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AUTOMATIC DIFFERENTIATION AND ITERATIVE
PROCESSES*

JEAN CHARLES GILBERT

INRIA, Domaine de Voluceau, Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex,
France.

We identify a class of iterative processes that can be used in the definition of a function while preserving the
good behavior of automatic differentiation codes on this function. By iterative process, we mean a process
where the number of iterations is determined by a stopping criterion, which can depend on the independent
variables. By good behavior, we mean that the derivatives will be calculated correctly, asymptotically. The
class contains the Newton method.
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1 INTRODUCTION

Automatic differentiation is a technique used for generating computer programs that
compute the value of the derivatives of a function

f:R" - R"™:x— f(x),

given by an original computer program. See [8, 4, 3] for an introduction to the subject
and [6] for discussions of more recent developments and applications. The variables
forming the vector x are called independent. All the other variables used in the program
evaluating f(x) are called intermediate.

The programs generated by automatic differentiation calculate the value of the deriva-
tives correctly in a wide variety of situations. However, the value may be false when the
original program uses an iterative process to define the function f. Therefore, researchers
have focused attention on finding a means to determine whether a given iterative process
can be treated correctly[7, 2, 3].

In the automatic differentiation framework, we call an iterative process a part of a
computer program whose instructions are executed several times until a stopping criterion
is reached. This stopping criterion can depend on some independent or intermediate
variables. As a result, the number £ of iterations realized in a particular run of the
program is not known beforehand, but depends on the value x given to the independent
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variables: k = k(x). A typical example of such a situation occurs when an iterative
method, such as Newton’s method, is used to calculate an implicit function, say, the
solution of a nonlinear equation.

Let us assume that the program contains a single iterative process. We denote by
fi : R™ — R™ the function realized by the program when £ iterations are executed. We
shall restrict our attention to the case when the iterative process aims at making f; close
to a certain function f : R" — R ™. If the algorithm is well conceived, we can expect
that the sequence of functions {f }x>o Will locally converge pointwise to f, meaning that

Vx € Q,fi(x) = f(x), when k — oo, (D)

where () is some open set in R ". It is important to note here that if automatic differen-
tiation is used with such a program and if, for a particular x, k iterations are executed
by the original program, the derivative computed at x by the generated program will
be f/(x) and not £'(x), the derivative of the function £(x) := fi()(x). It is indeed the
function representing all the operations executed in a computation that is differentiated.
Note also that this function £ will probably be discontinuous.

Now, we can wonder to what extent the fact that f;(x) is close to f(x) (a situation
detected by the stopping criterion) implies that f;/(x) will be close to f’(x). Since this
question is difficult to answer, we instead ask whether we can expect that some conver-
gence of f; to f implies, for instance, the local pointwise convergence of f to f':

Vx € Q,f/(x) = f'(x), when k — oc. )

This is a theoretical question since it concerns asymptotic behavior, which has little
to do with practical situations; but it has the major advantage of being mathematically
tractable. Moreover, an asymptotic analysis may give some insight into what can happen
in practical finite situations. Our aim, therefore, is to identify some of the processes for
which property (1) implies property (2).

One can argue that this is not the right approach because, in optimization for instance,
what is really needed is the gradient (m = 1) of the computed function &. In this regard,
we can say that the function £ is usually not continuous, and therefore its analysis
is difficult. On the other hand, this analysis would require more information on the
iterative process, in particular on the stopping criterion (obviously, if this criterion is
always satisfied, we would have £ = f;), which we do not require in our simple study.
Finally, the user may really wish to compute f'(x), not £’(x) (when this derivative exists).

Generally speaking, there is no reason for property (1) to imply property (2). Worse,
even if f; converges pointwise, it can be to a function different from f’. In fact, it is
well known that this situation would be avoided if f/ would converge locally uniformly;
see, for example, Chapter IV, Theorem 111 of Schwartz[10]. As an illustration, let us
consider the following example[2] where n = m = 1:

filx) = xe™ 3)

The sequence of functions {f; } converges uniformly to the function f = 0, f/(x) — 0
if x # 0, but £/(0) = 1 for any k. As a result, the pointwise limit of f; differs from
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the function f’ = 0. Note that when the components of the functions f; are smooth and
convex, (1) implies (2); see Theorem 24.5 of Rockafellar[9].

In Section 2, however, Proposition 1 shows that, for a wide class of convergent iterative
processes, the derivative computed by automatic differentiation will be asymptotically
correct, that is, close to the derivative of f.

