
appor t
 techn ique

IS
S

N
02

49
-0

80
3

IS
R

N
IN

R
IA

/R
T-

-0
32

9
(r

ev
is

ed
)-

-F
R

+
E

N
G

Thème NUM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Organization of the Modulopt collection of
optimization problems in the Libopt environment

– Version 2.1 –

J. CharlesGilbert

N° 0329 (revised)

6 janvier 2009

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le ChesnayCedex (France)

Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30

Organization of the Modulopt collection of optimization

problems in the Libopt environment
– Version 2.1 –

J. Charles Gilbert∗

Thème NUM — Systèmes numériques
Projet Estime

Rapport technique n° 0329 (revised) — 6 janvier 2009 — 26 pages

Abstract: This note describes how the optimization problems of the Modulopt collection
are organized within the Libopt environment. It is aimed at being a guide for using and
enriching this collection in this environment.

Key-words: benchmarking – collection of problems – Libopt – Modulopt – optimization
– testing environment

∗ INRIA Rocquencourt, projet Estime, BP 105, 78153 Le Chesnay Cedex, France ; e-mail : Jean-

Charles.Gilbert@inria.fr.

Organisation de la collection de problèmes d’optimisation

Modulopt dans l’environnement Libopt
– Version 2.1 –

Résumé : Cette note décrit comment les problèmes d’optimisation de la collection Mod-
ulopt sont organisés dans l’environnement Libopt. Elle a pour but de servir de guide pour
utiliser et enrichir cette collection dans cet environnement.

Mots-clés : collection de problèmes – environnement de test – évaluation de performance
– Libopt – Modulopt – optimisation

Organization of Modulopt in Libopt 3

Contents

1 The problems of the collection 3

2 Solving a problem 5
2.1 Notation and relevant directories . 5
2.2 The libopt run script . 5
2.3 The solv modulopt script . 6

3 Introducing/removing a problem in/from the collection 8
3.1 The libopt addproblem command 8
3.2 The subroutines defining a Modulopt problem 10
3.3 The files describing how to run a Modulopt problem 17
3.4 The libopt rmproblem command . 18

4 Making a solver able to solve Modulopt problems 19

5 Directories and files 22

6 Two companion collections 23
6.1 The Modulopttoys collection . 23
6.2 The Moduloptmatlab collection . 24

References 24

Index 25

1 The problems of the collection

In the Libopt terminology [3, 4], a collection refers to a set of problems sharing some
common features, such as their scientific domain, mathematical structure (if any), coding
language, audience, etc. In this note, we describe the Modulopt collection [6] and its
installation in the Libopt environment. The features of the Modulopt problems, from the
Libopt viewpoint, are the following:

• they have an optimization nature and can be written in the form (1) below;
• they can be smooth or nonsmooth;
• they are written in Fortran 90/95;
• they are issued from various application areas in scientific or industrial computing;
• they can be freely distributed.

The collection has two companion ones, named

modulopttoys and
moduloptmatlab,

RT n° 0329 (revised)

4 J. Ch. Gilbert

which have the same features, except that their problems have an academic nature and
that moduloptmatlab has its problems written in Matlab [7]. In Libopt, these collections
rub shoulders with the CUTEr collection [1, 5].

The Modulopt collection contains nonlinear optimization problems coming from var-
ious application areas. The optimization problems are supposed to be written in the
following form

(P)

min f(x)
lB ≤ x ≤ uB

lI ≤ cI(x) ≤ uI

cE(x) = 0,

(1)

where f : R
n → R, cI : R

n → R
mI , cE : R

n → R
mE , lB, uB ∈ R

n
, and lI , uI ∈ R

mI

(R = R ∪ {−∞,+∞}). Actually B is the set of indices {1, . . . , n} and I is another set of
indices with mI elements. We write l := (lB , lI) ∈ R

n
×R

mI and u := (uB , uI) ∈ R
n
×R

mI .
It is assumed that l < u, meaning that li < ui, for all i ∈ B ∪ I. For making the notation
compact, we note

cB(x) := x, c(x) := (cB(x), cI(x), cE(x)), and m := n + mI + mE.

The Jacobian matrices of cI and cE at x ∈ R
n are also denoted by

AI(x) := c′I(x) and AE(x) := c′E(x).

We also introduce the nondifferentiable operator (·)# : R
m → R

m defined by

v# =

max(0, lB − vB , vB − uB)
max(0, lI − vI , vI − uI)

vE

 ,

so that x is feasible for (P) if and only if c(x)# = 0.
The Lagrangian of problem (P) is the function ℓ : R

n × R
m → R defined at (x, λ) by

ℓ(x, λ) = f(x) + λ⊤c(x). (2)

Note that we take a single multiplier for two constraints present in the bound constraints
li ≤ ci(x) ≤ ui, knowing that li < ui implies that at least one of the multipliers associated
with li ≤ ci(x) and ci(x) ≤ ui is zero. The optimality conditions at x̄ read for some
optimal multiplier λ̄:

∇f(x̄) + c′(x̄)⊤λ̄ = 0
c(x̄)# = 0
i ∈ B ∪ I, li < ci(x̄) < ui =⇒ λ̄i = 0
i ∈ B ∪ I, li = ci(x̄) =⇒ λ̄i ≤ 0
i ∈ B ∪ I, ci(x̄) = ui =⇒ λ̄i ≥ 0.

(3)

INRIA

Organization of Modulopt in Libopt 5

2 Solving a problem

2.1 Notation and relevant directories

We use the following typographic conventions. The typewriter font is used for a text
that has to be typed literally and for the name of files and directories that exist as such
(without making substitutions). In the same circumstances, a generic word, which has
to be substituted by an actual word depending on the context, is written in italic

typewriter font . Optional (part of) arguments in a Unix/Linux command line are
surrounded by the brackets ‘[’ and ‘]’.

Here are some directories of the Libopt hierarchy that will intervene continually in this
note. Other important directories and files introduced in this note are listed in section 5.

• $LIBOPT DIR

is the head directory of the Libopt hierarchy (LIBOPT DIR is the Unix/Linux envi-
ronment variable specifying that directory),

• $LIBOPT DIR/collections/modulopt

is the head directory of the Modulopt collection in the Libopt environment,

• $LIBOPT DIR/collections/modulopt/probs

is the directory that has a sub-directory for each of the problems of the Modulopt
collection installed in the Libopt environment,

• $LIBOPT DIR/solvers

is the head directory of the solvers installed in the Libopt environment.

