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Abstract. This paper describes a reduced quasi-Newton method for solving equality constrained
optimization problems. A major difficulty encountered by this type of algorithm is the design of a
consistent technique for maintaining the positive definiteness of the matrices approximating the
reduced Hessian of the Lagrangian. A new approach is proposed in this paper. The idea is to search
for the next iterate along a piecewise linear path. The path is designed so that some generalized Wolfe
conditions can be satisfied. These conditions allow the algorithm to sustain the positive definiteness
of the matrices from iteration to iteration by a mechanism that has turned out to be efficient in
unconstrained optimization.
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1. Introduction. In unconstrained optimization, when a function x ∈ Rn 7→
ξ(x) ∈ R is minimized using descent direction methods, there is a nice combination of
a line-search technique attributed to Wolfe [43, 44] and some quasi-Newton methods.
On the one hand, if dk is a descent direction of ξ at the current iterate xk (i.e.,
∇ξ(xk)>dk < 0), the Wolfe line-search consists in determining a step-size αk > 0
along dk such that the next iterate xk+1 = xk + αkdk satisfies

ξ(xk+1) ≤ ξ(xk) + ω1 αk∇ξ(xk)>dk,(1.1)

∇ξ(xk+1)>dk ≥ ω2∇ξ(xk)>dk,(1.2)

where 0 < ω1 < ω2 < 1 are constants (independent of k). These conditions contribute
to the convergence of descent direction methods. On the other hand, in quasi-Newton
methods the descent direction has the form dk = −B−1

k ∇ξ(xk), where Bk is an up-
dated symmetric matrix approximating the Hessian of ξ. It is interesting to maintain
this matrix positive definite, in particular because dk is then a descent direction. With
most update formulas, the new matrix Bk+1 satisfies the so-called quasi-Newton equa-
tion

γk = Bk+1δk,

where γk = ∇ξ(xk+1) − ∇ξ(xk) is the change in the gradient of ξ and δk = αkdk is
the step. Of course, if Bk+1 is positive definite, the quasi-Newton equation implies
that

γ>k δk > 0.(1.3)
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Therefore, this curvature condition (1.3) has to be satisfied if one expects Bk+1 to be
positive definite. For some quasi-Newton formulas (for instance the BFGS formula,
see below), which update Bk using γk and δk, this inequality is also sufficient to have
Bk+1 positive definite (provided Bk is already positive definite). The remarkable fact
is that the second Wolfe condition above guarantees this inequality. Hence, using the
Wolfe line-search and the BFGS formula, e.g., ensures that all the search directions
have the descent property.

For various reasons (see, for example, Powell [33]), it is not straightforward to
extend the above scheme to a minimization problem with constraints on the variables.
Such an extension is desirable, however, because numerical experience has shown that
the approach is very successful in unconstrained minimization, even when the number
of variables is large (see Liu and Nocedal [26] and Gilbert and Lemaréchal [20]).

In this paper, we study in more detail the matter for the equality constrained
minimization problem

{
min f(x)
c(x) = 0, x ∈ Ω,

(1.4)

where Ω ⊂ Rn is an open set and f : Ω → R and c : Ω → Rm (m < n) are smooth
functions.

Since the set Ω is supposed to be open, it cannot be used to define general
constraints. It is the set where f and c have nice properties. For example, we always
suppose that the m× n Jacobian matrix of the constraints

A(x) = ∇c(x)>

is surjective (i.e., has full row rank) for any x ∈ Ω. We also suppose that this matrix
has a right inverse A−(x) depending smoothly on x:

A(x)A−(x) = I ∀x ∈ Ω.

Besides, we assume that for all x ∈ Ω, there is a basis Z−(x) of the null space N(A(x))
of A(x), which means that Z−(x) is an injective (or full column rank) n × (n −m)
matrix satisfying

A(x)Z−(x) = 0 ∀x ∈ Ω.

We also suppose that the map x 7→ Z−(x) is smooth. These assumptions on Z− are
not restrictive if Ω may differ from Rn but can rarely be satisfied when Ω = Rn (for
example, the assumptions on Z− cannot be satisfied on even-dimensional spheres).
Observe that for A−(x) and Z−(x) defined as above, there exists a unique (n−m)×n
matrix Z(x) such that

Z(x)Z−(x) = I and Z(x)A−(x) = 0(1.5)

in R(n−m)×(n−m) and R(n−m)×m, respectively (see Gabay [14], for example).
The Lagrangian function of problem (1.4) is the function ` : (x, λ) ∈ Ω×Rm → R,

defined by

`(x, λ) = f(x) + λ>c(x).

Its Hessian with respect to x is denoted by L(x, λ) = ∇2
xx`(x, λ). The reduced Hessian

of the Lagrangian is the order n−m matrix Z−(x)>L(x, λ)Z−(x). We denote by x∗
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a solution of (1.4) and by λ∗ its associated multiplier and denote L∗ = L(x∗, λ∗) and
B∗ = Z−(x∗)>L∗Z−(x∗).

Our study is done in the framework of those reduced quasi-Newton methods that,
near a solution x∗, generate the sequence of iterates {xk} ⊂ Ω approximating x∗ by

xk+1 = xk + dk,(1.6)

where dk is the solution of the quadratic program

{
min ∇f(xk)>d+ 1

2d
>Z>kBkZkd

ck +Akd = 0.
(1.7)

In (1.7), ck = c(xk), Ak = A(xk), Zk = Z(xk), and the order n−m matrix Bk is an
approximation of the reduced Hessian of the Lagrangian (see Murray and Wright [30]
and Gabay [15]). Since Z>kBkZk approximates only a part of the Hessian of the La-
grangian, the method differs from the well-known sequential quadratic programming
(SQP) algorithm (see Wilson [42], Han [22], and Pshenichnyi and Danilin [10]) in
which an approximation of the full Hessian of the Lagrangian is updated. These
reduced quasi-Newton algorithms have a lower speed of convergence than SQP meth-
ods, but they may be used for larger problems because they need to update smaller
matrices.

Any direction d satisfying the linear constraints in (1.7) has the form d = Z−k h−
A−k ck, where Z−k = Z−(xk), A−k = A−(xk), and h is some vector in Rn−m. Substitut-
ing this in the objective function of (1.7), assuming that Bk is positive definite, and
minimizing in h, we obtain as a solution of (1.7)

dk = tk + rk = −Z−k B−1
k gk −A−k ck,

where gk = g(xk) = Z−>k ∇f(xk) ∈ Rn−m is called the reduced gradient of f at xk,
tk = −Z−k B−1

k gk is called the tangential or longitudinal component of the step, and
rk = −A−k ck is called the restoration or transversal component of the step.

One of the main concerns of this paper is to develop a technique that maintains
the positive definiteness of the matrices Bk. This property is interesting because it
makes the direction tk a descent direction of most merit functions used to globalize the
local method (1.6)–(1.7). It is also natural since this matrix approximates the reduced
Hessian of the Lagrangian, which is positive semidefinite at the solution. To obtain
this property, our approach mimics what is done in unconstrained optimization, as
was recalled in the beginning of this introduction. First, we use an update formula
allowing the positive definiteness to be transmitted from one matrix to the next one.
A typical example is the BFGS formula (see [13, 21, 11])

Bk+1 = Bk −
Bkδkδ

>
kBk

δ>kBkδk
+
γkγ
>
k

γ>k δk
.(1.8)

This formula requires the use of two vectors γk and δk in Rn−m, which will be specified
in a moment. The important point is that the positive definiteness is sustained from
Bk to Bk+1 if the vectors γk and δk satisfy the following condition:

γ>k δk > 0.(1.9)

Next, we propose a “piecewise line-search” (PLS) technique that finds a point satis-
fying generalized Wolfe conditions, which reduce to conditions (1.1)–(1.2) when there



WOLFE CONDITIONS IN RQN METHODS 783

are no constraints. These conditions imply inequality (1.9) for appropriate vectors γk
and δk and, therefore, also the positive definiteness of the matrices updated by using
these vectors.

