
Appl. Math. Lett. Vol. 6, No. 3, pp. 47-50, 1993 0893-9659/93 $6.00 + 0.00

Printed in Great Britain. All rights reserved Copyright@1993 Pergamon Press Ltd

AUTOMATIC DIFFERENTIATION
AND THE STEP COMPUTATION

IN THE LIMITED MEMORY BFGS METHOD

JEAN CHARLES GILBERT

INRIA, Domaine de Voluceau, Rocquencourt

B.P. 105, 78153 Le Chesnay, Cedex, France

JORGE NOCEDAL*

Department of Electrical Engineering and Computer Science

Northwestern University, Evanston, IL 60208, U.S.A.

(Received and accepted January 1993)

Abstract-It is shown that the two-loop recursion for computing the search direction of a lim-
ited memory method for optimization can be derived by means of the reverse mode of automatic
differentiation applied to an auxiliary function.

1. INTRODUCTION

The problem of finding efficient procedures for automatically calculating the gradient of a func-
tion has recently received much attention [l]. It is known that the reverse mode of automatic
differentiation can provide the value of the gradient at a cost that is not much greater than that
required to evaluate the function.

On the other hand, the limited memory BFGS method-an optimization method designed
for very large unstructured problems-has recently become popular. This method attempts to
mimic the very successful BFGS variable metric method, but without storing matrices. To do
this, it saves several pairs of vectors {yi, si}, i = 1,. . . , m that implicitly define the iteration
matrix H. The search direction of the limited memory method is then computed by d = -Hg,
where H can be viewed as an approximation of the inverse Hessian of the objective function at
the current iterate and g is the gradient of this function. Since the matrix H is not formed but is
only represented implicitly by the set of vectors {yi, si}, 2 formula [2] is required to calculate the
product Hg directly from the vectors {yi, si} and the gradient g. It turns out that this formula
is not unique; -one can devise various equivalent expressions, some of which are more economical
than others [3]. For unconstrained optimization, the most efficient formula for computing d,
given in [2], consists of a two-loop recursion involving the vectors {yi, si} and the gradient g. In
this paper, we show that this two-loop recursion can be viewed as an application of the reverse
mode of automatic differentiation. Thus, we find a connection between two apparently unrelated
subjects: the step computation in a limited memory method and automatic differentiation.

2. ADJOINT CODE OF A PROGRAM COMPUTING A FUNCTION

Suppose that a function

f : X = (X1, e. s) Xn) E IR” + f(x) E IR

is computed by a program executing the following sequence of instructions

for k := 1 to K do zp,, := pk({zpk});
f := XN. (1)

*This author was supported by the National Science Foundation Grant INT-9101901, and by the Department
of Energy Grant DEFG02-87ER25047.

47

48 J.C. GILBERT, J. NOCEDAL

For convenience, we have denoted by xl,. . . , x, the independent variables, with respect to which
the gradient of f is desired, and by x,+1,. . . ,XN (IV L n) all the other variables used in the
program. There is, however, no meaningful ordering in this notation. Instruction k in (1) modifies
the variable zP,, , pk E (1 , . . . , N}, by using an intermediate function vk depending on (xp,},
which is the collection of variables Xj with indices j in some subset Pk c (1, . . . , N}. After
assigning a value to the variable 2, this program will provide the value of f(z) in the variable zN.

It has been shown [4] that the gradient Vf(x) of f at a given point x can be evaluated by first
executing the original program (l), storing some partial derivatives % for j E &, and then

executing the following adjoint code:

for i:=l to N-l
ZN := 1;
for k := K down to

for i := 1 td’ n do

do Zi := 0;

1 do {

v’i E pk\{pk}; (2)

Here we used the notation A\B to denote the set of elements that belong to A but not to B. The
variable pi is called the adjoint variable associated to xi. Its value is the current evaluation of
the derivative off with respect to xi. This technique is also called the reverse mode of automatic
differentiation; see [5-81 for an introduction to the subject. Its main advantage is that it computes
f(x) and its gradient of(x) in a time T(f, Of) satisfying

w, Of) I c W), (3)

where C is some constant and T(f) is the time to compute f(x) by Algorithm (1). When the
functions @ are restricted to be the ones available in FORTRAN, it is reasonable to bound C
by 5, see [6].

