining trunc & codes

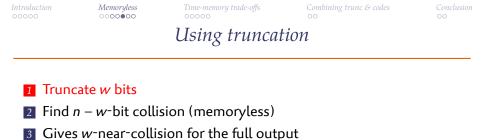
Conclusion 00

Memoryless near-collisions algorithms

- Memoryless collision algorithms based on iterating chains
- Collisions can be detected later in the chain



- This doesn't work for near-collision
 - New approaches needed



0	n-w	п
no difference	$\leq w d$	iff.

► Complexity: 2^{(n-w)/2}

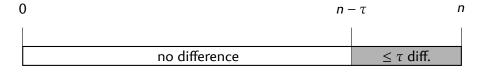
1 Truncate 2*w* + 1 bits

- **2** Find n 2w 1-bit collisions (memoryless)
- 3 Gives *w*-near collision with probability ½

• Complexity: $2^{(n-2w-1)/2} \times 2$

1 Truncate τ bits

- **2** Find $n \tau$ -bit collisions (memoryless)
- **3** Gives *w*-near collision with probability $\mathcal{B}_w(\tau)/2^{\tau}$



- Complexity: $2^{(n+\tau)/2}/\mathcal{B}_w(\tau)$
- Optimal $\tau \sim (2 + \sqrt{2})(w 1)$

[Lamberger & Teufl, IPL 2013]

Memoryless

Time-memory trade-offs 00000

Combining trunc & codes

Conclusion

Generalization

1 Build a function *f* so that

$$f(x) = f(y) \Longrightarrow ||x \oplus y|| \le w$$

- 2 Find collisions in *f h* (memoryless)
- 3 Gives a w-near-collision

$$f(h(x)) = f(h(y)) \Rightarrow ||h(x) \oplus h(y)|| \le w$$

Use a covering code

[Lamberger & Rijmen]

• Covering radius *R*, decoding function *f*: $||x \oplus f(x)|| \le R$

►
$$f(x) = f(y) \Rightarrow$$

 $||x \oplus y|| \le ||x \oplus f(x)|| + ||y \oplus f(y)|| \le 2R$

UCL Crypto Group

Time-memory trade-00000 Combining trunc & codes

Conclusion 00

- Lower bound
- Memory-full algorithm
- Time-memory trade-off?
 - Truncate more, TMT for many collisions

- Memory-less algorithms
 - Truncation based
 - Covering codes based
 - Combine both?
 - Truncate and find truncated near-collisions with covering code

UCL Crypto Group

Time-memory Trade-offs for Near-collisions

 $\frac{2^{n/2}}{\sqrt{\mathcal{B}_w(n)}}$ $\frac{2^{n/2}}{\sqrt{\mathcal{B}_w(n)}}$

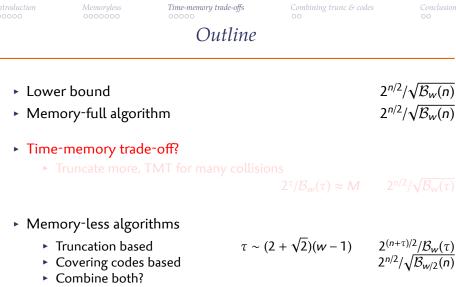
 $2^{\tau}/\mathcal{B}_w(\tau) \approx M$ 2

 $\tau \sim (2 + \sqrt{2})(w - 1)$

 $n/2/\sqrt{\mathcal{B}_w(\tau)}$

 $2^{(n+\tau)/2}/\mathcal{B}_w(\tau)$

 $2^{n/2}/\sqrt{\mathcal{B}_{w/2}(n)}$



Truncate and find truncated near-collisions with covering code

Memoryless

Time-memory trade-offs 00000

Combining trunc & codes

Conclusion

Another look at truncation

Near-collision using truncation by τ bits

- $i(\tau) = 2^{\tau} / \mathcal{B}_w(\tau)$ collisions needed.
- One truncated collision costs $2^{n-\tau}$.