The local analysis of algorithm (1.6)–(1.7) shows that it is convenient to take for
γk the change in the reduced gradient and for δk the reduced displacement

γk = gk+1 − gk and δk = αkZktk.(1.10)

Other choices are sometimes proposed: see, for instance, Coleman and Conn [7] and
Nocedal and Overton [31]. All of them are asymptotically equivalent to the above
choice, which is preferred for its geometrical interpretation (see section 3) and its
simplicity. In these formulas appears a step-size αk > 0 (see section 3) because the
matrices Bk are also updated far from the solution where the algorithm differs from
(1.6)–(1.7). Note, however, that xk+1 is obtained in a more sophisticated way than
a simple move along the tangent direction tk. This is necessary because such a move
does not usually yield (1.9) (see [17]).

Condition (1.9) holds if the search algorithm determines xk+1 such that

g>k+1Zktk ≥ ω2 g
>
kZktk,(1.11)

where 0 < ω2 < 1. This is actually what the search algorithm realizes. Now, this
algorithm has another role to play, which is to contribute to the global convergence
of the method. This is achieved by sufficiently decreasing some merit function, which
we choose to be

Θσ(x) = f(x) + σ‖c(x)‖,(1.12)

where σ is positive number and ‖ · ‖ denotes a norm in Rm. This penalty function is
exact when σ is sufficiently large (see, for example, Han and Mangasarian [23]). The
decrease in Θσ is typically forced by requiring that

Θσ(xk+1) ≤ Θσ(xk) + ω1 νk(αk),(1.13)

where 0 < ω1 < 1 and νk(α) is negative for positive α. Note that we do not need
ω1 < ω2 in the PLS algorithm.

The difficulty of realizing both (1.11) and (1.13) simultaneously comes from the
fact that, unlike what happens for unconstrained problems, the left-hand side in (1.11)
is not the directional derivative of Θσ at xk+1 along commonly used search directions
such as tk or dk. We shall see that it is the directional derivative Θ′σ(xk+1;Z−k+1Zktk).
This suggests making a reorientation of the search direction when (1.11) does not
hold by using the new basis Z−k+1, while keeping the same reduced tangent direction
Zktk. This is the idea underlying the search algorithm proposed in [17], where the
search path has only longitudinal components, i.e., components in the range space
of the matrices Z−(xik), where xik (i = 0, . . . , ik − 1) are intermediate points. Here
we show how to implement this idea for paths also having transversal components,
i.e., components in the range space of A−(xik). This improves the algorithm, since
asymptotically the constraints need no longer be linearized twice per iteration of the
overall algorithm.

The analysis results in a quite simple search algorithm, which can be described
as follows. At each inner iteration i of the PLS algorithm, condition (1.13) is first
realized and, next, condition (1.11) is tested. If the latter holds, the PLS algorithm
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terminates with a suitable point. Otherwise, a new inner search direction is defined,
using the same matrix Bk and the same reduced gradient gk as for the previous inner
direction. A new inner iteration is then started.

Other authors have proposed techniques for maintaining the positive definiteness
of the generated matrices for constrained minimization problems, but none uses the
search algorithm to achieve this goal. These papers also deal with the SQP method,
in which approximations of the full Hessian of the Lagrangian are generated. In this
case γk is usually γ`k, the change in the gradient of the Lagrangian, and δk is the step.
The first proposal, due to Powell [33], was to take for γk a convex combination of γ`k
and Bkδk such that (1.9) holds. According to Powell [35], the method may lead to ill
conditioning when the problem is difficult to solve. We have also observed the failure
of this technique on some academic problems (see Armand and Gilbert [1]). Due to
its great simplicity, however, it is the most widely implemented technique. Another
promising idea, proposed by Han [22] and Tapia [40] and subsequently explored by
Tapia [41] and Byrd, Tapia, and Zhang [5], is to generate approximations of the
Hessian of the augmented Lagrangian, which is positive definite at the solution when
the penalty parameter is sufficiently large. The difficulty in choosing the penalty
parameter has always been the stumbling block of this approach, and we believe that
more research is needed to improve the method satisfactorily. Finally, Fenyes [12] and
Coleman and Fenyes [8] separately update approximations of Z−(x∗)>L∗Z−(x∗) and
A−(x∗)>L∗Z−(x∗), maintaining positive definite the approximations of the former
matrix.

We conclude this introduction with a few remarks. First, our PLS algorithm
also can be used for the reduced quasi-Newton method of Coleman and Conn [6] with
minor modifications (see [18]), while its use for the SQP method has been investigated
by Armand and Gilbert [1]. An important point to mention is that when the reduced
Hessian of the Lagrangian is computed exactly and used in place of Bk in (1.7), there
is no need to use the PLS algorithm. In this case, a simple Armijo [2] backtracking
along dk is preferable, since it is less expensive and easier to implement than the PLS
algorithm.

The paper is organized as follows. In section 2, we make the hypotheses and
notation more precise. In section 3, the search path is introduced and its meaning
is discussed. Also, conditions for obtaining finite termination of the search algorithm
are given. Section 4 contains a global convergence result and, finally, some numerical
experiments are reported in section 5.

2. Hypotheses and notation. We suppose that the function c defining the
constraints in (1.4) is a submersion on Ω, which means that its Jacobian matrix A(x)
is surjective for all x in Ω. Then, for any x ∈ Ω, the set

Mx = {y ∈ Ω : c(y) = c(x)}

forms a smooth submanifold of Rn, having dimension n−m (for the geometrical tools,
we refer the reader to Spivak [38], Boothby [3], or Conlon [9], for example).

We quote the fact that the columns of the basis Z−(x) introduced in section 1
span the space tangent to Mx at x and that the columns of the right inverse A−(x)
span a space complementary to this tangent space. The matrix Z(x) defined by (1.5)
is also characterized by the useful identity

A−(x)A(x) + Z−(x)Z(x) = I,
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which allows us to decompose a direction d of Rn in its transversal component A−(x)
A(x)d and its longitudinal component Z−(x)Z(x)d. Also,

Z(x) =
(
I 0

) (
Z−(x) A−(x)

)−1
,

so that the map x 7→ Z(x) inherits the smoothness of Z− and A−.
We assume that there is a pair (x∗, λ∗) ∈ Ω×Rm satisfying the sufficient second

order conditions of optimality, i.e.,

{
c(x∗) = 0,
∇f(x∗) +A(x∗)>λ∗ = 0,

and h>L∗h > 0 for all nonzero h ∈ N(A(x∗)). By these assumptions, the reduced
Hessian of the Lagrangian at the solution B∗ = Z−(x∗)>L∗Z−(x∗) is positive definite.
We also introduce

λ(x) = −A−(x)>∇f(x),(2.1)

which estimates the Lagrange multiplier at the solution: λ(x∗) = λ∗.
We recall that we use the penalty function Θσk

defined in (1.12) to globalize the
local method (1.6)–(1.7). The penalty parameter σk depends on the iteration index k
and is updated to satisfy at each iteration

σk ≥ ‖λk‖D + σ,(2.2)

where λk = λ(xk) and σ is a fixed positive number. We have denoted by ‖ · ‖
D

the
dual norm of the norm ‖ · ‖ used in (1.12). It is defined by

‖v‖
D

= sup
‖u‖=1

u>v.

The manifolds on which the reduced gradient g is constant are denoted by

Nx = {y ∈ Ω : g(y) = g(x)}.

These sets are indeed manifolds if Ω is sufficiently “small,” because g is a submersion
in a neighborhood of x∗. To see this, observe that g′(x∗) = Z−>∗ L∗ (see Stoer [39] or
Nocedal and Overton [31]) and that Z−>∗ L∗ is surjective.

We denote by ξ′(u; v) the directional derivative of a function ξ at u along the
direction v. In particular, if ξ is a function of a real variable α, ξ′(α; 1) denotes its
right derivative. We quote the fact that if C is a convex continuous function and if
ξ has directional derivatives, then C ◦ ξ also has directional derivatives (“◦” denotes
composition). This can be seen by using the local Lipschitz continuity of C, implied by
its continuity (see Theorem 10.4 in [36] or Theorem IV.3.1.2 in [24]). As a result, when
the constraint function c is smooth, Θσ defined in (1.12) has directional derivatives.