2.2 The libopt run script

The simplest way of running a single Modulopt problem in the Libopt environment is by
typing (‘%’ is the Unix/Linux prompt)

% libopt run "solv modulopt prob "

where, here and below,

• solv stands for the name of a solver installed in the Libopt environment, one of
those listed by the command

% libopt solvers -x

Actually, the solver solv must also have been prepared to run Modulopt problems,
otherwise the libopt run command will not be understood by the Libopt environ-
ment; this will be the case if an ‘x’ appears at the intersection of the ‘solv ’ row and
‘modulopt’ column in the output of the libopt solvers -x command. See section 4
to know how to make solv able to solve Modulopt problems.

• prob stands for the name of a Modulopt problem currently available in the Libopt
environment, one in the list

$LIBOPT DIR/collections/modulopt/all.lst,

RT n° 0329 (revised)

6 J. Ch. Gilbert

The name prob of some problems can be composed, formed of two strings separated
by a dot like in

pnam.pdat

In this case, Libopt only sees the composed name prob = pnam.pdat , but for
Modulopt, the radical name pnam of the problem is a string used to identify the
problem directory and the data name pdat is a string used to identify one of its
data sets. Hence, a problem may have several data sets. In the Modulopt collection,
the problem pnam is stored in the directory (pnam and prob are identical if there is
no dot in the string, i.e., when there is a single data set)

$LIBOPT DIR/collections/modulopt/probs/pnam ,

called the problem directory. How the data sets are built from the string pdat

depends on each problem.

By the libopt run command above, the optimization solver solv is used to solve the
Modulopt optimization problem prob. Of course solv has to be able to solve a problem
with the features of prob (for example, a solver for unconstrained optimization problems
is unable to solve problems with constraints). The solver solv keeps in the file

$LIBOPT DIR/solvers/solv/modulopt/all.lst

the list of the Modulopt problems that it can structurally solve.
See the Libopt manual [4] or the manual page of libopt to learn how to run a group

of problems with a given solver, using a single command line or a file describing what has
to be done.

The directory where the libopt run command given above is typed is called the
working directory. When this is important, the Libopt commands take care that this
directory is not in the Libopt hierarchy. If this were the case, there could be a danger of
incurable destruction. Indeed, a command like libopt run generally removes several files
from the working directory after a problem has been solved.

2.3 The solv modulopt script

By decoding the directive “solv modulopt prob ”, where prob is the string

pnam [.pdat],

the libopt run command above knows that it has to launch the following script:

$LIBOPT DIR/solvers/solv/modulopt/solv modulopt

with prob in argument. In the standard distribution, solv modulopt is a Perl script,
but nothing imposes that such a language be used. Such a script has to be written for
each solver that wants and is able to solve Modulopt problems. Luckily, this script can
be generated from a template (see section 4 for the details). For the while, it is enough to
know that it contains the following main steps.

• The environment variables given on the left in the table below are set the value given
on the right:

INRIA

Organization of Modulopt in Libopt 7

MODULOPT PROB prob

MODULOPT PNAM pnam

MODULOPT PDAT pdat

WORKING DIR working directory.

These variables can then be used in the scripts and makefiles mentioned below.
Actually, the environment variable WORKING DIR is probably useless since all the
Unix/Linux commands in the scripts or makefiles are executed from the working
directory (there is no change of directory made in them).

• Then the following Perl script is launched with the argument pdat

$LIBOPT DIR/collections/modulopt/probs/pnam/Makebin.

The aim of this script is to take care of the data selection/construction and to make
symbolic links in the working directory to the source and data files in the problem
directory, to produce an archive named pnam.a in the working directory, which
contains the problem object files allowing the execution of the problem, and finally
to remove, from the working directory, the now useless just created symbolic links.
This is further explained in section 3.3.

• Next, the Perl script executes the target solv modulopt main of the following make-
file

$LIBOPT DIR/solvers/solv/modulopt/Makefile.

Its aim is to make, in the working directory, a symbolic link to the source file

$LIBOPT DIR/solvers/solv/modulopt/solv modulopt main.f90

of the main program, to compile it and to link it with the archive pnam.a of the
Modulopt problem previously generated. This produces the executable file

solv modulopt main

in the working directory. Then the target removes from the working directory
the now useless symbolic link solv modulopt main.f90 and file solv modulopt

main.o.

• The program solv modulopt main is then executed in the working directory. This
one solves the problem prob with the solver solv.

• Some cleaning is then done in the working directory: solv modulopt main is re-
moved (probably with other files, depending on the solver) and the following Perl
script is launched:

$LIBOPT DIR/collections/modulopt/probs/pnam/Makeclean

Its aim is to remove from the working directory, the files related to the problem just
solved. See section 3.3 for the details.

RT n° 0329 (revised)

8 J. Ch. Gilbert

3 Introducing/removing a problem in/from the collection

3.1 The libopt addproblem command

Suppose we want to add a new problem named

prob or pnam [.pdat]

into the Modulopt collection. Libopt has the following command to partly help us to do
this (it is recommended to use the option -v to have the details on what this command
does):

% libopt addproblem [-v] -c modulopt -p prob .

Because the Libopt commands are designed to work independently of any collection of
problems and any solver, after having verified that modulopt is a valid collection, the
libopt addproblem command hands over to a script that is provided by the Modulopt
collection, namely

$LIBOPT DIR/collections/modulopt/bin/libopt addproblem modulopt.

The script is launched with the name of the problem in argument (and the option -v if it is
present in the libopt addproblem subcommand). To be more specific, we now summarize
what is realized by this last script.

Of course, this libopt addproblem modulopt script cannot invent a new problem,
but it can help us to do the routine tasks at the Libopt level. This includes the following
steps.

• The problem name prob = pnam [.pdat] (and not pnam, if there is a dot in the
problem name prob) is added to the list

$LIBOPT DIR/collections/modulopt/all.lst

of all the Modulopt problems. Therefore, a problem name pnam will be present in
this file with all its possible data set names pdat.

• We have said that the Modulopt collection stores each of its problems in a separate
directory. Therefore, the script creates the problem directory

$LIBOPT DIR/collections/modulopt/probs/pnam .

Let us insists on the fact that the directory name is pnam, not pnam.pdat (if there
is a dot in the problem name), since all the data sets of the problem are supposed
to be stored in the problem directory.

• Next, the files

$LIBOPT DIR/collections/modulopt/probs/pnam/Makebin

$LIBOPT DIR/collections/modulopt/probs/pnam/Makeclean

$LIBOPT DIR/collections/modulopt/probs/pnam/Makefile

are generated from the templates with the same names in

$LIBOPT DIR/collections/modulopt/templates.

INRIA

Organization of Modulopt in Libopt 9

The role of these files is explained in section 3.3. To generate them from the tem-
plates, libopt addproblem modulopt uses the file

$LIBOPT DIR/collections/modulopt/probs/pnam/links.lst,
$LIBOPT DIR/collections/modulopt/probs/pnam/unlinks.lst.