2 A CLASS OF SAFE ITERATIVE PROCESSES

To make Proposition 1 useful for practical situations, we need to particularize the problem
and to focus our attention on that part of the code where the iterative process occurs.
Let us separate the variables existing just before beginning the iterative process in a
triplet (yo, ao, #), where the vector u gathers the variables that will not be modified during
the iterations, while the vectors yo and ag gather the variables that will be modified at
each iteration to become y; and a; after iteration k. We assume that the independent
variables x are not updated, so that they are part of the variables u. We distinguish
between auxiliary variables (a; ) that can be dismissed in the definition of the function f;
and those (y;) that are necessary or that we wish to use in this definition. In other words,
it must be possible to define f; (x) as a function of y; and u, avoiding the dependence in
g
Jix) = YOy, ). “)
The dependence of f; on x derives from that of y, and u. We shall see later the advantage
of expressing f; independently of some auxiliary variables a; with regard to the analysis
of the convergence of f/(x) to f’(x). But this structure in the variables need not be
known by the automatic differentiator, whose role is always to “differentiate blindly.”
Next, we also suppose that the update of the variables y; € R 9 during iteration & + 1
can be described by a smooth operator ® defined on an open set of R? x R? with value
inR?:
Yert = POy, u), k> 0. 5)
Note that, in the program, the initial iterate yo may be considered as a function of u. By
induction, rule (5) makes y; a function of u alone; thus, (5) can be rewritten as follows:

Yir1(u) = PO (u),u), k >0. (6)

We assume that the iterative process converges, i.e. that the sequence {yx(u)}i>0 in R4
converges to a vector y, = y.(u) (u is fixed). Then, y. (i) is necessarily a fixed point of
®(-,u), as we have from (6)
ya() = P(yi(u), u). )
Therefore, the map u — y.(u) appears as an implicit function of the equation y = ®(y, u).
According to (4), we have for fixed x and for K tending to infinity

Je@x) — f(x) == Py« (u),u). (8)

The question is whether f/(x) converges to f'(x). If we denote by %} and vy, the partial
derivatives of v, we have from (4) and (8)

R = ), u) - yiu) - u'(x) + b, e (u), u) - u' (x), 9)
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F/o) = by au),u) -y @) - u'(x) + 4, (0 (), u) - 1 (x). (10)

With our assumptions, we see that the convergence of the derivatives f,/(x) — f”(x) will
follow from the convergence of y/(u) — y.(u). Proposition 1 gives conditions on & that
guarantee this convergence. A similar result has been given by H. Fischer[1], where the
iterative process is used for solving a linear system. Below, L(E, F) denotes the space
of linear operators between the linear spaces £ and F.

Proposition 1. Suppose that the application ® defined on the product of open sets w, x
w, C IRY x R? with value in R is continuously differentiable and that its derivative
map @' : wy, X w, — LURY x RP,R?) is Lipschitz continuous. Suppose also that the
initial iterate yo is a differentiable function of u on w, and that, for fixed u € w,, the
sequence {y,(u)}r>o defined by (6) is in wy and converges to a point y, = y,(u) € wy.
If the spectral radius p of the restriction @, (y.,u) of ®'(y.,u) to R (partial derivative
with respect to y) satisfies )

p (2,0 m)) <7 <1, (11)
then
(i) the convergence of the sequence {yi }x>o is asymptotically linear; that is, there exist
a vector norm || - || and an index ko such that ||yi«1 — y«|| < Tllyx —y«l|, for all indices
k > ko, and

(ii) the sequence of derivatives {y,(u)} converges to y_(u).

Proof. We first show that the convergence of y; is asymptotically linear. According to
the Taylor formula, we have

1
Vest = Yo = By, ) — By, 1) = / O (ye + 1Ok — yo)stt) - (x — ya)dr.
0

From (11), there exists a matrix norm subordinated to a vector norm, both denoted by
[| - [, such that [|®{(y.,u)[| <7 < 1. Then, as soon as yy is sufficiently close to y., say
for k > ky, we have

@) (s + 1k — ya)yw)|| <7, for ¢ €10,1], (12)

and therefore
et = vl 7 llyk = yell,  for k > ko.

This shows (i).

Before proving (ii), we remark that the application u — y;(u) is differentiable be-
cause, by (6), it is the composition of k differentiable applications with the differentiable
application u +— yo(u). The application u — y.(u) is also differentiable because it is an
implicit function of the equation F (y,u) =y — ®(y,u) = 0 and because the conditions
to apply the implicit function theorem are satisfied. To check this, first observe that
the conditions of smoothness are fulfilled. Next, note that F' y’ e u) =1 — @;(y*, u) is
nonsingular, because if n € R Y is such that Fy’(y*, u)-n =20, thenn = CD;(y*, u)-n and,
using (12), we have ||n|| < 7|n||, which implies 1 = 0 (because 7 < 1).
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Now, we can differentiate (6) and (7) with respect to u in a direction v € R”. Writing
Ok = yi(u)-v and 6, = y.(u) - v, we have

bt = Py Ousu) - 6 + Pk, u) - v,
b, = @;,(y*,u)~6*+®f‘(y*,u)-v.