The following identity will be used several times. If f and c are smooth and
h ∈ Rn−m, we have for Θσ defined by (1.12)

Θ′σ
(
x;Z−(x)h−A−(x)c(x)

)
= g(x)>h+ λ(x)>c(x)− σ‖c(x)‖.(2.3)

Indeed, function f in Θσ gives the first two terms in the right-hand side of (2.3) (use
the definition of g(x) and (2.1)). Next, taking the notation η(x) = ‖x‖ and knowing
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that (η ◦ c)′(x; v) = η′(c(x);A(x)v), the directional derivative of the second term in
Θσ is given by

σ(η ◦ c)′
(
x;Z−(x)h−A−(x)c(x)

)
= ση′(c(x);−c(x))

= σ lim
t→0+

1

t

(
‖c(x)− tc(x)‖ − ‖c(x)‖

)

= −σ‖c(x)‖.

3. The search algorithm. In unconstrained optimization, the path pk : α ∈
R+ 7→ pk(α) starting at the current iterate pk(0) = xk ∈ Ω and along which a step-size
is taken is most commonly a straight line, which can be determined before the search
begins. When constraints are present, a search along a line is no longer possible if
one aims at satisfying the reduced Wolfe conditions

Θσk
(pk(α)) ≤ Θσk

(xk) + ω1 νk(α),(3.1)

g(pk(α))>Zktk ≥ ω2 g
>
kZktk(3.2)

for some α > 0. In (3.1) and (3.2), the constants ω1 and ω2 are chosen in (0, 1), and
α 7→ νk(α) is a function forcing the decrease of Θσk

by the properties

{
νk(0) = 0
Θ′σk

(xk; p′k(0; 1)) ≤ ν′k(0; 1) < 0.
(3.3)

These properties and ω1 < 1 make it possible to realize (3.1) for small positive α. We
have assumed that pk is a descent path for Θσk

, i.e., Θ′σk
(xk; p′k(0; 1)) < 0.

In our proposal, the description of the search path is not as easy as in uncon-
strained optimization, because it depends on some intermediate step-sizes. From the
point of view taken here, a reorientation of the search path is indeed necessary at
some intermediate step-sizes αik, i = 1, . . . , ik − 1. Furthermore, condition (3.1) also
depends on the step-sizes αik through the function νk, which cannot be given before
the search is completed. For these reasons, we have to specify simultaneously the
function νk and the way the search path is designed.

The algorithm we discuss has some similarities with the one given in [17], but here
the path has at once a longitudinal and a transversal component. More basically, one
can see it as an extension of the method proposed by Fletcher [13] and Lemaréchal [25]
for finding a Wolfe point in unconstrained optimization. With the option ρik = 1
below, the algorithm is related to the search technique of Moré and Sorensen [28] for
realizing the strong Wolfe conditions for unconstrained problems.

3.1. Guiding paths. Before giving a precise description of the search algorithm,
we would like to show by some observations why trying to realize conditions (3.1) and
(3.2) simultaneously can succeed. On the way, we exhibit conditions under which our
search technique should be numerically efficient.

First, let us introduce a path α 7→ pk(α) as a solution of the following differential
equation:

{
p′k(α) = Z−(pk(α))Zktk,
pk(0) = xk.

(3.4)

This trajectory belongs to the manifold Mk = Mxk
because multiplying the first

equation in (3.4) by A(pk(α)) gives (c ◦ pk)′(α) = 0, which means that c remains
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Zktk

Mk

tk

xk

pk(·)

f

Rn−m Rn R

0
ψk

Fig. 3.1. An interpretation of the longitudinal guiding path.

constant along the path. As quoted in [17], if this path is defined for sufficiently large
α and if f is bounded from below on Mk, there exists a step-size αk such that (here
ω1 < ω2 is necessary)

Θσk
(pk(αk)) ≤ Θσk

(xk) + ω1 αk g
>
kZktk,(3.5)

g(pk(αk))>Zktk ≥ ω2 g
>
kZktk.(3.6)

This can be seen by considering the standard Wolfe [43, 44] conditions (recalled in
the introduction) on the function

α 7→ (Θσk
◦ pk)(α) = (f ◦ pk)(α) + σk‖ck‖.

Indeed, using (2.3), the derivative of this map at αk is g(pk(αk))>Zktk, the left-hand
side of (3.6). Note that condition (3.5) has the form (3.1) with a linear function νk.

Locally, the search along pk also has the following geometrical interpretation,
illustrated in Figure 3.1. Suppose that there exists a parametrization ψk : U ⊂ Rn−m
→Mk ⊂ Rn of Mk around xk such that 0 ∈ U , ψk(0) = xk, and

ψ′k(u) = Z−(ψk(u)) ∀ u ∈ U.(3.7)

The existence of such parametrization depends on the choice of the tangent basis map
Z− (see [19]). Then, it is easy to see that

pk(α) = ψk(αZktk).

Indeed, denoting qk(α) = ψk(αZktk), we have q′k(α) = Z−(qk(α))Zktk, by (3.7),
and qk(0) = xk; hence, qk satisfies the differential equation (3.4), which implies that
qk = pk. As a result, (f ◦ψk)(αZktk) = (Θσk

◦pk)(α)−σk‖ck‖ and ∇(f ◦ψk)(αZktk) =
g(pk(α)), so that the search to realize (3.5)–(3.6) can now be seen as a standard Wolfe
search on the function f ◦ψk starting at 0 ∈ Rn−m along the reduced direction Zktk.
From this interpretation, we define the reduced (longitudinal) displacement from xk
to pk(αk) as the vector δk = αkZktk.

The path α 7→ pk(α) shows that there is at least one way of generalizing the
Wolfe conditions to equality constrained problems. We call this path the longitudinal
guiding path; we say longitudinal because its image

Pk = {pk(α) : α ≥ 0 and pk(α) exists}

lies inMk. This trajectory can be used as a guide for designing a search path having
points satisfying (3.5)–(3.6) but easier to compute than pk(·); see [17].
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Mx

NyRn

µx(y)
x

y

Fig. 3.2. The map µx.

In this paper, we follow the same strategy and introduce a smooth guiding path
having longitudinal and transversal components, i.e., neither c nor g is constant along
the path. Later, a discretization will be introduced. We proceed step by step and
begin by some definitions.

Definition 3.1. Let F be the function

F : Ω→ Rn : x 7→
(
c(x)

g(x)

)
.

Definition 3.2. Let us also introduce an open subset Ω0 of Ω such that: (i)
x∗ ∈ Ω0; (ii) F ′(x) is nonsingular when x ∈ Ω0; (iii) F (Ω0) has the form U0 × V0,
where U0 and V0 are open sets in Rm and Rn−m, respectively; (iv) F : Ω0 → U0 × V0

is a diffeomorphism.
Note that such open subset Ω0 always exists when B∗ = Z−(x∗)>L∗Z−(x∗) is

nonsingular, which we assume. Indeed, in this case, recalling that g′(x∗) = Z−>∗ L∗,
we see that F ′(x∗) is nonsingular, so conditions (i)–(iv) are satisfied for some (possibly
large) neighborhood Ω0 of x∗.

Definition 3.3. For a point x fixed in Ω0, we introduce the map

µx : Ω0 →Mx ∩ Ω0,

defined in the following way. For y ∈ Ω0, µx(y) ∈ Mx ∩ Ω0 is defined as the unique
point in Mx ∩ Ny ∩ Ω0 (Ny is the reduced gradient manifold containing y); see Fig-
ure 3.2.

To see that the set Mx ∩ Ny ∩ Ω0 is formed of just one point, note that x ∈ Ω0

and y ∈ Ω0 imply that (c(x), g(y)) ∈ U0 × V0 = F (Ω0). As F is a diffeomorphism
on Ω0, Mx ∩ Ny ∩ Ω0 = F−1((c(x), g(y))) ∩ Ω0 is a singleton. As we see, µx maps
a point y ∈ Ω0 to a point in Mx ∩ Ω0 by following the manifold of constant reduced
gradient Ny. The following result will be useful.

Proposition 3.4. Suppose that c and g are of class Cl (l ≥ 1) on Ω0 and let
x ∈ Ω0. Then, µx : Ω0 → Mx ∩ Ω0 is of class Cl and, as a function with values in
Rn, its Jacobian matrix at y ∈ Ω0 is given by

µ′x(y) = Z̃−(z)
(
g′(z)Z̃−(z)

)−1

g′(y),(3.8)

where z = µx(y) and Z̃−(z) is an arbitrary basis of the space tangent toMx at z (one

can take Z̃−(z) = Z−(z)).
Proof. To show that µx is of class Cl, we “read” this map with appropriate Cl-

compatible coordinate charts. Let us take (U,ϕ) = (Ω0, F ) as a chart of Ω0 at y and
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(V, ψ) = (Mx ∩ Ω0, g|Mx∩Ω0
) as a chart of Mx ∩ Ω0 at z = µx(y). These coordinate

charts are Cl because c and g are Cl. Then, µx is read with ϕ and ψ as

ψ ◦ µx ◦ ϕ−1,

which is the C∞ map Rn → Rn−m : (u1, . . . , un) 7→ (um+1, . . . , un). This shows that
µx is of class Cl.