The file links.lst specifies the names of the files in the problem directory that must
be symbolically linked to files in the working directory when the problem is executed;
while the file unlinks.lst specifies the files related to the problem prob that must
be deleted from the working directory after the problem prob as been solved. If
the file links.lst (resp. unlinks.lst) does not exist, Makebin (resp. Makeclean)
is not generated. This is necessary the case the first time libopt addproblem is
run to introduce the problem; hence rerun the command after having introduced the
possibly empty files links.lst and unlinks.lst. This second run will complete
the installation of the problem, without destroying what has already been done by
the first run.

The libopt addproblem command also lists what has to be done manually to complete
the installation of the prob problem into Modulopt. This includes one or more of the
following items.

• If this is appropriate, add the name prob to other lists of problems

$LIBOPT DIR/collections/modulopt/*.lst,

such as the one related to unconstrained problems unc.lst, quadratic problems
quad.lst, etc, as well as the list of typical problems of the Modulopt collection
default.lst. These are ascii files. An alpha-numeric order has been adopted, but
this feature is not taken into account by the Libopt scripts. Comments are possible;
they start from the character ‘#’ up to the end of the line.

• If a solver called solv is able to solve a problem like prob, it may be appropriate to
add the name prob in one or more files among

$LIBOPT DIR/solvers/solv/modulopt/*.lst.

This assumes that the directory $LIBOPT DIR/solvers/solv/modulopt exists and
that the solver has been prepared to solve problems from the Modulopt collection
(see section 4 to know how to do this).

• Put in the directory

$LIBOPT DIR/collections/modulopt/probs/prob ,

all the files that define the problem prob : source files, header files (if appropriate),
and data files (if appropriate). This is further described in section 3.2 below.

• Make it clear in

$LIBOPT DIR/collections/modulopt/probs/prob/Makebin,

how to generate the data set from the string pdat and how the main program solv

modulopt main can have access to this data set. Examples are given in some problem
directories. See also section 3.3.

RT n° 0329 (revised)

10 J. Ch. Gilbert

3.2 The subroutines defining a Modulopt problem

In principle, the problem can be described in any compiled language, provided the binary
files can be gathered into an archive. Below, we assume that the problem is written in
Fortran 95.

The problem-independent makefile

$LIBOPT DIR/solvers/solv/modulopt/Makefile

assumes that the problem to execute is in the archive prob.a in the working directory.
On the other hand, the problem-independent main program solv modulopt main assumes
that the archive prob.a contains seven subroutines: dimopt, initopt, simulopt, postopt,
inprodopt, ctonbopt, and ctcabopt, which are described below.

In the description of the subroutine arguments, an argument tagged with (I) means
that it is an input variable, which has to be initialized before calling the subroutine; an
argument tagged with (O) means that it is an output variable, which only has a meaning
on return from the subroutine; and an argument tagged with (IO) is an input-output

argument, which has to be initialized and which has a meaning after the call to the
subroutine. Arguments of the type (O) and (IO) are generally modified by the subroutine
and therefore should not be Fortran constants!

The subroutine dimopt

The subroutine dimopt is called by the main program solv modulopt main to get the
dimensions of the problem. In Fortran 95, it has the following calling structure:

subroutine dimopt (n, nb, mi, me, nizs, nrzs, ndzs)

n (O): positive integer variable. This is the number n of variables to optimize in the
problem, those denoted x = (x1, . . . , xn) in (1).

nb (O): nonnegative integer variable. This is the number of variables xi with a lower
and/or an upper bound.

mi (O): nonnegative integer variable. This is the number mI of nonlinear inequality
constraints, of the form li ≤ ci(x) ≤ ui (i = 1, . . . ,mI), for some nonlinear functions
ci : R

n → R.

me (O): nonnegative integer variable. This is the number mE of nonlinear equality
constraints, of the form ci(x) = 0 (i = 1, . . . ,mE), for some nonlinear functions
ci : R

n → R.

nizs (O), nrzs (O), ndzs (O): positive integer variables. These are the dimensions of
the variables izs, rzs, and dzs (respectively), which are integer, real, and double

precision working zones for the Modulopt problem. The solvers must not affect
their content. The main program solv modulopt main associated with the solver
solv must allocate memory for the variables izs, rzs, and dzs just after having
called dimopt, see section 4, point 4.1 on page 21. This implies that using Fortran

INRIA

Organization of Modulopt in Libopt 11

77 is not an appropriate language for writing the main program solv modulopt

main. Note that the value of nizs, nrzs, and ndzs can be zero.

The subroutine initopt

The subroutine initopt is called to initialize the problem. In Fortran 95, it has the
following calling structure:

subroutine initopt (pname, n, mi, me, x, lx, ux, dxmin, li, ui,

dcimin, infb, tolopt, simcap, info, izs,

rzs, dzs)

pname (O): character string of length 132, giving the name of the problem.

n (I), mi (I), me (I): dimensions of the problem. Their meaning is given in the description
of dimopt.

x (O): double precision array of dimension n, providing a starting point for the opti-
mization solver.

lx (O), ux (O): double precision array of dimension n, providing the bounds on the
variable x, if any. If the variables are not subject to bounds (nb is zero on return
from dimopt), these variables will not be set and can be ddeclared in the calling
program as scalars; if some variables are subject to bounds their must be declared in
the calling program with the dimension n.

If the variables are subject to bounds, their values xi are required to satisfy lx(i) ≤
xi ≤ ux(i), for i = 1, . . . , n. The lower (resp. upper) bound lx(i) (resp. ux(i)) is set
to -infb (resp. infb) is the bound does not exist; see below for the meaning of infb.

dxmin (O): double precision variable, providing the resolution in x for the l∞ norm:
two points whose distance in R

n for the sup-norm is less than dxmin can be considered
as indistinguishable. This data can be used in line-search or trust-region. It is also
useful to detect bounds that are active up to that precision.

li (O), ui (O): double precision array of dimension mi := mI , providing the bounds
on the constraint values cI(x). In other words, ci(x) is required to satisfy li(i) ≤
ci(x) ≤ ui(i), for i = 1, . . . ,mI .

dcimin (O): double precision variable, providing the resolution in cI for the l∞ norm:
two inequality constraint values whose distance in R

mI for the sup-norm is less than
dcimin can be considered as indistinguishable. This data can be useful to detect
inequality constraints that are active up to that precision.

infb (O): double precision variable, specifying what is the infinite value for the bounds
on x and cI(x). In other words, when lx(i) ≤ −infb (resp. li(i) ≤ −infb), there
is no lower bound on xi (resp. ci(x)). A similar convention is adopted for the upper
bounds.