Subtracting each side of these identities, we get:
Biwt = 6.2 = B (v, ) - [8 — 81+ [®) g, 1) — B (v )] - 84 + [ (i, ) — B (e, )] - v

From the Lipschitz continuity of &’ and to (12), we obtain for sufficiently large k (say,
for k > k; > ko) and a positive constant C

[[6ka1 = 6ull < T8k = Oull + Cllyx = y«ll- (13)
By induction and by using (i), one finds for k > k|

k
6001 = 6ull < 7RG, — b +C (Z ™y —y*||>

i=k;
7-k_k]“”é/\’] - 6*” +C (k - kl + I)Tk~k‘ ||yk1 __y*”

IA

Since 7 < 1, we have that 7¥%*! — 0 and that (k — k; + 1)7*=% — 0, when k goes to
infinity. These results prove that &; = y,ﬁ(u) -v converges to 8, = y.(u)-v. Since this
conclusion is true for all v € R”, we deduce (in finite dimension) that y; (u) — y,(u) in
L(R?,RY). O

Note that we cannot get rid of a hypothesis like (11). Indeed, the iterations (3) give a
counterexample for this hypothesis, because these can be written fi.; = ®(fi, x), with

O, x)=fe,  folx) =x,

and <I>}(f,0) = e 0= 1 does not satisfy (11).

This result is essef’ntially qualitative and describes only an asymptotic behavior. In
particular, even in the conditions of Proposition 1, if for a given x; € R" the process
stops at iteration k; because the stopping criterion is able to assert that f;, (x)) is close to
f(x1), there is no reason for fk’l (x1) (with index k;) to be close to f'(x;). The closeness
of the derivatives may be obtained only for an index k; much larger than ;.

3 APPLICATION TO NEWTON’S METHOD

As an application of the preceding result, let us consider the case when Newton’s itera-
tions are used to calculate an implicit function, say, the solution y : u € R? — y(u) €
R of

F(y,u)=0.
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Suppose that the application F : wy x w, — R is sufficiently smooth and that the initial
iterate y is obtained as a smooth function of u. With Newton’s method, the iterates are
calculated by the following formula:

Yirt = Ye — FJGi,w) "' F(ye,u),  for k > 0. (14)

It is well known that when the point yo(u), u € wy,, is sufficiently close to a point
v« = y«(u) verifying F (y.,u) = 0 with Fy’(y*, u) nonsingular, the sequence {y;(u)}i>o
is well defined and converges to y,. Here, the function ® used in the proposition can be
written

D(y,u) =y —F)(y,u)”'F(y,u).
The condition (11) is satisfied because, using F (y.,u) = 0, we have

O (s t) =1 +F|(yus )™ F s )F) ey )~ F (puy ) = F) (e )~ FJ(yu, 1) = 0.

Consequently, the sequence {y/(u)}¢>o will converge to y.(u).

This example enables us to distinguish between updated variables y;, on which f;
depends and those a; that can be dismissed in the description of f;. An implementation
of Newton’s method (14) uses, indeed, many other variables a; in addition to the variables
y¢ updated by (14). If we had made no distinction between these variables, we would
have had difficulty applying the proposition to the present case. On the one hand, it is
often difficult, and in any case tedious, to give an updated rule & for some auxiliary
variables ;. On the other hand, there is generally no reason for the global law (&, )
to satisfy condition (11). To see this last point, just add to the process useless iterations
like (3) acting on useless additional variables: the global law will not satisfy (11) at
some point, although convergence of the derivatives f; to f’ can be assured if f; can be
defined without using the additional variables.

4 IMPLEMENTATION ISSUES

At first glance, it may appear expensive to use automatic differentiation techniques for
functions defined by iterative processes, because apparently the differentiation has to go
through all the iterations of the original program to get the correct value of the derivatives.
The automatic differentiation approach could look unattractive, especially in comparison
to linearization techniques, which linearize equation (7) and obtain y/(u) by solving the
associated linear system. Because the calculation of y,(u) is independent of the way the
solution point y, is obtained, this approach looks better.