Since c is of class Cl, the canonical injection j : Mx ∩ Ω0 → Rn is of class Cl,
and µx with values in Rn (more precisely, j ◦ µx) is also of class Cl. Then, we can
differentiate the identities

c(µx(y)) = c(x) and g(µx(y)) = g(y)

with respect to y. This gives, with z = µx(y),

A(z)µ′x(y) = 0 and g′(z)µ′x(y) = g′(y).

To solve this system in µ′x(y), we introduce an arbitrary basis Z̃−(z) of the null space

of A(z). From the first identity, we see that µ′x(y) = Z̃−(z)M for some (n −m) × n
matrix M . Then, by the nonsingularity of F ′(z) when z ∈ Ω0 (see Definition 3.2),

g′(z)Z̃−(z) is nonsingular and the second identity above leads to (3.8).
Let us now go back to our problem of designing a suitable path α 7→ p̃k(α), with

longitudinal and transversal components. Suppose we ensure that its image by µxk

lies in Pk; i.e.,

µxk
(p̃k(α)) ∈ Pk for α ≥ 0.

We recall that αk is some step-size such that (3.5)–(3.6) hold. Then, if p̃k(α) exists
for sufficiently large α, it is reasonable to expect to find some positive α̃k such that
g(p̃k(α̃k)) = g(pk(αk))—this assumes that the path p̃k does not blow up for a finite
longitudinal displacement. Using (3.6), we obtain

g(p̃k(α̃k))>Zktk ≥ ω2 g
>
kZktk.

This shows that condition (3.2) can be satisfied along a path not belonging to Mk.
For two reasons, this is not enough, however, to have a satisfactory search. First,

the two conditions (3.1) and (3.2) have to be satisfied simultaneously. Second, if we
want to minimize approximation errors by updating the matrix with γ̃k = g(p̃k(α̃k))−
gk = g(pk(αk)) − gk and δ̃k = α̃kZktk, we also need to have α̃k = αk so that the
changes in the reduced gradient along pk and p̃k will correspond to the same reduced
displacement δk = αkZktk.

This latter condition will be satisfied if we build a path α 7→ p̃k(α) such that

g(p̃k(α)) = g(pk(α))(3.9)

for all α for which p̃k(α) and pk(α) exist. In the next proposition, we show that
this can be achieved when p̃k(·) is defined as a solution of the following differential
equation:

{
p̃′k(α) = Z−(p̃k(α))Zktk −A−(p̃k(α))c(p̃k(α)),
p̃k(0) = xk,

(3.10)
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and the maps Z−(·) and A−(·) are chosen such that

{
g′A− = 0,
g′Z− is constant on the reduced gradient manifolds.

(3.11)

The first condition in (3.11) requires that the transversal displacements (in the range
space of A−) be in the space tangent to the reduced gradient manifold. The matrix
g′Z− appearing in (3.11) is the matrix from which information is collected by the pair
(γk, δk) in (1.10). At the solution, it is also the reduced Hessian of the Lagrangian.
The second condition of (3.11) requires that this matrix be constant along the reduced
gradient manifolds.

Proposition 3.5. Suppose that c and g are continuously differentiable on the set
Ω0 introduced in Definition 3.2, that xk ∈ Ω0, and that the maps Z− and A− are such
that (3.11) holds on Ω0. Consider the paths pk and p̃k defined by (3.4) and (3.10),
respectively. Then, (3.9) holds as long as both pk(α) and p̃k(α) exist in Ω0.

Proof. Let us define qk = µxk
◦ p̃k, a path in Mk. This path is well defined as

long as p̃k exists in Ω0. By the definition of µxk
, g(qk(α)) = g(p̃k(α)). Hence, we just

have to prove that qk = pk.
Note that since p̃k(α) and qk(α) belong to the same reduced gradient manifold,

the second condition in (3.11) gives

g′(p̃k(α))Z−(p̃k(α)) = g′(qk(α))Z−(qk(α)).(3.12)

Now, by Proposition 3.4, we see that qk is differentiable; by using Z̃− = Z− in (3.8),
we have

q′k(α) = µ′xk
(p̃k(α))p̃′k(α)

= Z−(qk(α))
(
g′(qk(α))Z−(qk(α))

)−1

g′(p̃k(α))Z−(p̃k(α))Zktk

= Z−(qk(α))Zktk,

where we also used (3.10), the first condition in (3.11), and (3.12). Therefore, qk
satisfies the same differential equation as pk, with the same initial condition xk at
α = 0 (see (3.4)). Hence, qk = pk and the proposition is proved.

We call the path defined by p̃k, the solution of (3.10), the bicomponent guiding
path. The actual PLS path introduced in section 3.2 will be a discretization of this
one. From Proposition 3.5 and the discussion that precedes it, one can say that the
PLS should be numerically efficient when Z− and A− are chosen such that (3.7) holds
for some parametrization ψk and (3.11) holds.

If (3.7) can always be realized by choosing suitable tangent bases (see [19]), it is
unrealistic to ask the user to realize (3.11), because the computation of g′ requires
the evaluation of second derivatives, which are not available in the quasi-Newton
framework. Also, we shall not assume that (3.11) holds and, therefore, (3.9) may
not hold either, even at the first order. Figure 3.3 represents a still rather favorable
situation without (3.9); it is favorable because the dashed curve in Mk and in the
reduced space is still rather close to the solid curve. On the other hand, we shall keep
the path defined by (3.10). As we shall see below (Proposition 3.6), no matter the
realization of (3.9), one can satisfy the reduced Wolfe conditions (3.1)–(3.2) along the
path p̃k for an appropriate function νk. Of course, an update of the matrix without
(3.9) may not be safe. We believe, however, that it could be the role of the update
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pk(·)
(µxk

◦ p̃k)(·)
Mk

p̃k(·)

g(·) = Cst

tk

xk

(ψ−1
k ◦ µxk

◦ p̃k)(·)Zktk

0
ψk

Rn−m Rn

Fig. 3.3. The bicomponent guiding path.

criterion to detect situations where (3.11) is not violated by much. Nevertheless, the
update criteria introduced by Nocedal and Overton [31] and Gilbert [16], as well as
the one used in the numerical experiments below, are based on a condition different
from (3.11).

Let us now show how to realize (3.1)–(3.2) along the path pk = p̃k without
condition (3.9). For this, we take for νk in (3.1) the function defined by

νk(α) = Θσk
(p̃k(α))−Θσk

(xk),(3.13)

with p̃k given by (3.10). Conditions (3.3) are satisfied for this choice, provided that
σk is sufficiently large. Then (3.1) is equivalent to requiring that

Θσk
(p̃k(α)) ≤ Θσk

(xk).(3.14)

At this point, function νk does not look very useful, since it no longer appears in
the descent condition (3.14). But this is only true in the present smooth case. In
the discretized version of the search algorithm, it is (3.1) with (3.13) that will be
discretized, not (3.14), so that terms coming from the discretization will force the
merit function to decrease.

Requiring (3.14) is not very demanding, but it gives the time for (3.2) to be
realized before violating (3.1); this is shown in Proposition 3.6 below. Note that the
result of this proposition can be obtained without the inequality ω1 < ω2 (ω1 is not
used in the statement of the proposition).

Proposition 3.6. Suppose that the path α 7→ p̃k(α) defined by (3.10) exists for
sufficiently large step-size α ≥ 0, that Θσk

is bounded from below along this path, that
σk ≥ ‖λ(p̃k(α))‖

D
whenever p̃k(α) exists, and that ω2 ∈ (0, 1). Then, the inequalities

Θσk
(p̃k(α)) ≤ Θσk

(xk),(3.15)

g(p̃k(α))>Zktk ≥ ω2 g
>
kZktk(3.16)

are satisfied for some α > 0.