Increase with τ Decrease with τ

Can we do better than $i \cdot 2^{(n-\tau)/2}$ *to find i collisions?*

Memoryless: no

With memory: yes, keep state after first collision

\Rightarrow Improved near-collision algorithms

Memoryless

Time-memory trade-offs 00000

Combining trunc & codes

Conclusion

Another look at truncation

Near-collision using truncation by τ bits

- $i(\tau) = 2^{\tau} / \mathcal{B}_w(\tau)$ collisions needed.
- ► One truncated collision costs 2^{n-τ}.

Increase with τ Decrease with τ

Can we do better than $i \cdot 2^{(n-\tau)/2}$ *to find i collisions?*

- Memoryless: no
- With memory: yes, keep state after first collision

\Rightarrow Improved near-collision algorithms

Memoryless 0000000 *Time-memory trade-offs* 0000

Combining trunc & codes

Conclusion

Finding several collisions

Parallel collision search

[van Oorschot & Wiener, JoC 1999]

Definition (distinguished point) y distinguished iff y mod $\theta^{-1} = 0$

- $x_0 \bullet \to \bullet Y_0$
- $x_1 \bullet \rightarrow \bullet \to \bullet Y_1$
- $x_2 \bullet \rightarrow \bullet y_2$
- $X_3 \bullet \rightarrow \bullet \gamma_3$

M chains cover $\approx M/\theta$ points

- I Compute chains x → y Stop when y distinguished
- 2 If $y \in \{y_i\}$, new collision found

3 Store (*x*, *y*)

Memoryless

Time-memory trade-offs

Combining trunc & codes

Conclusion

Finding several collisions

Complexity:

[van Oorschot & Wiener, JoC 1999]

Small number of collisions i.e. i ≪ M

$$C_{small} = \sqrt{\pi/2} \cdot \sqrt{2^n i}$$
 Speedup: \sqrt{i} (optimal)

• Large number of collisions *i.e.* $i \gg M$.

$$C_{large} = 5\sqrt{2^n/M} \cdot i$$
 Speedup: $\sqrt{M}/4$

Combining:

(

$$C \approx C_{small} + C_{large} = \left(\sqrt{\frac{\pi}{2}} + 5\sqrt{\frac{i}{M}}\right)\sqrt{2^{n}i}$$

Memoryless 0000000

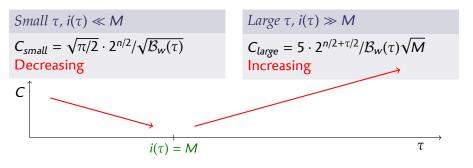
Time-memory trade-offs

Combining trunc & codes

Conclusion

TM Trade-off for Near-collisions using Truncation

- Truncate τ bits.
- $i(\tau) = 2^{\tau} / \mathcal{B}_w(\tau)$ collisions needed.



• Optimum for $i(\tau) \approx M$

 $C \approx 2^{n/2}/\sqrt{\mathcal{B}_w(\tau)}$

Introduction	
00000	

Memoryless 0000000 *Time-memory trade-offs* 0000

Combining trunc & codes

Conclusion

Comparison: n = 128, w = 10

• Lower bounds • $C \ge 2^{n/2} / \sqrt{\mathcal{B}_w(n)}$ (memo	ry-full)	$C \ge 2^{40.1}$
 Covering codes C ≥ 2^{n/2}/√B_{w/2}(n) for cod Best code known 	le-based	$C \ge 2^{50}$ $C = 2^{52.5}$
• Truncation, memoryless, $\tau = 2w$ • $C \approx 2^{(n-\tau)/2} \times 2$	· + 1	$\tau = 21$ $C = 2^{54.5}$
 Truncation, memoryless, optima τ ~ (2 + √2)(w − 1) C ≈ 2^{(n+τ)/2}/B_w(τ) 	l	$\tau = 32$ $C = 2^{53.3}$
• Truncation, with 1GB memory • $2^{\tau}/\mathcal{B}_w(\tau) \approx M$ • $C \approx 2^{n/2}/\sqrt{\mathcal{B}_w(\tau)}$		$\tau = 56$ $C = 2^{47}$

Time-memory Trade-offs for Near-collisions

FSE 2013 **1**9 G. Leurent

Time-memory trade-offs

Combining trunc & codes 00

Conclusion

Outline

- Lower bound
- Memory-full algorithm
- Time-memory trade-off?
 - Truncate more, TMT for many collisions
 - $2^{\tau}/\mathcal{B}_w(\tau) \approx M \qquad 2^{n/2}/\sqrt{\mathcal{B}_w(\tau)}$