RT n° 0329 (revised)

12 J. Ch. Gilbert

tolopt (O): double precision array of dimension 4, providing the tolerances on opti-
mality that a pair (x, λ) must satisfied in order to be considered as a solution to the
problem. More specifically, the pair (x, λ) can be considered as a satisfiable KKT
point if

‖∇xℓ(x, λ)‖∞ ≤ tolopt(1)

‖c(x)#‖∞ ≤ tolopt(2)

‖ sgnx(λ)‖∞ ≤ tolopt(3),

where sgnx(λ) ∈ R
m is defined as follows

(sgnx(λ))i =

λ+
i if i ∈ B ∪ I and xi /∈ [li + tolopt(2),+∞[

λi if i ∈ B ∪ I and xi ∈ [li + tolopt(2), ui − tolopt(2)]
λ−

i if i ∈ B ∪ I and xi /∈] −∞, ui − tolopt(2)]
0 if i ∈ E.

This way of checking optimality will probably be improved in a future version of the
collection, in the light of [2].

In (unconstrained) nonsmooth convex optimization, convergence is considered to be
reached when an ε-subgradient of f with a Euclidean norm less than η is obtained,
with ε = tolopt(4) > 0 and η = tolopt(1) > 0. In other words, an x must be
found satisfying

∀ y, f(y) ≥ f(x) + 〈g, y − x〉 − ε, for some ‖g‖ ≤ η.

simcap (O): integer array of dimension 4. It specifies the simulator capabilities. A
negative values means that the related function is not present or that the capability
is not considered by the simulator.

simcap(1) < 0 the simulator cannot evaluate the cost-function f ; it may be assumed
then that this one is constant (or zero), so that the problem is a
feasibility one;

= 0 the simulator can evaluate the cost-function f ;
= 1 the cost-function f is nonsmooth (this is the only place where this

property of the problem can be detected) and the simulator can
evaluate f and a subgradient g;

= 2 the simulator can evaluate the cost-function f and its gradient g;
simcap(2) < 0 the simulator cannot evaluate the inequality constraint function cI ;

this is normally because there is no inequality constraints;
= 0 the simulator can evaluate cI ;
= 1 the simulator can evaluate cI and its Jacobian c′I ;

simcap(3) < 0 the simulator cannot evaluate the equality constraint function cE ;
this is normally because there is no equality constraints;

= 0 the simulator can evaluate cE ;
= 1 the simulator can evaluate cE and its Jacobian c′E ;

simcap(4) < 0 the simulator cannot evaluate Hv, the product of the Hessian of the
Lagrangian H := ∇2

xxℓ(x, λ) times a vector v;

INRIA

Organization of Modulopt in Libopt 13

= 1 the simulator can evaluate a product Hv;
= 2 the simulator can evaluate the H.

info (O): integer variable. If negative (< 0), solv modulopt main should consider that
the initialization of the problem by initopt has failed and should stop.

izs, rzs, dzs (O): integer, real, and double precision arrays that initopt should
initialize. These variables are made available to the Modulopt problem. Their dimen-
sions have been provided on return from dimopt and they should have been allocated
by the main program solv modulopt main associated with some code solv.

The subroutine simulopt

The subroutine simulopt is the simulator of the problem. It can be called by solv

modulopt main, before calling solv. It is also called by the latter to have information
(function and their derivatives) on the problem to solve. In Fortran 95, it has the fol-
lowing calling structure:

subroutine simulopt (indic, n, mi, me, x, lm, f, ci, ce, g, ai,

ae, v, hlv, hl, izs, rzs, dzs)

indic (IO): integer variable monitoring the communication between the solver and the
simulator. The simulator simulopt recognizes the following values of indic.

= 1: The simulator can do anything except changing the value of the arguments of
simulopt. Typically it prints some information on the screen, in a file, or on
a plotter. Some solver calls the simulator with this value of indic at each
iteration.

= 2: The simulator is asked to compute the value of the functions f = f(x) ∈ R (cost
function), ci = cI(x) ∈ R

mI (inequality constraints), and ce = cE(x) ∈ R
mE

(equality constraints) at a given point x.
= 3: The simulator is asked to compute g = ∇f(x) ∈ R

n (gradient of f at x for the
Euclidean scalar product), ai = c′I(x) (mI ×n Jacobian matrix of cI at x, hence
the (i, j) entry of ai must be the partial derivative ∂ci/∂xj evaluated at x), and
ae = c′E(x) (mE × n Jacobian matrix of cE at x).

= 4: The simulator is asked to compute f = f(x), ci = cI(x), and ce = cE(x) at
a given point x, as well as the gradient g = ∇f(x) ∈ R

n, ai = c′I(x), and
ae = c′E(x).

= 5: The simulator is asked to compute the Hessian of the Lagrangian H := ∇2
xxℓ(x, λ)

at the point (x, λ).

On the other hand, the simulator simulopt can also send a message to the solver, by
giving to indic one of the following values.

≥ 0: normal call; the required computation has been done.

RT n° 0329 (revised)

14 J. Ch. Gilbert

= −1: by this value, the simulator tells the solver that it is impossible or undesirable
to do the calculation at the point x given by the solver. The reaction of the
solver will vary from one solver to the other.

= −2: the simulator asks the solver to stop, for example because some events that
the solver cannot understand (not in the field of optimization) has occurred.

n (I), mi (I), me (I): dimensions of the problem. Their meaning is given in the description
of dimopt.

x (I): double precision array of dimension n, providing the point at which the simulator
has to evaluate functions and derivatives.

lm (I): double precision array of dimension m, providing the current value of the dual
variable λ. This one determines, with x, the primal-dual variables at which the
simulator has to evaluate the Hessian of the Lagrangian or the product of this Hessian
with a vector (this depends on the value of indic).

f (O): double precision variable, providing the cost function value f(x) if indic = 2
or 4 on entry.

ci (O): double precision array of dimension mI , providing the inequality constraint
value cI(x) if indic = 2 or 4 on entry.

ce (O): double precision array of dimension mE, providing the equality constraint
value cE(x) if indic = 2 or 4 on entry.

g (O): double precision array of dimension n, providing the gradient of the cost func-
tion ∇f(x) if indic = 3 or 4 on entry.

ai (O): double precision array of dimension mI × n, providing the Jacobian matrix of
the inequality constraint function c′I(x) if indic = 3 or 4 on entry.

ae (O): double precision array of dimension mI × n, providing the Jacobian matrix of
the equality constraint function c′E(x) if indic = 3 or 4 on entry.

v (I): double precision array of dimension n, providing the vector v that multiplies the
Hessian of the Lagrangian if indic = 6 on entry.

hlv (O): double precision array of dimension n, providing the product Hv of the Hes-
sian of the Lagrangian H with a vector v if indic = 6 on entry.

hl (O): double precision array of dimension (n, n), providing the Hessian of the La-
grangian H if indic = 7 on entry.

izs, rzs, dzs (IO): integer, real, and double precision arrays that simulopt can
use and modify. These variables are made available to the Modulopt problem. Their
dimensions have been provided on return from dimopt and they should have been
allocated by the main program solv modulopt main associated with some code solv.

