
Appl. Math. Lett. Vol. 6, No. 3, pp. 47-50, 1993 0893-9659/93 $6.00 + 0.00 

Printed in Great Britain. All rights reserved Copyright@1993 Pergamon Press Ltd 

AUTOMATIC DIFFERENTIATION 
AND THE STEP COMPUTATION 

IN THE LIMITED MEMORY BFGS METHOD 

JEAN CHARLES GILBERT 

INRIA, Domaine de Voluceau, Rocquencourt 

B.P. 105, 78153 Le Chesnay, Cedex, France 

JORGE NOCEDAL* 

Department of Electrical Engineering and Computer Science 

Northwestern University, Evanston, IL 60208, U.S.A. 

(Received and accepted January 1993) 

Abstract-It is shown that the two-loop recursion for computing the search direction of a lim- 
ited memory method for optimization can be derived by means of the reverse mode of automatic 
differentiation applied to an auxiliary function. 

1. INTRODUCTION 

The problem of finding efficient procedures for automatically calculating the gradient of a func- 
tion has recently received much attention [l]. It is known that the reverse mode of automatic 
differentiation can provide the value of the gradient at a cost that is not much greater than that 
required to evaluate the function. 

On the other hand, the limited memory BFGS method-an optimization method designed 
for very large unstructured problems-has recently become popular. This method attempts to 
mimic the very successful BFGS variable metric method, but without storing matrices. To do 
this, it saves several pairs of vectors {yi, si}, i = 1,. . . , m that implicitly define the iteration 
matrix H. The search direction of the limited memory method is then computed by d = -Hg, 
where H can be viewed as an approximation of the inverse Hessian of the objective function at 
the current iterate and g is the gradient of this function. Since the matrix H is not formed but is 
only represented implicitly by the set of vectors {yi, si}, 2 formula [2] is required to calculate the 
product Hg directly from the vectors {yi, si} and the gradient g. It turns out that this formula 
is not unique; -one can devise various equivalent expressions, some of which are more economical 
than others [3]. For unconstrained optimization, the most efficient formula for computing d, 
given in [2], consists of a two-loop recursion involving the vectors {yi, si} and the gradient g. In 
this paper, we show that this two-loop recursion can be viewed as an application of the reverse 
mode of automatic differentiation. Thus, we find a connection between two apparently unrelated 
subjects: the step computation in a limited memory method and automatic differentiation. 

2. ADJOINT CODE OF A PROGRAM COMPUTING A FUNCTION 

Suppose that a function 

f : X = (X1, e. s ) Xn) E IR” + f(x) E IR 

is computed by a program executing the following sequence of instructions 

for k := 1 to K do zp,, := pk({zpk}); 
f := XN. (1) 
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For convenience, we have denoted by xl,. . . , x, the independent variables, with respect to which 
the gradient of f is desired, and by x,+1,. . . ,XN (IV L n) all the other variables used in the 
program. There is, however, no meaningful ordering in this notation. Instruction k in (1) modifies 
the variable zP,, , pk E (1 , . . . , N}, by using an intermediate function vk depending on (xp,}, 
which is the collection of variables Xj with indices j in some subset Pk c (1, . . . , N}. After 
assigning a value to the variable 2, this program will provide the value of f(z) in the variable zN. 

It has been shown [4] that the gradient Vf(x) of f at a given point x can be evaluated by first 
executing the original program (l), storing some partial derivatives % for j E &, and then 

executing the following adjoint code: 

for i:=l to N-l 
ZN := 1; 
for k := K down to 

for i := 1 td’ n do 

do Zi := 0; 

1 do { 

v’i E pk\{pk}; (2) 

Here we used the notation A\B to denote the set of elements that belong to A but not to B. The 
variable pi is called the adjoint variable associated to xi. Its value is the current evaluation of 
the derivative off with respect to xi. This technique is also called the reverse mode of automatic 
differentiation; see [5-81 for an introduction to the subject. Its main advantage is that it computes 
f(x) and its gradient of(x) in a time T(f, Of) satisfying 

w, Of) I c W), (3) 

where C is some constant and T(f) is the time to compute f(x) by Algorithm (1). When the 
functions @ are restricted to be the ones available in FORTRAN, it is reasonable to bound C 
by 5, see [6]. 

3. APPLICATION TO THE L-BFGS METHOD 

In a typical iteration of the limited memory BFGS method (L-BFGS), one is given a symmetric 
and positive definite matrix HO and m pairs of vectors (90, SO}, . . . , (~~-1, s,-I}, where m is 
some integer. Each of these pairs satisfies the condition pi E (yTsi)-l > 0. The matrix Ho is 
then updated m times using the BFGS formula, i.e., for i = 0,. . . , m - 1: 

Hi+1 = yTHi Vi + pi s+, ST-, (4) 

where 
L$, = I - pi yi ST; (5) 

see [2]. The resulting matrix, H,, is then used to compute the search direction 

d = -H,g, 

where g is the current value of the gradient of the objective function. 
To interpret this step computation in terms of automatic differentiation, we need to express 

H,g as the gradient of a real-valued function. A natural candidate for this is 

An(g) = ;gTHmg, 
since, due to the symmetry of H,, Vsfm(g) is precisely H,g. From (4), we find that fm(.) can 
easily be expressed in terms of fm_ 1 (a) : 

An(g) = fm-l(Vm-19) + y (sz_lg)2. 

Therefore, if we define 

Qm = 97 Qi-1 = vi-l%7 for i = m,. . . ,l, (6) 
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we find by induction that 
m-l 

fm(9) = fo(a0) + c 2 (4h+d2- 
i=O 

Using this formula, the computation of fm(g) can be performed by the following algorithm. We 
assume that the scalars pi have been computed beforehand, and to save storage, we place all the 
qi in the same vector q. Recall that the vectors qi are updated by (6), where the matrices % are 
defined by (5). 

f := 0; 
q := g; 
for i := m - 1 down to 0 do { 

ai := STq; 

f:=f+fc$; 

q:=q-piaiyi; 1 
f := f + iqTHoq. 

(7) 

The product H,,,g will now be computed by the adjoint code of (7). Let f, Q, &e, . . . ,6,_1 
be the adjoint variables corresponding to f, q, ~0,. . . , am-l. The adjoint code is obtained by 
writing the adjoint instructions corresponding to the instructions in (7), in the reverse order of 
execution. After the initialization of the adjoint variables, 

J := 1; q := 0; be := 0;. . . ; &,_I := 0, 

the code continues as follows: 

q := Hoq; 
for i := 0 to m- 1 do { 

&i:=&i-pi$-q; 

&i := &i + pi ai fi 
q:=q+fiisi; 
&i := 0;) 

g := q; 

q:=o; 
f:=o. 

(8) 

We now combine (7) and (8), omitting those instructions needed only for the evaluation of f 
(since we are only interested in Hmg). To save space in the adjoint portion of the code, we store 
all values of & in the same location p and the values of Q in the location of q. After deleting all 
unnecessary instructions, we obtain 

q := g; 

for i:=m-1 downto 0 do { 
CYi := sTq; 

q := q - pi (Yi yj; 1 
q := Hoq; 

for i :=0 to m- 1 do { 

P := Pi(W - yTq>; 
q := q + psi; }. 

(9) 

The value of H,g is placed in the vector q. Algorithm (9) is identical to the two-loop formula 
used for the computation of the search direction in the L-BFGS method [2]. 

This derivation shows why Algorithm (9) is efficient: it is based on the compact Algorithm (7) 
computing fm, an d on the reverse mode of automatic differentiation, which is known to be very 
efficient. 
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