Cryptanalysis of WIDEA

Gaëtan Leurent

UCL Crypto Group

FSE 2013

- Most block ciphers have a blocksize of 128 bits
 - 64 bits for lightweight
- Sometimes a larger blocksize is useful
 - ▶ More than 2⁶⁴ data with a single key
 - Large key, very high security
 - Hash function design

Wide block ciphers

Introduction •0000

Rijndael: 192/256

Threefish: 256/512/1024

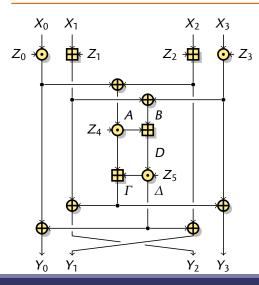
WIDEA: 256/512

[FSE '09]

- Wide block cipher based on IDEA
- Designed by Junod and Macchetti
- Motivation: build a hash function

Introduction 00000

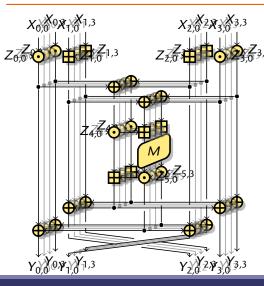
IDEA



- ► Lai & Massey 1991
- 16-bit words
- ▶ 64-bit block, 128-bit key
- 8.5 rounds
- Based on incompatible operations:
 - ► modular addition

 ■: mo
 - ▶ ⊕: bitwise xor
 - ▶ ⊙: mult. mod 2¹⁶ + 1
- Unbroken after 20⁺ years
 - Weak-keys problems

WIDEA



- ▶ Junod & Macchetti 2009
- ► WIDEA-w: w parallel IDEA
- MDS matrix for diffusion across the slices
 - WIDEA-4: 256-bit block, 512-bit key
 - WIDEA-8: 512-bit block, 1024-bit key
- Efficient SIMD implem.
 - w 16-bit words

[FSE '09]

WIDEA

- Wide block cipher based on IDEA
- Designed by Junod and Macchetti
- Motivation: build a hash function
- Expected to inherit the security of IDEA
 - Full diffusion after one round
 - ▶ Mix incompatible operations: \boxplus , \oplus , \odot , \otimes
 - Same number of rounds: 8.5

Previous results

Introduction 0000

- [Nakahara, CANS '12], [Mendel & al., CT-RSA '13] Weak keys
- Free-start collision (practical)

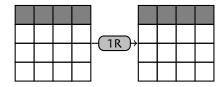
[Mendel & al., CT-RSA '13]

Outline

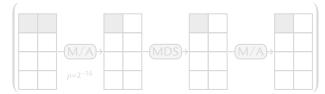
Truncated differential

Main idea

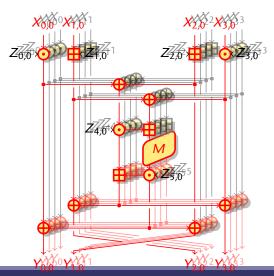
- Consider differential attack.
- Can we keep a single slice active?



Inside the MAD box:



Truncated differential trail



One input slice active

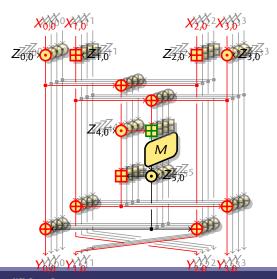
$$X_{i,0} \neq X'_{i,0}$$
$$X_{i,j} = X_{i,j}$$

- Zero difference at the input of the MDS with probability 2⁻¹⁶
- No effect on other slices

$$Y_{i,0} \neq Y'_{i,0}$$

$$Y_{i,j} = Y_{i,j}$$

Truncated differential trail



One input slice active

$$X_{i,0} \neq X'_{i,0}$$
$$X_{i,j} = X_{i,j}$$

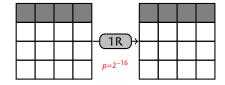
- Zero difference at the input of the MDS with probability 2⁻¹⁶
- No effect on other slices

$$Y_{i,0} \neq Y_{i,0}'$$

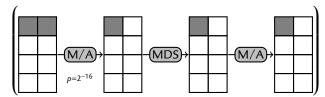
$$Y_{i,j} = Y_{i,j}$$

Main idea

- Consider differential attack.
- Can we keep a single slice active?

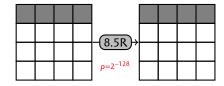


Inside the MAD box:

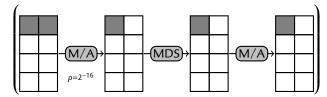


Main idea

- Consider differential attack.
- Can we keep a single slice active?