The subroutine postopt

The subroutine postopt is normally called by the main program solv modulopt main to
allow the problem to provide a post-optimal analysis. Some problems will take advantage

INRIA

Organization of Modulopt in Libopt 15

of this opportunity, but most of them won’t (they will provide a subroutine with en empty
body). The most trivial operation that can be done in this subroutine is to print the
solution on the screen. Another possibility is to check second order optimality. The
flexibility offered by this subroutine will allow the user of libopt to make other job than
comparing the effect of using various solvers on his/her problem.

In Fortran 95, postopt has the following calling structure:

subroutine postopt (n, mi, me, x, lm, f, ci, ce, g, ai, ae, hl,

izs, rzs, dzs)

n (I), mi (I), me (I): dimensions of the problem. Their meaning is given in the description
of dimopt.

x (IO), lm (IO): double precision arrays of dimension n and m respectively. They pro-
vide the primal (x = x) and dual (lm = λ) variables determined by the solver. They
may be modified, since libopt will no longer use them.

f (IO), ci (IO), ce (IO), g (IO), ai (IO), ae (IO), hl (IO): variables providing the value
of f(x), cI(x), cE(x), g(x), AI(x), AE(x), and ∇2

xxℓ(x, λ) found by the last call to
simulopt (hence the actual values depend on the capabilities of the simulator and
the design of the solver). See the description of simulopt for the type and dimension
of these variables. These may be modified, since libopt will no longer use them.

izs, rzs, dzs (IO): integer, real, and double precision arrays that postopt can use
and modify. These variables are made available to the Modulopt problem. Their
dimensions have been provided on return from dimopt and they should have been
allocated by the main program solv modulopt main associated with some code solv.

The subroutines inprodopt, ctonbopt, and ctcabopt

Some optimization solvers can deal with inner product in the variable space R
n that is

different from the Euclidean inner product

(x, y) ∈ R
n × R

n 7→ x⊤y =
n

∑

i=1

xiyi.

An inner product is a map

(x, y) ∈ R
n × R

n 7→ 〈x, y〉 ∈ R

that is symmetric (i.e., 〈x, y〉 = 〈y, x〉 for all x and y ∈ R
n) and positive definite (i.e.,

〈x, x〉 > 0 for all nonzero x ∈ R
n). Such an inner product is a way of rescaling the

problem. These solvers must be informed of this inner product and this is the role of the
subroutine inprodopt. We describe the structure of the subroutine in Fortran 95.

subroutine inprodopt (n, v1, v2, ip, izs, rzs, dzs)

RT n° 0329 (revised)

16 J. Ch. Gilbert

n (I): dimension of the vectors whose inner product is going to be taken.

v1 (I), v2 (I): double precision arrays of dimension n. These are the vectors whose
inner product is desired.

ip (O): double precision variable representing the inner product of v1 and v2.

izs, rzs, dzs (IO): integer, real, and double precision arrays that postopt can use
and modify. These variables are made available to the Modulopt problem. Their
dimensions have been provided on return from dimopt and they should have been
allocated by the main program solv modulopt main associated with some code solv.

Some unconstrained optimization solvers not only need the inner product subroutine
inprodopt but also subroutines that make a change of coordinates from the canonical

orthogonal basis of R
n to some orthogonal basis for the inner product 〈·, ·〉. The canonical

orthogonal basis of R
n is the set of vectors {êi}n

i=1, where the jth component of êi is equal
to δij (the Kronecker symbol, which is one when i = j and zero otherwise). If a vector is
written

∑

i xiê
i in the canonical basis and

∑

i yie
i in the considered orthogonal basis, the

subroutine ctonbopt gives the coordinates y := (y1, . . . , yn) from x := (x1, . . . , xn) and
the subroutine ctcabopt gives the coordinates x from y.

For example, suppose that
〈u, v〉 = u⊤M⊤Mv,

where M is a nonsingular n × n matrix, such that a linear system with the matrix M
is easy to solve (for example M could be triangular). One can take ei = M−1êi, for
1 ≤ i ≤ n, since then 〈ei, ej〉 = (ei)⊤M⊤Mej = (êi)⊤êj = δij . Knowing the coordinates
x := (x1, . . . , xn) of a vector in the canonical basis, its coordinates y := (y1, . . . , yn) in the
basis {ei}n

i=1 can be computed by

yj = 〈
∑

i

xiê
i, ej〉 =

∑

i

xi〈ê
i,M−1êj〉 =

∑

i

xi(ê
i)⊤M⊤êj = (Mx)j .

We have shown that y = Mx. In that example, the subroutine ctonbopt will compute
y = Mx knowing x, while the subroutine ctcabopt will compute x = M−1y knowing y.

Here is the description of the subroutines ctonbopt and ctcabopt in Fortran 95.
The variables x = x and y = y have the same meaning as in the discussion above. The
parameters izs, rzs, and dzs have the same meaning as in the subroutine inprodopt.

subroutine ctonbopt (n, x, y, izs, rzs, dzs)

subroutine ctcabopt (n, y, x, izs, rzs, dzs)

Of course, if the inner product implemented in inprodopt is the Euclidean inner product,
ctonbopt will just copy y into x, while ctcabopt will just copy x into y.

INRIA

Organization of Modulopt in Libopt 17

3.3 The files describing how to run a Modulopt problem

A problem, whose name is pnam [.pdat], can be stored in an arbitrary manner in its
directory

$LIBOPT DIR/collections/modulopt/probs/pnam .

Of course, the Libopt environment must be told how to make the information contained in
that directory available to the solvers that want to solve the problem. As far as Libopt is
concerned, three files (two scripts and a makefile) located in the problem directory suffice:
Makebin, Makeclean, and Makefile. These files have been encountered in sections 2.3
and 3.1 and their role and contents is fully described in this section. Recall from section 3.1
that these three files can be largely automatically generated, using the templates with the
same name in

$LIBOPT DIR/collections/modulopt/templates.

This file generation is done by the script libopt addproblem modulopt, itself called by
the libopt addproblem command. Sometimes, however, these files must be customized,
so that understanding what they do is certainly useful.

The script Makebin has two goals: it takes care of the data selection or construction
and, thanks to Makefile, it produces in the working directory an archive, named prob.a,
which contains all the binaries related to the problem. On the other hand, the script
Makeclean removes from the working directory the files that have been generated before,
during, and/or after the problem prob is solved.

One must keep in mind that Makebin, Makeclean, and Makefile must be designed in
such a way that no file is generated in the problem directory. This is to make sure that
several users can use the Libopt environment at the same time.