3. APPLICATION TO THE L-BFGS METHOD

In a typical iteration of the limited memory BFGS method (L-BFGS), one is given a symmetric
and positive definite matrix HO and m pairs of vectors (90, SO}, . . . , (~~-1, s,-I}, where m is
some integer. Each of these pairs satisfies the condition pi E (yTsi)-l > 0. The matrix Ho is
then updated m times using the BFGS formula, i.e., for i = 0,. . . , m - 1:

Hi+1 = yTHi Vi + pi s+, ST-, (4)

where
L$, = I - pi yi ST; (5)

see [2]. The resulting matrix, H,, is then used to compute the search direction

d = -H,g,

where g is the current value of the gradient of the objective function.
To interpret this step computation in terms of automatic differentiation, we need to express

H,g as the gradient of a real-valued function. A natural candidate for this is

An(g) = ;gTHmg,
since, due to the symmetry of H,, Vsfm(g) is precisely H,g. From (4), we find that fm(.) can
easily be expressed in terms of fm_ 1 (a) :

An(g) = fm-l(Vm-19) + y (sz_lg)2.

Therefore, if we define

Qm = 97 Qi-1 = vi-l%7 for i = m,. . . ,l, (6)

Limited memory BFGS method 49

we find by induction that
m-l

fm(9) = fo(a0) + c 2 (4h+d2-
i=O

Using this formula, the computation of fm(g) can be performed by the following algorithm. We
assume that the scalars pi have been computed beforehand, and to save storage, we place all the
qi in the same vector q. Recall that the vectors qi are updated by (6), where the matrices % are
defined by (5).

f := 0;
q := g;
for i := m - 1 down to 0 do {

ai := STq;

f:=f+fc$;

q:=q-piaiyi; 1
f := f + iqTHoq.

(7)

The product H,,,g will now be computed by the adjoint code of (7). Let f, Q, &e, . . . ,6,_1
be the adjoint variables corresponding to f, q, ~0,. . . , am-l. The adjoint code is obtained by
writing the adjoint instructions corresponding to the instructions in (7), in the reverse order of
execution. After the initialization of the adjoint variables,

J := 1; q := 0; be := 0;. . . ; &,_I := 0,

the code continues as follows:

q := Hoq;
for i := 0 to m- 1 do {

&i:=&i-pi$-q;

&i := &i + pi ai fi
q:=q+fiisi;
&i := 0;)

g := q;

q:=o;
f:=o.

(8)

We now combine (7) and (8), omitting those instructions needed only for the evaluation of f
(since we are only interested in Hmg). To save space in the adjoint portion of the code, we store
all values of & in the same location p and the values of Q in the location of q. After deleting all
unnecessary instructions, we obtain

q := g;

for i:=m-1 downto 0 do {
CYi := sTq;

q := q - pi (Yi yj; 1
q := Hoq;

for i :=0 to m- 1 do {

P := Pi(W - yTq>;
q := q + psi; }.

(9)

The value of H,g is placed in the vector q. Algorithm (9) is identical to the two-loop formula
used for the computation of the search direction in the L-BFGS method [2].

This derivation shows why Algorithm (9) is efficient: it is based on the compact Algorithm (7)
computing fm, an d on the reverse mode of automatic differentiation, which is known to be very
efficient.

50 J.C. GILBERT, J. NOCEDAL

REFERENCES

A. Griewank and G. Corliss, Eds., Automatic Differentiation of Algorithms: Theory, Implementation, and
Application, Proceedings in Applied Mathematics 53, SIAM, (1991).
J. Nocedal, Updating quasi-Newton matrices with limited storage, Mathematics of Computation 35, 773-782
(1980).
R.H. Byrd, J. Nocedal and R. Schnabel, Representations of quasi-Newton matrices and their use in limited
memory methods, Tech. Rep. NAM-04, EECS Department, Northwestern University, (1992).
B. Speelpenning, Compiling fast partial derivatives of functions given by algorithms, Ph.D. Thesis, Depart-
ment of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A., (1980).
L.B. Rail, Automatic Differentiation, Techniques and Applications, Lecture Notes in Computer Science 120,
Springer-Verlag, Berlin, (1981).
A. Griewank, On automatic differentiation, In Mathematical Progmmming: Recent Developments and Ap-
plications, (Edited by M. Iri and K. Tanabe), pp. 83-108, Kluwer Academic Publishers, (1989).
D. Juedes, A taxonomy of automatic differentiation tools, In Automatic Differentiation of Algorithms: The-
ory, Implementation, and Application, (Edited by A. Griewank and G.F. Corliss), SIAM, Philadelphia,
(1991).
J.Ch. Gilbert, G. Le Vey and J. Masse, La diffbrentiation automatique de fonctions repr&ent&s par des
programmes, INR.IA Research Report 1557, (1991).

1.

2.

3.

4.

5.

6.

7.

8.