Proof. We recall that if ξ1 and ξ2 are continuous functions on an interval [a, b]
having right derivatives on (a, b) with ξ′1(α; 1) ≤ ξ′2(α; 1) for all α ∈ (a, b), then
ξ1(b) − ξ1(a) ≤ ξ2(b) − ξ2(a) (see, for instance, Schwartz [37, Chapter III, section 5,
Remark 3]). Also, as in the proof of (2.3), denoting the norm ‖ · ‖ by η, we have
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from (3.10)

(η ◦ c ◦ p̃k)′(α; 1) = η′(c(p̃k(α)); (c ◦ p̃k)′(α))

= η′(c(p̃k(α));−c(p̃k(α)))

= −‖c(p̃k(α))‖.

Hence, using (2.3) and σk ≥ ‖λ(p̃k(α))‖
D

, we obtain

(Θσk
◦ p̃k)′(α; 1)

= g(p̃k(α))>Zktk + λ(p̃k(α))>c(p̃k(α))− σk‖c(p̃k(α))‖
≤ g(p̃k(α))>Zktk.(3.17)

Then, the result of the proposition is clear when gk = 0, because (3.16) readily
holds (tk = 0) and (3.17) implies that (Θσk

◦ p̃k)′(α; 1) ≤ 0 for small α ≥ 0 (those for
which p̃k(α) exists). Therefore, (3.15) is satisfied for small α ≥ 0.

Suppose now that gk 6= 0. Since g>kZktk < 0 and ω2 < 1, (3.16) is not verified for
small positive α, so there is a nonempty interval of the form (0, α] on which (3.16) is
false. Now, when (3.16) is not verified, one has from (3.17) that

(Θσk
◦ p̃k)′(α; 1) ≤ ω2 g

>
kZktk.

Therefore, we obtain

Θσk
(p̃k(α))−Θσk

(xk) ≤ ω2 α g
>
kZktk for α ∈ (0, α].

Hence, (3.15) is trivially satisfied on (0, α]. On the other hand, because of this last
inequality and the fact that α 7→ Θσk

(p̃k(α)) is bounded below, the interval (0, α]
cannot be arbitrarily large. Therefore, (3.16) must eventually be satisfied. At the
first step-size α > 0 for which (3.16) holds, (3.15) is still verified by continuity. The
proposition is proved.

We are now ready to describe the actual search path, which may be seen as an
explicit Euler approximation of the solution of (3.10) with well-chosen discretization
points. Similarly, the actual function νk is not given by (3.13) (with which global
convergence could not be obtained) but is a piecewise linear approximation of this
function with the same discretization points. A successful idea is to introduce a
discretization point αik only when the discretized form of (3.1) holds for α = αik.

3.2. The search algorithm. We assume that the current iterate xk is in Ω and
that it is not stationary: ‖gk‖+ ‖ck‖ 6= 0. Let constants ω1 and ω2 be given in (0, 1).

The search algorithm is iterative and generates, for i = 0, . . . , ik−1, intermediate
step-size candidates αik, points xik, descent directions dik of Θσk

at xik, piecewise linear
search paths pik, and piecewise linear forcing functions νik. These functions νik, playing
the role of νk in (3.1), may be taken as discontinuous. The following conditions will
hold for i = 1, . . . , ik − 1:

xik ∈ Ω,(3.18a)

Θσk
(xik) ≤ Θσk

(xk) + ω1 ν
i−1
k (αik),(3.18b)

g(xik)>Zktk < ω2 g
>
kZktk,(3.18c)

σk ≥ ‖λ(xik)‖
D

+ σ.(3.18d)
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Inequality (3.18b) means that descent is forced at each iteration, while (3.18c) means
that the curvature condition does not hold. Note that (3.18c) implies that xik is not
stationary.

At the beginning, the iteration index i is set to 0, α0
k = 0, and x0

k = xk. To
initialize the recurrence, we define ν−1

k (0) = 0. It is also assumed that Bk is positive
definite and that σk ≥ ‖λk‖D + σ. Then, (3.18a, b, d) clearly hold for i = 0. Stage i
(i ≥ 0) of the search comprises the following steps.

Stage i of the PLS algorithm.

1. Choose a tangent scaling factor τ ik > 0 and compute the direction dik defined by

dik = τ ikZ
−(xik)Zktk −A−(xik)c(xik).(3.19)

Update the search path pik:

pik(α) =

{
pi−1
k (α) for 0 ≤ α < αik
xik + (α− αik)dik for α ≥ αik.

Update the function νik (see below).
2. Determine a step-size αi+1

k > αik from xik along dik such that

xi+1
k = xik + (αi+1

k − αik)dik(3.20)

is in Ω and the descent condition

Θσk
(pik(α)) ≤ Θσk

(xk) + ω1 ν
i
k(α)(3.21)

holds for α = αi+1
k .

3. If i = 0 and some (unspecified) update criterion does not hold, set ik = 1, αk = α1
k,

xk+1 = x1
k, pk = p0

k, νk = ν0
k and quit the PLS algorithm.

4. Linearize the constraints at xi+1
k and test the curvature condition

g(xi+1
k )>Zktk ≥ ω2 g

>
kZktk.(3.22)

If the latter holds, set ik = i + 1, αk = αi+1
k , xk+1 = xi+1

k , pk = pik, νk = νik, and
quit the PLS algorithm.

5. If the penalty parameter σk is not sufficiently large to have

σk ≥ ‖λ(xi+1
k )‖

D
+ σ,(3.23)

set ik = i + 1, αk = αi+1
k , xk+1 = xi+1

k , pk = pik, νk = νik, and quit the PLS
algorithm.

Let us give more details on the steps of the algorithm.
Step 1. The factor τ ik > 0 scales the tangential component of the direction dik. One

reason for introducing this factor is that it may be convenient to use different step-sizes
for the transversal and longitudinal part of the displacement. Indeed, second order
information is used transversally, while a quasi-Newton model is used longitudinally.
Another reason for using different transversal and longitudinal step-sizes will come
from the discussion in section 3.6.

When i = 0 (initially) and τ0
k = 1, d0

k has the form of the reduced SQP direction
dk and is tangent to p̃k at 0. For i ≥ 1, the direction comes from the discretization of
(3.10): its longitudinal component τ ikZ

−(xik)Zktk is tangent to Mxi
k

at xik, and the
unscaled reduced direction Zktk is kept unchanged from one stage to the other.
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The update formula of νi−1
k includes two natural possibilities. They correspond

to the setting of the parameter ρik to 0 or 1 below. So, let ρik be any number in [0, 1]
and let us introduce the notion of total decrease of Θσk

at xik as the positive quantity

T ik = Θσk
(xk)−Θσk

(xik).(3.24)

Then, νik is defined by

νik(α) =





νi−1
k (α) for 0 ≤ α < αik,

(1− ρik)νi−1
k (αik)

+ρik(−T ik/ω1) + (α− αik)Θ′σk
(xik; dik) for α ≥ αik.

(3.25)

When ρik = 0, νik is continuous and the search can be viewed as a discretization of
the smooth search described in section 3.1. This corresponds to a loose search. When
ρik = 1, the search is closer to the “skipping rule” strategy discussed in section 3.3
below. It is also more demanding, since νik is more negative (use (3.18b)).

Step 2. Observe that dik is a descent direction of Θσk
at xik, since by (2.3)

Θ′σk
(xik; dik) = τ ikg(xik)>Zktk + λ(xik)>c(xik)− σk‖c(xik)‖,(3.26)

which is negative when (3.18c) and (3.18d) hold. Then, it is standard to verify that,
with conditions (3.18a), (3.18b), and ω1 ∈ (0, 1), one can find a step-size α = αi+1

k >
αik such that xi+1

k is in Ω and the descent condition (3.21) holds.
Step 3. If i = 0, it is the right place to ask whether the pursuit of the search is

useful. Indeed, unlike in unconstrained optimization, the curvature condition (3.2)
is not strong enough to force global convergence (see section 4). It is only useful
for guaranteeing the positive definiteness of the generated matrices. On the other
hand, the role of the update criterion is to judge whether an update is appropriate by
appreciating the quality of the information contained in the pair (γk, δk). We believe
that this appreciation has to be done when i = 0 so that a PLS is not launched without
necessity. We shall not be more specific on this update criterion, because the results
below do not need it. For these results, it can be any rule such as “never update”
or “always update.” A better rule is used, however, in the numerical experiments
of section 5. For more information on this subject, see Nocedal and Overton [31] or
Gilbert [16].