The script Makebin and the Makefile

A solv modulopt script can invoke Makebin through the command

% Makebin [-g] [-k] [-t] [-v] [pdat]

where the option -g asks to put in prob.a binaries with symbolic debug information, the
option -k asks to keep any generated file in the working directory (files that become useless
at a certain stage of the operations are not removed), the option -t asks for a test running
mode, meaning that commands are displayed but not executed, the option -v asks for a
verbose execution of the script. The script contains the following steps.

• The argument pdat (if any) is normally used to select or construct the data files
corresponding to the problem pnam[.pdat]. If it is a selection of data files, sym-
bolic links to the relevant files will be created in the working directory. If it is a
construction of data files, these will be placed in the working directory, not in the
problem directory in order to preserve the integrity of the Libopt directory contents.

• Next, symbolic links are defined in the working directory towards files that are useful
for running the problem. As already said in section 3.1, to generate Makebin from a
template, the script libopt addproblem modulopt reads the list

RT n° 0329 (revised)

18 J. Ch. Gilbert

$LIBOPT DIR/collections/modulopt/probs/pnam/links.lst

to get the files that need to be linked.

• In the last step, Makebin runs the makefile

$LIBOPT DIR/collections/modulopt/probs/pnam/Makefile

with prob in argument (the target) and with appropriate flags inherited from those of
Makebin. The role of this makefile is to build the archive prob.a with all the binaries
related to the problem, including the object files corresponding to the subroutines
described in section 3.2. Makefile uses the environment variable LIBOPT PLAT to
tune the binaries to the correct platform.

The script Makeclean

After having solved prob with some solver, the libopt run command removes the files
that have been generated in the working directory (unless the option -k asks to keep
them). Part of these files are directly linked to the problem (the data files, for example).
The script Makeclean is there to tell the solv modulopt script which files to remove. It
can be called by

% Makeclean [-t] [-v]

where the options -t and -v have the same meaning as for the script Makebin.
As already said in section 3.1, to generate Makeclean from a template, the script

libopt addproblem modulopt reads the list

$LIBOPT DIR/collections/modulopt/probs/pnam/unlinks.lst

to get the files that need to be removed.

3.4 The libopt rmproblem command

In Libopt, the counterpart of the command that can add a problem to a collection (libopt
addproblem, see section 3.1) is the libopt rmproblem command, which can be used to
remove a problem from a collection. For the Modulopt collection, it reads

% libopt rmproblem [-v] -c modulopt -p prob ,

where prob is the name of the problem that has to be removed (the form pnam [.pdat]

of the problem name can be used instead).
Because the Libopt commands are designed to work independently of any collection

of problems and any solver, after having verified that modulopt is a valid collection, the
libopt rmproblem command hands over to a script that is provided by the Modulopt
collection, namely

$LIBOPT DIR/collections/modulopt/bin/libopt rmproblem modulopt.

INRIA

Organization of Modulopt in Libopt 19

The script is launched with the name of the problem in argument (and the option -v if it
is present in the libopt rmproblem command).

A problem can contain a large amount of programs and data. By removing a problem,
the script libopt rmproblem modulopt will not remove that information, but will make
it concealed from Libopt. It is the responsibility of the designer of the collection to decide
whether the directory containing the problem data really needs to be removed. Actually,
libopt rmproblem modulopt essentially modifies lists of problems and, to be friendly,
enumerates the possible modifications that must be made by hand.

Let us summarize what is realized by this script libopt rmproblem modulopt.

• The problem name pnam[.pdat] (and not pnam, if there is a dot in the problem
name prob) is removed from the list

$LIBOPT DIR/collections/modulopt/all.lst

of all the Modulopt problems.

• It is then asked whether prob has to be removed from all, some, or none of the other
lists (those files with the suffix .lst) in the directory

$LIBOPT DIR/collections/modulopt.

The script acts according to the answer given by the user.

• Next, it is asked whether prob has to be removed from all, some, or none of the lists
in the existing directories

$LIBOPT DIR/solvers/solv/modulopt,

where solv is any of the solvers installed in the environment. The script acts
according to the answer given by the user.

The script concludes by enumerating what has to be done manually to complete the
removal of the prob problem from the Modulopt collection.

4 Making a solver able to solve Modulopt problems

In this section, we consider the case when it is desirable to make a solver of optimization
problems, installed in the Libopt environment, able to solve problems from the Modulopt
collection. Let

solv

be the name of the considered solver. We refer the reader to the Libopt manual [4] to
learn how to install the solver solv in Libopt if this one is not already present in the
environment.

In the Libopt terminology, building the interface between solv and Modulopt is called
activating the (solv, modulopt) cell; the word cell refers to an element of the {solvers} ×
{collections} Cartesian product. The interface is the set of scripts and programs that
allows solv to solve Modulopt problems. These pieces of software are placed in the
interface directory

RT n° 0329 (revised)

20 J. Ch. Gilbert

$LIBOPT DIR/solvers/solv/modulopt.

Luckily, there is a command that takes in charge part of the job:

% libopt addcell -s solv -c modulopt [-v]

where the flag -s prefixes the solver name solv, the flag -c prefixes the collection name
modulopt, and the option -v asks for a verbose running mode (recommended). In addition
to doing some verifications, in order to check and maintain the consistency of the Libopt
environment, the libopt addcell command completes various lists (hidden to the user)
and fills in the interface directory.

An important goal of the libopt addcell command is to generate the solv modulopt

script in the interface directory. Since this script is linked to the Modulopt collection, it
cannot be generated at the Libopt level. Instead, libopt addcell hands over to the
generating script

$LIBOPT DIR/collections/modulopt/bin/libopt addcell modulopt

which is provided with the Modulopt collection. This one generates solv modulopt by
transforming the template

$LIBOPT DIR/collections/modulopt/templates/SOLV modulopt,

essentially replacing the occurrences of <SOLV> (resp. <COLL>) by solv (resp. modulopt)
and adding Perl lines to remove the files listed by the outfiles directive mentioned in
the file

$LIBOPT DIR/solvers/solv/doc/solv features.

It is likely that nothing will have to be modified in the solv modulopt script to make it
work as desired. It is wise to check it, however, recalling that its required contents has
been given in section 2.3.

The libopt addcell command also specifies what needs to be done by hand. These
includes the following points.

1. Fill in the files

$LIBOPT DIR/solvers/solv/modulopt/all.lst

$LIBOPT DIR/solvers/solv/modulopt/default.lst.