- Memory-less algorithms
 - Truncation based
 - Covering codes based
 - Combine both?
 - Truncate and find truncated near-collisions with covering code

 $\tau \sim (2 + \sqrt{2})(w - 1)$

Time-memory Trade-offs for Near-collisions

 $2^{n/2}/\sqrt{\mathcal{B}_w(\tau)}$

 $\frac{2^{(n+\tau)/2}}{2^{n/2}} \frac{\mathcal{B}_w(\tau)}{\mathcal{B}_{w/2}(n)}$

 $2^{n/2}/\sqrt{\mathcal{B}_w(n)}$

 $2^{n/2}/\sqrt{\mathcal{B}_w(n)}$

Introduction	Memoryless 0000000	Time-memory trade-offs 00000	Combining trunc & codes ●○		Conclusion 00	
		New approa	ch			
Trup	cate $ au$ bits					
	$n - \tau$ -bit w'-ne	ear-collisions				
3 Gives	s <i>w</i> -near collis	ion with some prob	ability			
0			n -	- τ	п	
	<i>w</i> ′ d	ifferences		w - w' diffe	erences	

- Large parameter space w, τ
- Special cases:
 - $\tau = 0$: coding based algorithm
 - w' = 0: truncation based algorithm
- Use a covering code to find near-collisions in the truncation

Introduction	Memoryless 0000000	<i>Time-memory trade-offs</i> 00000	Combining trunc & codes ●○		Conclusion 00
		New approa	ch		
	cate τ bits n – τ-bit <mark>w'-n</mark> e	ear-collisions			
3 Gives	s <i>w</i> -near collis	ion with some prob	ability		
0			n -	- τ	п
	2 <i>R</i> d	ifferences		w – 2R diffe	erences

- Large parameter space (R, τ)
- Special cases:
 - $\tau = 0$: coding based algorithm
 - R = 0: truncation based algorithm
- Use a covering code to find near-collisions in the truncation

Intr	odu	iction
00		С

Memoryless 0000000 *Time-memory trade-offs* 00000

Complexity

Combining trunc & codes ○● Conclusion

Analysis:

- No closed formula for parameter choice ③
- Exhaustive search over τ and R, compute complexity

	M-Full*	Time-me	emory trade [.]	off (τ, R)	Covr.	codes	Trunc.
128 bits		2 ¹⁶ (1MB)	2 ²⁶ (1GB)	2 ³⁶ (1TB)	bnd	best	τ=2 <i>w</i> -1
<i>w</i> = 2	57.5	60.5 (1,1)	60.0 (25,0)	59.5 (35,0)	60.5	60.5	62.0
<i>w</i> = 4	52.3	57.6 (17,1)	56.5 (27,1)	55.6 (44,0)	57.5	58.0	60.0
<i>w</i> = 6	47.8	54.5 (19,2)	53.1 (35,1)	52.0 (46,1)	54.8	56.0	58.0
<i>w</i> = 8	43.8	51.6 (26,2)	49.8 (43,1)	48.5 (54,1)	52.3	54.0	56.0
<i>w</i> = 10	40.1	48.7 (33,2)	46.7 (50,1)	45.2 (62,1)	50.0	52.5	54.0

* Number of hash function evaluation. More than $2^{n/2}$ memory accesses.

UCL Crypto Group

Memoryless 0000000 *Time-memory trade-offs* 00000

Combining trunc & codes

Summary

Time-memory trade-off

- ▶ Finding *i* collisions costs less than *i* · 2^{*n*/2}
- Use larger τ

2 Combine truncation and covering codes

Find near-collisions in truncated function

⇒ Significant improvement for practical parameters

10-near-collision for a 128-bit hash

Complexity in 2^{45.2} using 1TB, versus 2^{52.5} memoryless. Lower bound: 2^{40.1}; reduce the gap for practical attacks.

UCL Crypto Group

Memoryles 0000000 *Time-memory trade-offs* 00000

Combining trunc & codes

Conclusion

Thanks

With the support of ERC project CRASH

European Research Council

Established by the European Commission

Supporting top researchers from anywhere in the world