Step 4. By linearization of the constraints at a point x, we mean the computation
of the Jacobian matrix A(x), the basis Z−(x), and the right inverse A−(x). At step 4,
the curvature condition (3.22) is tested. If it holds, the search terminates. From
step 2 and (3.22), the point xk+1 is in Ω and satisfies the reduced Wolfe conditions
(3.1)–(3.2) with α = αk.

Step 5. If (3.22) is not satisfied, one has to check whether the penalty parameter
is sufficiently large to continue the search from xi+1

k , i.e., whether (3.23) holds. If
such is the case, all the conditions in (3.18) hold and a new iteration can start after
having increased i by one. Otherwise, the search is interrupted (another possibility
would have been to increase σk and to pursue the search).

3.3. Additional comments. To summarize, there are three facts that can in-
terrupt the search algorithm: either (i) the update criterion does not hold in step 3
after α1

k is determined in step 2, or (ii) the conditions (3.1)–(3.2) are satisfied in step
4, or (iii) the penalty parameter σk is not large enough to guarantee that the next
search direction is a descent direction of Θσk

(step 5). We shall show in section 4
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that under natural assumptions the algorithm does not cycle and terminates on one
of these situations.

As announced above, when τ ik = 1 for all i, the path pk is a piecewise linear ap-
proximation of the bicomponent guiding path p̃k, which was obtained by an explicit
Euler discretization of the differential equation (3.10) at the step-sizes αik. Further-
more, if ρik = 0 for all i, νk can also be viewed as a discretization of the function νk
defined by (3.13) with pk instead of p̃k: ν′k(αik; 1) = Θ′σk

(xik; dik) = (Θσk
◦ pk)′(αik; 1).

Remark that the search direction d1
k is close to

ď1
k = −Z−(x1

k)B−1
k g(x1

k)−A−(x1
k)c(x1

k),

which is the direction that would be taken in an algorithm skipping the update of
Bk at x1

k when γ>k δk is nonpositive or when the curvature condition does not hold
(skipping rule). When ρ1

k = 1 in the definition of ν1
k above, inequality (3.21) becomes

Θσk
(x1
k+(α−α1

k)d1
k) ≤ Θσk

(x1
k) + ω1 (α−α1

k) Θ′σk
(x1
k; d1

k),

which is also the condition to realize in an algorithm with skipping rule.
The only difference between ď1

k and d1
k is that in the latter the reduced gradient is

also kept unchanged. The main motivation for this choice is explained in section 3.1:
if the matrices A−(xik) and Z−(xik) are good in the sense of (3.11), the search consists
of minimizing (f ◦ ψk) along the reduced direction Zktk (the meaning of ψk is given
in Figure 3.1). With this in mind, it makes sense to update the matrix Bk using the
vectors

γk = gk+1 − gk and δk =

(
ik−1∑

i=0

τ ik(αi+1
k − αik)

)
Zktk.(3.27)

Note that when τ ik = 1 for all i, δk = αkZktk, simply.
When ρik = 1 for all i, the PLS algorithm applied to unconstrained problems

(c(xik) = 0 for all i) is related to the method of Moré and Sorensen [28] (see also Moré
and Thuente [29, Section 2]). The differences are that Moré and Sorensen look for a
point satisfying the strong Wolfe conditions (for this reason our method terminates
more quickly), and the slope of the pieces of the forcing function νik is kept unchanged
in their method (while we adapt it to the current point xik).

For i ≥ 0, we introduce the notion of forced decreased of Θσk
at xi+1

k as the
positive quantity

F i+1
k = −ω1

i∑

l=0

(αl+1
k − αlk)Θ′σk

(xlk; dlk).(3.28)

Using (3.18b) and the definition (3.25) of νik, we get, for i ≥ 1,

F ik ≤ −ω1 ν
i−1
k (αik) ≤ T ik,(3.29)

where T ik is the total decrease of Θσk
defined by (3.24).

We conclude this section by some comments on the cost of the PLS algorithm.
The main requirement of this method is the linearization of the constraints (the
computation of A, A−, and Z−) at the intermediate points xik (1 ≤ i ≤ ik − 1). This
apparently damning cost must be reappreciated in view of the following two facts.
First, we have shown in [18] that it is possible to combine the PLS technique with
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a suitable update criterion such that, asymptotically, each time the update criterion
holds, the PLS algorithm succeeds without intermediate point (ik = 1) and with
unit step-size (αk = 1). Therefore, one can expect that in practice very few inner
iterations will be necessary in the PLS algorithm. This is confirmed by the limited
numerical experiments presented in section 5. Secondly, the work realized during the
inner iterations of the PLS algorithm helps to find a better approximation of the
solution: the search along the inner direction dik makes the linearization at xik useful.
In fact, since dik is close to a standard reduced SQP direction, one could consider all
the intermediate iterates xik as “true” iterates. It is a matter of presentation to group
in a single iteration all the stages between two matrix updates.

3.4. Successive backtrackings. When a step-size candidate αik is not accepted
because inequality (3.22) does not hold, one has to determine the next tangent scaling
factor τ ik > 0 and the next step-size candidate αi+1

k such that

αi+1
k > αik, xi+1

k = pik(αi+1
k ) ∈ Ω, and (3.21) holds with α = αi+1

k .

This cannot be done in an uncontrolled manner. In particular, τ ik cannot be arbitrarily
small or large, and αi+1

k cannot be chosen too close to αik. In this section, we describe
a method for determining αi+1

k that will ensure the finite termination of the search
algorithm.

The determination can be divided into two stages. In the forward or extrapolation
stage, a step-size αi,1k > αik is taken along dik. The backward or interpolation stage

is iterative: as long as (for the current trial with a step-size αi,jk (j ≥ 1)) pik(αi,jk ) is

not in Ω or (3.21) does not hold for α = αi,jk , a new trial is made with a step-size

αi,j+1
k ∈ (αik, α

i,j
k ). By requiring that αi,jk converges to αik when j →∞, pik(αi,jk ) will

be in Ω and (3.21) with α = αi,jk will hold for some finite index j. We denote by ji
the first index j for which this occurs and set

αi+1
k = αi,jik .

We also suppose that {αi,jk }j≥1 does not tend too fast to αik: the closer αi+1
k is to αik,

the larger ji must be. The rigorous form of our assumptions follows.
Assumptions 3.7. We suppose that the determination of the tangent scaling factor

τ ik > 0 and the step-sizes αi,jk is such that
(i) the sequences {τ ik}i≥0 and {1/τ ik}i≥0 are bounded,

(ii) the sequence {αi,jk }j≥1 converges to αik,
(iii) if the increasing sequence {αik}i≥1 converges to some step-size αk, then

(a) for any index j′ ≥ 1, there is an index i′ ≥ 1 such that ji ≥ j′ for all i ≥ i′,
(b) for any j ≥ 1, the sequence {αi,jk }i≥1 converges to a step-size α∞,jk 6= αk,

(c) the sequence {α∞,jk }j≥1 converges to αk.
Assumption 3.7 (iii-a) means that when {αik}i≥1 converges, the number (ji − 1) of
interpolations must go to infinity when i→∞.

Assumption 3.7 (i) is not difficult to satisfy. On the other hand, an easy way
of satisfying Assumptions 3.7 (ii) and (iii), while using its favorite extrapolation and
interpolation formulas, is to use some safeguard rules. Here is an example of rules
that guarantee Assumptions 3.7 (ii) and (iii).

Example of safeguard rules for αi,jk .
1. Choose εE > 0 and εI ∈ (0, 1/2).
2. Extrapolation safeguard: for i ≥ 0, choose αi,1k ≥ αik + εE .
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3. Interpolation safeguard: for i ≥ 0 and j ≥ 2, choose

αi,jk ∈
[
(1− εI)αik + εIα

i,j−1
k , εIα

i
k + (1− εI)αi,j−1

k

]
.

Let us show that Assumptions 3.7 (ii), (iii-a), and (iii-c) are satisfied if these rules
are used. Observe that, for i ≥ 1 and j ≥ 1,

αik < αi,jk ≤ αik + (1− εI)j−1(αi,1k − αik).(3.30)

Therefore, Assumption 3.7 (ii) is verified. On the other hand, suppose that {αik}i≥1

converges, and choose an index j′ ≥ 1. Then, one can find an index i′ ≥ 1 such that

αi+1
k − αik ≤ εE εj

′−1
I ∀i ≥ i′.