• The first file (all.lst) must list the problems from the Modulopt collection that
solv is able to solve or, more precisely, those for which it has been conceived. It can
contain comments, which start with the ‘#’ character and go up to the end of the
line. The easiest way of doing this is to start with a copy of the file

$LIBOPT DIR/collections/modulopt/all.lst,

which lists all the Modulopt problems, and to remove from the copied file those
problems that do not have the structure expected by solv. For example, if solv is a
solver of unconstrained optimization problems, remove from the copied file all.lst,
all the problems with constraints. The features of the Modulopt problems are often
specified by comments in the file

INRIA

Organization of Modulopt in Libopt 21

$LIBOPT DIR/collections/modulopt/all.lst.

Note that other lists exist in the directory $LIBOPT DIR/collections/modulopt,
which might be more appropriate to start with than the list all.lst.

• The second file above (default.lst) can contain any subset of the problems listed
in the first file (all.lst). This file is used as the default subcollection when no list
is specified in the libopt run command. Therefore, it is often a symbolic link to the
first file all.lst, obtained using the Unix/Linux command

ln -s all.lst default.lst

in the directory $LIBOPT DIR/collections/modulopt.

2. Create the main program

$LIBOPT DIR/solvers/solv/modulopt/solv modulopt main.f90.

This program is very solver dependent and is, with the next step to which it is linked,
the most difficult task to realize. It is the main program that will be linked with
the subroutines describing the problem from the Modulopt problem selected by the
libopt run command, those in the archive prob.a (if the selected problem is prob,
see section 3.3). The language used to write this main program is arbitrary, provided
it (or its object form generated by some compiler) can be linked with the object files
in prob.a.

If Fortran 90/95 is the adopted language, the easiest way to proceed is to copy and
rename the file

$LIBOPT DIR/solvers/sqppro/modulopt/sqppro modulopt main.f90

into the file

$LIBOPT DIR/solvers/solv/modulopt/solv modulopt main.f90.

Since this main program is very solver dependent, its part dealing with the solver will
have to be thoroughly modified. Let us describe the structure of the program.

2.1. After the declaration of variables, the program calls the subroutine dimopt to
get the dimensions of the Modulopt problem that will be selected by the libopt

run command. These dimensions are then used to allocate dimension dependent
variables, including izs, rzs, and dzs.

2.2. The problem data are then obtained by calling the subroutine initopt. This is
the good spot to verify that the features of the problem are compatible with the
solver capabilities, using the variable simcap.

2.3. Some optimization solver requires that the simulator be called before launching the
optimization. In this case, this is the good spot for doing so, by calling simulopt.

2.4. Next, the program calls the optimization solver solv, after having initialized its
arguments and opened relevant files.

2.5. Once the optimization has been completed, it is important to write the libopt

line, which summarizes the performance of the solver solv on the currently solved
Modulopt problem. See the Libopt manual [4] or the libopt man page.

RT n° 0329 (revised)

22 J. Ch. Gilbert

2.6. It is nice to let the problem do its post-optimal analysis (if any) by finally calling
postopt.

Note that a particular solver usually requires a simulator with another structure than
the one of simulopt. Therefore an interface between simulopt and the simulator
required by solv should be written and placed in the file solv modulopt main.f90.

3. Create the makefile

$LIBOPT DIR/solvers/solv/modulopt/Makefile.

The aim of this makefile is to tell the Libopt environment how to link the solver binary
with the object files describing the Modulopt problem selected by the libopt run

command. If the latter is prob, the corresponding object files will be at link time in
the working directory in the archive prob.a (see section 3.2). The easiest way of doing
this is to start with an existing makefile, like

$LIBOPT DIR/solvers/sqppro/modulopt/Makefile.

This one will be copied and renamed into the file

$LIBOPT DIR/solvers/solv/modulopt/Makefile

and then modified.

You can now try the command

libopt run "solv modulopt prob" -v

where the option -v (verbose) is used to get detailed comments from the Libopt scripts,
which then tell what they actually do. The flag -t (test mode) can be used instead, if you
want to see what the scripts would do without asking them to do it.

5 Directories and files

In this section, we list some important directories and files encountered in this note. Recall
that LIBOPT DIR is the environment variable that specifies the head directory of the Libopt
hierarchy. Below, solv is the generic name of a particular solver known to the Libopt
environment.

• $LIBOPT DIR/collections:
directory of the collections of problems the Libopt environment can deal with.

• $LIBOPT DIR/collections/.collections.lst:
list of collections known to and installed into Libopt.

• $LIBOPT DIR/collections/modulopt:
head directory of the Modulopt collection in the Libopt environment.

• $LIBOPT DIR/collections/modulopt/all.lst:
list of all the problems of the Modulopt collection.

• $LIBOPT DIR/collections/modulopt/bin;
contains scripts that help some libopt commands to add a (solv, modulopt) cell and
to add/remove a problem to/from the Modulopt collection.

INRIA

Organization of Modulopt in Libopt 23

• $LIBOPT DIR/collections/modulopt/probs:
directory containing one sub-directory for each problem of the Modulopt collection.

• $LIBOPT DIR/collections/modulopt/templates;
contains scripts and makefiles that help some libopt commands to add a (solv,
modulopt) cell and to add a problem to the Modulopt collection.

• $LIBOPT DIR/solvers:
head directory of the solvers the Libopt environment can deal with.

• $LIBOPT DIR/solvers/.solvers.lst:
list of solvers known to and installed into Libopt.

• $LIBOPT DIR/solvers/solv/.collections.lst:
list of collections the code solv has been prepared to deal with.

• $LIBOPT DIR/solvers/solv/modulopt:
directory containing the scripts and programs specifying how to run the code solv on
problems from the Modulopt collection.

• $LIBOPT DIR/solvers/solv/modulopt/all.lst:
list of problems from the Modulopt collection, for which the solver solv is designed.

• $LIBOPT DIR/solvers/solv/modulopt/solv modulopt:
Perl script specifying the Unix/Linux commands useful to run the solver solv on a
single problem of the Modulopt collection.

• $LIBOPT DIR/solvers/solv/modulopt/solv modulopt main.f90:
Fortran 90/95 main program that is used to run solv on a Modulopt problem selected
by a libopt run command, say prob. This program is linked with the object files
(gathered in the archive prob.a in the working directory) describing prob.

6 Two companion collections

The Modulopt collection has two companion collections, more or less organized in the
same way. They are named

modulopttoys

moduloptmatlab.

This section describes the differences between them and their mother collection modulopt.

6.1 The Modulopttoys collection

The Modulopttoys collection is formed of problems having the same features as those given
in section 1 for the Modulopt collection, except that the problems have an academic nature.
We mean by this imprecise term that the problems are motivated by “theoretical” facts
(in optimization for instance), rather than their usefulness in some scientific computing
or industrial field. Often, they are easier to write, their simulator is faster, but they can
raise serious difficulties to be solved.