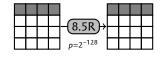


Inside the MAD box:



Finding good pairs

Truncated trail for full 8.5 rounds:



- ► Use a structure of 2⁶⁴ plaintexts
 - ► 2⁶⁴ values for one slice
 - Fixed value for the other slices

- ▶ 2^{127} candidate pairs with one active slice ((w,x,y,z),(w',x',y',z'))
 - One good pair with two structures
 - Look for collisions in inactive slices
- Distinguisher with complexity 2⁶⁵ (succes rate 63%)
 - ► Strong filtering: no wrong pairs, can break more than 8 rounds

Outline

Introduction

Truncated differentia

Key recovery

Hash collisions

Conclusion

Using right pairs: first round

Extract key information form right pairs:

- ▶ Denote the MDS input as D
- A right pair gives D = D'

$$D = \left(\left((X_0 \odot Z_0) \oplus (X_2 \boxtimes Z_2) \right) \odot Z_4 \right) \boxtimes \left((X_1 \boxtimes Z_1) \oplus (X_3 \odot Z_3) \right)$$

$$D' = \left(\left((X'_0 \odot Z_0) \oplus (X'_2 \boxtimes Z_2) \right) \odot Z_4 \right) \boxtimes \left((X'_1 \boxtimes Z_1) \oplus (X'_3 \odot Z_3) \right)$$

- Filtering Z_0, Z_1, Z_2, Z_3, Z_4
- ▶ 5 pairs should be enough
- Experimental results: need 8 pair
- \blacktriangleright One bit cannot be recovered (linear): MSB of Z_1

Filtering

Filtering:
$$D = D'$$

$$\begin{split} \left(\left((X_0 \odot Z_0) \oplus (X_2 \boxtimes Z_2) \right) \odot Z_4 \right) & \boxplus \left((X_1 \boxtimes Z_1) \oplus (X_3 \odot Z_3) \right) \\ & = \left(\left((X_0' \odot Z_0) \oplus (X_2' \boxtimes Z_2) \right) \odot Z_4 \right) \boxplus \left((X_1' \boxtimes Z_1) \oplus (X_3' \odot Z_3) \right) \end{split}$$

Filtering

Filtering:
$$D = D'$$

$$\left(\left((X_0 \odot Z_0) \oplus (X_2 \boxplus Z_2) \right) \odot Z_4 \right) \boxminus \left(\left((X'_0 \odot Z_0) \oplus (X'_2 \boxplus Z_2) \right) \odot Z_4 \right) \\
= \left((X'_1 \boxplus Z_1) \oplus (X'_3 \odot Z_3) \right) \boxminus \left((X_1 \boxplus Z_1) \oplus (X_3 \odot Z_3) \right)$$

Meet-in-the-middle

- ► Compute $F(X, X', Z_0, Z_2, Z_4)$ for all Z_0, Z_2, Z_4
- ► Compute $G(X, X', Z_1, Z_3)$ for all Z_1, Z_3
- Find matches
- ► Complexity: 2⁴⁸

Filtering

Filtering:
$$D = D'$$

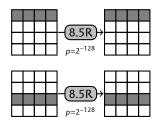
$$F(X,X',Z_0,Z_2,Z_4) = G(X,X',Z_1,Z_3)$$

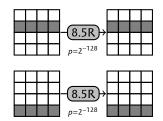
Meet-in-the-middle:

- ► Compute $F(X, X', Z_0, Z_2, Z_4)$ for all Z_0, Z_2, Z_4
- ► Compute $G(X, X', Z_1, Z_3)$ for all Z_1, Z_3
- Find matches
- ► Complexity: 2⁴⁸

Recovering the full first round key

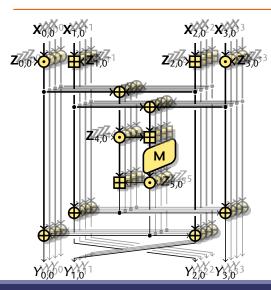
Use a trail for each slice:





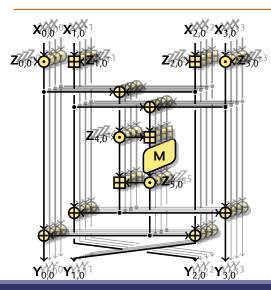
- Attack each slice independantly.
- Recover $Z_{0,i}, Z_{1,i}, Z_{2,i}, Z_{3,i}, Z_{4,i}$.
 - ► Complexity: w · 2⁴⁸

Second round



- ► Guess w missing key bits (MSB of Z₁)
- MDS input known (all slices)
 - Compute output
- ► Guess Z₅ in one slice
 - Compute input of 2nd round
 - Recover 2^{nd} round key: $Z_6, Z_7, Z_8, Z_9, Z_{10}$
- ► Complexity: $w \cdot 2^{64+w}$

Second round



- ► Guess w missing key bits (MSB of Z₁)
- MDS input known (all slices)
 - Compute output
- ► Guess Z₅ in one slice
 - Compute input of 2nd round
 - Recover 2^{nd} round key: $Z_6, Z_7, Z_8, Z_9, Z_{10}$
- ► Complexity: $w \cdot 2^{64+w}$