As

αi+1
k = αi,jik ≥ (1− εji−1

I )αik + εji−1
I αi,1k ≥ αik + εE ε

ji−1
I ,

we have from the previous inequality that

εE ε
ji−1
I ≤ εE εj

′−1
I ∀i ≥ i′.

Now, because εI < 1, we obtain ji ≥ j′ for all i ≥ i′, which is Assumption 3.7 (iii-a).
Finally, Assumption 3.7 (iii-c) is also guaranteed by the above rules as this can be
seen by taking the limit on i and then on j in (3.30).

We have not discussed the case of Assumption 3.7 (iii-b), but it also can easily
be satisfied by taking for i ≥ 0, for example,

αi,jk =

{
αik + εE if j = 1,
1
2 (αik + αi,j−1

k ) if j ≥ 2,

which is compatible with the safeguard rules given above. More appropriate interpo-
lation rules would use the known values of Θσk

and its directional derivatives.

3.5. Finite termination of the search algorithm. The next proposition gives
conditions that ensure the finite termination of the PLS algorithm described in sec-
tions 3.2 and 3.4 at a point xk+1 satisfying

Θσk
(xk+1) ≤ Θσk

(xk) + ω1 νk(αk),(3.31)

g>k+1Zktk ≥ ω2 g
>
kZktk,(3.32)

where the function νk is defined recursively in step 1 of the algorithm (see (3.25)).
Recall that the search path pk is also defined recursively in step 1 of the algorithm.

Proposition 3.8. Suppose that f and c are differentiable on Ω, c is a submersion
on Ω, and the decomposition of Rn described in section 1 is made with maps Z− and
A− which are bounded on Ω. Let xk be a point in Ω and Bk be a symmetric positive
definite matrix of order n−m. Suppose that the penalty factor σk in (1.12) satisfies
(2.2). Then, if the PLS algorithm described in sections 3.2 and 3.4, with Assumptions
3.7, ω1 ∈ (0, 1), and ω2 > 0, is started from xk, one of the following situations occurs:

(i) the algorithm terminates after a finite number of stages with a step-size αk > 0,
a point xk+1 ∈ Ω, and a function νk satisfying conditions (3.31) and (3.32);
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(ii) the algorithm terminates prematurely with a step-size αk > 0, a point xk+1 ∈
Ω, and a function νk satisfying (3.31) only, because either the update criterion does
not hold at x1

k or (3.23) fails at xi+1
k = xk+1;

(iii) the algorithm builds a sequence of points {xik}i≥1 in Ω and either Θσk
(xik)

tends to −∞ or {xik}i≥1 tends to a point on the boundary of Ω.
Proof. We have already observed in section 3.3 that if the algorithm terminates,

then either situation (i) or (ii) occurs.
Suppose now that the algorithm cycles: a sequence {xik}i≥1 is built in Ω. This

can only occur when gk 6= 0, since (3.32) is always satisfied when tk = 0 and (3.31)
is satisfied at x1

k. We have to show that one of the events given in (iii) occurs. We
proceed by contradiction, supposing that {Θσk

(xik)}i≥1 is bounded from below and
that {xik}i≥1 does not converge to a point on the boundary of Ω. We recall that
conditions (3.18) are satisfied for all i ≥ 1.

Step 1. Let us prove that the sequences {F ik}i≥1, {νi−1
k (αik)}i≥1, and {αik}i≥1

converge, say to F k, Nk, and αk, respectively.
The first sequence is increasing and the second is decreasing; hence, from (3.29),

they will converge if we prove that {T ik} is bounded. But this is clear since T ik =
Θσk

(xk)−Θσk
(xik) ≥ 0 and {Θσk

(xik)} is supposed to be bounded below.
On the other hand, using the definition (3.28) of F i+1

k , (3.26), (2.2), (3.18d),
g>kZktk ≤ 0, and (3.18c), we obtain

F i+1
k ≥ −ω1

i∑

l=0

τ lk (αl+1
k − αlk) g(xlk)>Zktk

≥ −ω1 ω2

(
i∑

l=1

τ lk (αl+1
k − αlk)

)
g>kZktk.

Then, the boundedness of {F ik}i≥1, g>kZktk < 0, and ω1ω2 > 0 imply that

∑

i≥0

τ ik (αi+1
k − αik) < +∞.(3.33)

As {τ ik}i≥0 is bounded away from 0 by Assumption 3.7 (i), {αik}i≥1 converges.
Step 2. Let us show that the sequence {xik}i≥1 converges to a point xk ∈ Ω.
By definition of F i+1

k , g>kZktk ≤ 0, (3.18c), (2.2), and (3.18d), we obtain

F i+1
k ≥ ω1 σ

i∑

l=0

(αl+1
k − αlk) ‖c(xlk)‖.

Since {F ik}i≥1 is bounded, we have the convergence of the series

∑

i≥0

(αi+1
k − αik) ‖c(xik)‖ < +∞.(3.34)

Now, by definition of xik,

xik = xk +

i−1∑

l=0

(αl+1
k − αlk)

(
τ lkZ

−(xlk)Zktk −A−(xlk)c(xlk)
)
.

Using the boundedness of Z−(·) and A−(·) on Ω, (3.33), and (3.34), we see that the
series in the right-hand side is absolutely convergent when i → ∞. Therefore, the
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series is convergent and xik converges to a limit point xk. By our assumptions, xk
cannot be a point on the boundary of Ω; hence, xk ∈ Ω.

This implies the following convergence when i→∞ (see (3.24)):

T ik → T k = Θσk
(xk)−Θσk

(xk).

Furthermore, since {τ ik} and {1/τ ik} are bounded by Assumption 3.7 (i), there is some
τk > 0 and a subsequence I ∈ N such that for i → ∞, i ∈ I, we have τ ik → τk and
(using (3.19), (3.26), and (2.3))

dik → dk = τkZ
−(xk)Zktk −A−(xk)c(xk),

Θ′σk
(xik; dik)→ τk g(xk)>Zktk + λ(xk)>c(xk)− σk‖c(xk)‖ = Θ′σk

(xk; dk).

Step 3. Let us conclude with the expected contradiction.
Define

xi,jk = xik + (αi,jk − αik) dik.

By Assumption 3.7 (iii-b), the sequence {αi,jk }i≥1 converges to a step-size α∞,jk 6= αk.
Therefore, for any j ≥ 1,

xi,jk → x∞,jk = xk + (α∞,jk − αk) dk when i→∞ with i ∈ I.
Now, for fixed j ≥ 1, Assumption 3.7 (iii-a) says that ji > j for sufficiently large i.

This means that, for large i, xi,jk is not accepted in step 2 of the PLS algorithm. Hence,

either xi,jk 6∈ Ω or (3.21) is not verified with α = αi,jk . This can be written

xi,jk ∈ Ω =⇒ Θσk
(xi,jk ) > Θσk

(xk) + ω1 ν
i
k(αi,jk )

= Θσk
(xk) + ω1 ν

i
k(αi+1

k ) + ω1 (αi,jk − αi+1
k ) Θ′σk

(xik; dik).

Taking the limit on i ∈ I in this relation and using ω1Nk ≥ −T k from (3.29) and the
results of step 2, we obtain

x∞,jk ∈ Ω =⇒ Θσk
(x∞,jk ) ≥ Θσk

(xk)− T k + ω1 (α∞,jk − αk) Θ′σk
(xk; dk)

= Θσk
(xk) + ω1 (α∞,jk − αk) Θ′σk

(xk; dk).

Hence,

x∞,jk ∈ Ω =⇒ Θσk
(x∞,jk )−Θσk

(xk)

α∞,jk − αk
≥ ω1 Θ′σk

(xk; dk).

Because xk ∈ Ω, taking the limit in this implication when j tends to infinity gives
(with Assumption 3.7 (iii-c)) Θ′σk

(xk; dk) ≥ ω1 Θ′σk
(xk; dk). Because ω1 < 1, we get

Θ′σk
(xk; dk) ≥ 0.