Nevertheless, it is possible to avoid differentiating the complete program to obtain
the desired approximation of y,.. The clue lies in the observation[5] that, as far as the
calculation of the derivatives is concerned, the form of the function u — yg(u) has no
effect on the convergence of y; () to y;(u) (although this form generally influences the
speed of convergence). Proposition 1 makes indeed no other hypotheses on this function
than its differentiability. As a result, the automatic differentiator can consider that yy is
the function of u realized by the original program or any other convenient function—for
instance, the constant function u — yq. The first case is desirable if one has some reason
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to think that the function u — yo(u) realized by the original program is such that yo(u) is
close to y.(u) and yj(u) is close to y,(u). The second case is interesting in many other
situations, which we discuss below.

One way to avoid differentiating the complete program formed of all the iterations
calculating approximations of y, is to take as starting point, yo, of the iterative process
a good approximation of the solution, y.. This approximation can be obtained by a first
run of the original program. The idea is therefore to generate a derivation code from a
modified original program, in which the starting function is now the constant function
u — yo = y« and the number of iterations aims only at assuring the convergence of the
derivatives in the generated program. The improvement in the approximations y; of the
derivative y/ can be observed in inequality (13), which shows that &, converges to é.
linearly (the second term of the right hand side is approximately zero). This approach
corresponds to solving the system coming from the linearization of (7) at y, =~ y. by the
iterations

Bar i= Y ey 1) - O+ DY (v ) - v, (15)

where 6, stands for y/(u) - v.

This idea is extremely efficient when applied to methods for which ®/(y.,u) = 0. In
such cases, a good approximation of the derivatives is obtained in just one iteration (see,
e.g., (15)). For example, for Newton’s method (14), we would do just one iteration,
starting from yo =~ y, considered as a constant:

z = yo — F) (o, u) ™' F (yo, ).
Since F (yg,u) ~ F (y«,u) = 0, we see that the derivative of z can be written
2') v = —F (o, )" F (0, u) v = —F ey 1) Fy(a,u) - v,

which is precisely the expected derivative y.(u) - v.

In the general case where @;,(y*,u) # 0, the number of iterations needed to get
convergence of the derivatives should be controlled during the differentiation phase, in
the generated code. In the direct mode of differentiation, a direction d € IR" is usually
given, and the directional derivative f/(x) - d is evaluated by computing the directional
derivatives 7 = z’(x) - d of all the variables z in the original program, in parallel with
the calculation of z. Since §; = (yx o u)'(x) -d = y/(u) - ii, a simple stopping criterion
would be to test whether

Vi > Fe—1.
This is less restrictive than requiring y{,(u) o~ y,ﬁ_l(u) but it is enough to get fk ~ f,
because the nonsingularity of / — @;(yk, u) implies then that

Je = Fu = (uouw)(x)-d.

In the reverse mode of differentiation, a direction r € R™ is given and the gradient
V(rTf) with respect to x is calculated by updating the adjoint variable Z associated with
any variable z in the original code, in reverse order of their evaluation. The adjoint
variable 7 is the current estimation of the partial derivative (r 'f)/0z. In this mode, a
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reasonable stopping criterion would consist of testing whether
Jo ~ 0. (16)
To see this, observe from (9), (10), and y; ~ y, that
(TA) = (7TF) @)
if and only if
(rT0), Gus) - i) = yL@0)] ') = 0,

Differentiating (6) and (7) and using & times the resulting equations, we see that this is
also equivalent to

(), Gey ) - @ ey 1)k - [y) — yL@)] - u'(x) = 0.
y

Since functions u — yo(u) and u — y,(u) are usually not linked and since x +— u(x) is
independent of the iterative process, the only way to ensure this condition is to take &
sufficiently large so as to have

! -
(rT), Gy ) - @Y ) 0.
This is approximately equivalent to condition (16). More precisely, we have
Jo = @0, 1) @y, w)" - B Gue—r, )T Yy (rT9) (s ).

In the reverse mode, this quantity is evaluated from right to left. This shows that, in this
mode of differentiation, it is not easy to adapt the number of iterations to satisfy condition
(16). However, since yp >~ y; o~ ... = y; =~ y,, the value of ¥, can be approximated by

5o = By 0k—1,0)" D Or—2,1)" - @00, 1) Yy (r7) (o, ),

which allows an easy adaptation of £ during the reverse part of the calculation. With
this approximation of ¥y, condition (16) is a reasonable criterion.

To conclude, let us mention another situation where it is better not to differentiate
the function u — yo(u) realized by the original program. This situation arises when the
iterative process obeys a rule like (5) only after a certain number of iterations, say s.
Before this, some nondifferentiable actions such as step-sizing are taken. In this case,
it is preferable that the automatic differentiator not generate codes for the calculation of
ys(u); rather, it should consider that the iterative process starts with a constant initial
approximation y;.
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