Full key recovery

```
First step: recover K_{0...4}

for 0 \le i < w do

T \leftarrow \varnothing

for all k_1, k_3 do

G \leftarrow \Big|_{j=0}^k G_i(X^{(i,j)}, X'^{(i,j)}, k_1, k_3)

T\{G\} \leftarrow (k_1, k_3)

for all k_0, k_2, k_4 do

F \leftarrow \Big|_{j=0}^k F_i(X^{(i,j)}, X'^{(i,j)}, k_0, k_2, k_4)

if F \in T then

k_1, k_3 \leftarrow T\{F\}

K_0, k_1 \leftarrow k_0, k_1, k_2, k_3, k_4
```

Full key recovery

```
Second step: recover K_{5...10}
for all K_{1i}[15] do
      for 0 \le i \le w do
            for all k_5 do
                  K_{5i} \leftarrow k_{5}
                  for all i, k do
                         Y^{i,k} \leftarrow \text{Round}(X^{(i,k)}, K), Y^{i,k} \leftarrow \text{Round}(X^{(i,k)}, K)
                   T \leftarrow \emptyset
                  for all k_1, k_3 do
                        G \leftarrow \Big|\Big|_{i=0}^k G_i(Y^{(i,j)}, Y'^{(i,j)}, k_1, k_3)\Big|
                         T\{G\} \leftarrow (k_1, k_3)
                  for all k_0, k_2, k_4 do
                         F \leftarrow \prod_{i=0}^{k} F_i(Y^{(i,j)}, Y'^{(i,j)}, k_0, k_2, k_4)
                         if F \in T then
                               k_1, k_3 \leftarrow T\{F\}
                               K_{6,10}: \leftarrow k_{0}, k_{1}, k_{2}, k_{3}, k_{4}
                               goto next i
```

Complexity analysis

- ► Reduce the complexity from $w \cdot 2^{64+w}$ to 2^{68} using a few tricks
- Bottleneck is finding good pairs
 - ▶ 8 · w pairs needed
 - ▶ Data complexity: w · 2⁶⁸
- Using a hash table:
 - Time $w \cdot 2^{68}$. Mem 2⁶⁴
- 2 Store and sort:
 - ► Time $w \cdot 2^{74}$, Mem 2^{64}
- 3 Time-memory tradeoff:
 - ► Time $5w \cdot 2^{68+t/2}$, Mem 2^{64-t}

, Adaptive CP

Outline

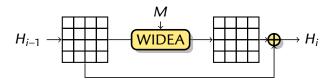
Introduction

Truncated differentia

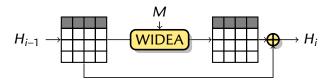
Key recovery

Hash collisions

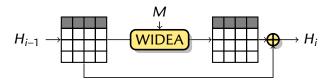
Conclusion



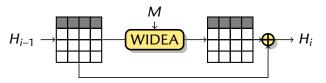
- HIDEA-512 is WIDEA-8 with Davies-Meyer
- Use our truncated differential trail
 - 1 Find a 448-bit collision H_{i-1} , H'_{i-1}
 - Hash random message blocks
 - ▶ With probability 2⁻¹²⁸, the trail is followed
 - ▶ With probability 2⁻⁶⁴, collision in the feed-forward



- HIDEA-512 is WIDEA-8 with Davies-Meyer
- Use our truncated differential trail
 - 1 Find a 448-bit collision H_{i-1} , H'_{i-1}
 - 2 Hash random message blocks
 - With probability 2⁻¹²⁸, the trail is followed
 - ▶ With probability 2⁻⁶⁴, collision in the feed-forward



- HIDEA-512 is WIDEA-8 with Davies-Meyer
- Use our truncated differential trail
 - **T** Find a 448-bit collision H_{i-1} , H'_{i-1}
 - 2 Hash random message blocks
 - ▶ With probability 2⁻¹²⁸, the trail is followed
 - ▶ With probability 2⁻⁶⁴, collision in the feed-forward



Find
$$P, P'$$
 with $T_{448}(H(P)) = T_{448}(H(P'))$
repeat
$$M \leftarrow Rand()$$

Complexity 2²²⁴

⊳ Complexity 2¹⁹²

- ► Full hash function collisions with complexity 2²²⁴
 - Very simple attack!

until H(P||M) = H(P'||M)

- Independant of the message expansion.
- ► Chosen prefix, meaningful messages, ...

Outline

Introduction

Truncated differentia

Key recovery

Hash collisions

Conclusion

Summary

Truncated differential trail

- MDS input too small
 - ▶ Difference stays in a single IDEA instance with probability 2⁻¹²⁸
 - Strong property, can break more than 8 rounds!

- Key recovery
 - Using structures of 2⁶⁴ plaintext
 - Complexity 2⁷⁰ for WIDEA-4 (256-bit block, 512-bit key)
 - ► Complexity 2⁷¹ for WIDEA-8 (512-bit block, 1024-bit key)
- 2 Hash collisions
 - Complexity 2²²⁴ for HIDEA-512

UCL Crypto Group

Thanks

With the support of ERC project CRASH

European Research Council

Established by the European Commission

Supporting top researchers from anywhere in the world