RT n° 0329 (revised)

24 J. Ch. Gilbert

The Modulopttoys collection is organized in the same way as the Modulopt collection.
To have a detailed description of it, just read sections 1 to 5, with modulopt substituted
by modulopttoys. In particular, the collection is located in the Libopt environment in
the directory

$LIBOPT DIR/collections/modulopttoys.

6.2 The Moduloptmatlab collection

The Moduloptmatlab collection differs from the Modulopt and Modulopttoys collections
by the fact that its problems are written in Matlab [7]. The organization of the collection in
the Libopt environment is similar to the one of the Modulopt and Modulopttoys collections,
in particular, it is located in the directory

$LIBOPT DIR/collections/moduloptmatlab.

The main differences are due to the fact that Matlab is used to describe the problems.
It is no longer subroutines that describe the problems but functions. The various functions
described below can get the name of the problem to solver (this should be useless) and
the name of its data file from the following environment variables:

MODULOPTMATLAB PROB full problem name
MODULOPTMATLAB PNAM problem directory name
MODULOPTMATLAB PDAT data name.

The functions below have the same role as the subroutines with the same name de-
scribed in section 3.2, but must of course be called in a different manner. We refer the
reder to section 3.2 for a description of the input/output arguments.

[n,nb,mi,me] = dimopt ()

[x,lx,ux,dxmin,li,ui,dcimin,infb,tolopt,simcap,info] = ...

initopt ()

The simulator can be called by one of the following manners, depending on the value of
indic (given in the right side of the box). The output parameter outdic has the values
that indic has on ouput with the Fortran version of simulopt.

[outdic] = simulopt (indic,x) % indic = 1
[outdic,f,ci,ce,g,ai,ae] = simulopt (indic,x) % indic = 2 : 4
[outdic,hl] = simulopt (indic,x,lm) % indic = 5

postopt (x,lm,f,ci,ce,cs,g,ai,ae,hl)

In this version of the collection, we have not assumed that the functions inprodopt,
ctonbopt, and ctcabopt are implemented.

INRIA

Organization of Modulopt in Libopt 25

References

[1] I. Bongartz, A.R. Conn, N.I.M. Gould, Ph.L. Toint (1995). CUTE: Constrained and uncon-
strained testing environment. ACM Transactions on Mathematical Software, 21, 123–160. 4

[2] E.D. Dolan, J.J. Moré, T.S. Munson (2006). Optimality measures for performance profiles.
SIAM Journal on Optimization, 16, 891–909. 12

[3] J.Ch. Gilbert, X. Jonsson (2008). LIBOPT – An environment for testing solvers on hetero-
geneous collections of problems. Submitted to ACM Transactions on Mathematical Software.
3

[4] J.Ch. Gilbert, X. Jonsson (2009). LIBOPT – An environment for testing solvers on hetero-
geneous collections of problems – The manual, version 2.1. Technical Report 331 (revised),
INRIA, BP 105, 78153 Le Chesnay, France. 3, 6, 19, 21

[5] N. Gould, D. Orban, Ph.L. Toint (2003). CUTEr (and SifDec), a Constrained and Uncon-
strained Testing Environment, revisited. ACM Transactions on Mathematical Software, 29,
373–394.
http://hsl.rl.ac.uk/cuter-www/interfaces.html. 4

[6] C. Lemaréchal (1980). Using a Modulopt minimization code. Unpublished Technical Note. 3

[7] Mathworks (2008). The Matlab distributed computing engine.
http://www.mathworks.com. 4, 24

Index

basis

canonical, 16
orthonormal, 16

cell, 19

collection, 3
CUTEr, 4

moduloptmatlab, 3, 24

modulopttoys, 3, 23–24

command (Libopt), see also option, script

addcell, 20

addproblem, 8

rmproblem, 18

comment (in *.lst files), 20

data name, see name/data

directory, 22

bin, 22

collection head, 22
interface, 19

libopt head, 5, 22

Modulopt head, 5, 22

problem, 6
solver head, 5, 23
templates, 8, 23
working, 6, 7

environment variable
LIBOPT DIR, 5, 22
LIBOPT PLAT, 18
MODULOPTMATLAB PDAT, 24
MODULOPTMATLAB PNAM, 24
MODULOPTMATLAB PROB, 24
MODULOPT PDAT, 7
MODULOPT PNAM, 7
MODULOPT PROB, 7
WORKING DIR, 7

function
nonsmooth, 12

inner product, 15
Euclidean, 15

Kronecker symbol, 16

RT n° 0329 (revised)

http://hsl.rl.ac.uk/cuter-www/interfaces.html
http://www.mathworks.com

26 J. Ch. Gilbert

Lagrangian, 4
Libopt

environment variable, 5, 22
head directory, 5, 22
line, 21

libopt run (command), 5–6, 22
list

*.lst, 9
.collections.lst, 22, 23
.solvers.lst, 23
all.lst, 5, 6, 8, 19–23
comment in a –, 9
default.lst, 20
links.lst, 9, 18
unlinks.lst, 9, 18

Makebin, see script/Makebin
Makeclean, see script/Makeclean
Makefile

in a problem directory, 8, 17, 18
in a solver directory, 7, 10, 22

moduloptmatlab, see collection
modulopttoys, see collection

name
data – of a problem, pdat, 6
– of a problem, prob, 5, 8
radical – of a problem, pnam, 6

nondifferentiable, see function/nonsmooth
nonsmooth, see function/nonsmooth

optimality conditions, 4
option

-c, 18, 20
-g, 17
-k, 17, 18
-p, 18
-s, 20
-t, 17, 18, 22
-v, 8, 17–20, 22
-x, 5

pdat, see name/data
pnam, see name/radical
prob, see name of a problem

radical name, see name/radical

script, see also command, option
libopt addcell modulopt, 20
libopt addproblem modulopt, 8
libopt rmproblem modulopt, 18
Makebin, 7–9, 17, 17–18
Makeclean, 7, 8, 17, 18
solv modulopt, 6–7, 17, 18

solv, 5, 19
solv modulopt, see script/solv modulopt

solv modulopt main (main program), 7
subroutine

ctcabopt, 16
ctonbopt, 16
dimopt, 10–11, 21
initopt, 11–13, 21
inprodopt, 15–16
postopt, 14–15, 22
simulopt, 13–14, 21

INRIA

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le ChesnayCedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université- ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-0803

	The problems of the collection
	Solving a problem
	Notation and relevant directories
	The libopt run script
	The solv_modulopt script

	Introducing/removing a problem in/from the collection
	The libopt addproblem command
	The subroutines defining a Modulopt problem
	The files describing how to run a Modulopt problem
	The libopt rmproblem command

	Making a solver able to solve Modulopt problems
	Directories and files
	Two companion collections
	The Modulopttoys collection
	The Moduloptmatlab collection

	References
	Index