On the other hand,

Θ′σk
(xk; dk) = τk g(xk)>Zktk + λ(xk)>c(xk)− σk‖c(xk)‖

≤ τk ω2 g
>
kZktk

< 0,

because ‖λ(xk)‖
D
≤ σk from the limit in (3.18d), g(xk)>Zktk ≤ ω2 g

>
kZktk from the

limit in (3.18c), τkω2 > 0, and gk 6= 0. This inequality contradicts the nonnegativity
of Θ′σk

(xk; dk) obtained above and concludes the proof.
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g(·) = 0

g(·) = gk
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(x1
k)µxk

(x2
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Fig. 3.4. A difficult case for the PLS.

3.6. Resetting the PLS. In some cases, the PLS described in sections 3.2 and
3.4 can be trapped in a situation where its behavior is poor. Such a situation may
happen when conditions (3.11) do not hold, in particular, when the path µxk

◦ pk is
not a descent path for f . Then, the search algorithm may necessitate a large number
of inner iterations to satisfy the reduced Wolfe conditions, and the vectors γk and δk
may be erroneous. We show how to improve the PLS algorithm in this situation.

Here is an example of such a situation, in which n = 2 and m = 1. Take

f(x) =
1

4

(
x(1) + x(2)

)2
and c(x) = ex(2) − 1,

where x(i) denotes the ith component of x. The unique solution of this problem is
clearly x∗ = 0. With the following decomposition of R2,

Z−(x) = e1 and A−(x) = e−x(2)e2,

where (e1, e2) is the canonical basis of R2, the reduced gradient is given by g(x) =
(x(1) + x(2))/2, and the transversal component of the steps are orthogonal to the
constraint manifold. The manifolds c(·) = 0 and g(·) = 0 are the lines x(2) = 0 and
x(1) + x(2) = 0 represented in Figure 3.4.

Now, suppose that the current iterate xk has coordinates (−1− ε, 1), with ε > 0,
and that Bk = I. Consider an implementation of the PLS in which ω1 = 10−4,
ω2 = 0.9, ρik = 1, τ ik = 1, and the first step-size candidate is αi,1k = αik + 1. If

the penalty parameter σk = 10, the step-size αi,1k is always accepted by the Armijo
condition (3.21). When ε = 0.5 the search algorithm requires 5 inner iterations. The
intermediate points {xik}5i=1 are represented in Figure 3.4. By decreasing ε > 0, one
can obtain as many inner iterations as desired. For example, 21 inner iterations are
necessary for ε = 0.1, while 2001 are necessary for ε = 10−3! The reason is that when ε
decreases, xk is closer to the manifold g(·) = 0 and the reduced tangent direction Zktk
is smaller. Because the iterates go rapidly close to the constraint manifold where the
reduced gradient is much more negative than at xk and because the reduced gradients
evaluated at the intermediate points are not used for defining the search directions,
the algorithm needs more and more inner iterations to cross the manifold g(·) = gk
(represented by a dashed line in Figure 3.4), beyond which it has to go to satisfy the
curvature condition (3.22). If the search path is mapped by µxk

(see Definition 3.3)
on the line c(·) = ck, it is clear from Figure 3.4 that the mapped path starts in the
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wrong left direction. The correct direction is followed from µxk
(x2
k) only. The basic

reason for this behavior is, once again, that reduced methods have no information on
the space tangent to the manifold of constant reduced gradient.

In reduced quasi-Newton methods, the update criterion is often a rule that sug-
gests not updating the matrix when the tangential component of the direction is
small with respect to its transversal component (see Nocedal and Overton [31] or
Gilbert [16]). In the example above, this would result in skipping the update when
ε is small. By step 3 of the PLS algorithm, the search would be interrupted at x1

k,
avoiding the large number of inner iterations that we have observed. Unfortunately,
the implementation of update criteria is often less efficient than expected. Therefore,
we propose a modification of the PLS algorithm, such that the situation of the exam-
ple above is faced with more success. In the modified version, the curvature condition
(3.32) is replaced by

g>k+1Zktk ≥ ω2 min
0≤i<ik

g(xik)>Zktk.(3.35)

The PLS algorithm with this new condition is said to be “with resetting” and it is
denoted by “PLS-rst” below. Since inequality (3.35) is less restrictive than (3.32),
it is clear that PLS-rst terminates more quickly than PLS. In particular, it still has
the finite termination property of Proposition 3.8. Questions concerning the global
convergence of the algorithm with PLS and PLS-rst are discussed in the next section.
On the example above, this new version of the algorithm terminates in 3, 5, and 204
inner iterations when ε = 0.5, 0.1, and 10−3, respectively.

When the PLS is reset at an intermediate point xlkk , where lk gives the current
arg-minimum in (3.35), the reduced direction Zktk may be very small (this is the case
in the example above), so that guessing the correct tangent step-size (or the tangent
scaling factor τ ik) by using an extrapolation formula may be useful. For example, one
can try to use g(xi−1

k )>Zktk and g(xik)>Zktk to evaluate τ i+1
k . The rationale behind

this is that, when (3.7) and (3.11) hold, g(xi−1
k )>Zktk and g(xik)>Zktk are derivatives

of the function α 7→ (f ◦ ψk)(αZktk). Hence, when g(xi−1
k )>Zktk < g(xik)>Zktk, one

can use quadratic interpolation to determine τ i+1
k . Using this, the runs with ε = 0.5,

0.1, and 10−3 terminate now in 3, 4, and 5 inner iterations, respectively.
With PLS-rst, the vectors γk and δk used to update Bk have to be modified. If

lk denotes the largest index for which the minimum in (3.35) is reached, then it is
appropriate to take

γk = gk+1 − g(xlkk ) and δk =

(
ik−1∑

i=lk

τ ik(αi+1
k − αik)

)
Zktk.

Note again that when τ ik = 1 for all i, δk = (αk − αlkk )Zktk, simply. With this choice,
γ>k δk > 0. Note also that these vectors usually put better information into the matrix

Bk+1, because the new value of δk is generally closer to the reduced step from xlkk
to xk+1 than the previous value of δk is close to the reduced step from xk to xk+1.
This remark particularly applies to the example above. From Figure 3.4, we have
γPLS
k = g(x5

k)− gk ' g(x5
k)− g(x4

k) ' g(x3
k)− g(x2

k) = γPLS-rst
k . But δPLS

k = 5δPLS-rst
k

and it is clear that δPLS-rst
k corresponds better to γPLS

k ' γPLS-rst
k than δPLS

k .

4. Convergence result. In this section, we show that the PLS method of sec-
tion 3 is able to force convergence of reduced secant algorithms from remote starting
points. For this, we shall suppose that the calculation of the reduced matrices keeps
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the sequences {Bk} and {B−1
k } bounded. This is a rather strong assumption, but the

present state of the convergence theory for constrained problems is not sufficiently
developed to have significantly better results. For instance, Byrd and Nocedal [4]
analyze the global convergence of reduced quasi-Newton algorithms under conditions
that are not known to be guaranteed by the present step-size determination method.

The algorithm we consider is therefore not fully determined, since we shall not be
very specific on the way the matrices are updated (in particular, the update criterion
will remain unspecified). A possibility is to use the BFGS update formula (1.8),
which is always well defined when the PLS succeeds. There is still another facet of
the algorithm that must be clarified—this is how the penalty parameter σk is updated.
We suppose that a rule is chosen such that the following three properties are satisfied
(σ > 0 is a constant):





σk ≥ ‖λk‖D + σ ∀k ≥ 1,
∃ an index k1, ∀k ≥ k1, σk−1 ≥ ‖λk‖D + σ =⇒ σk = σk−1,
{σk} is bounded =⇒ σk is updated finitely often.

(4.1)

Many rules can satisfy these conditions. For example, Mayne and Polak [27] suggest
taking (σ̃ > 1):

if σk−1 ≥ ‖λk‖D + σ, then σk = σk−1, else σk = max(σ̃σk−1, ‖λk‖D + σ).(4.2)

We can now outline the algorithm, whose convergence is analyzed in Proposi-
tion 4.2. At the beginning, the iteration index k is set to 1 and the constants ω1 and
ω2 used in the PLS algorithm are chosen in (0, 1). When the kth iteration starts,
an iterate xk ∈ Ω is known, as well as a positive definite matrix Bk. Then the PLS
technique is used to determine the next iterate xk+1 such that xk+1 ∈ Ω and (3.31)
(and possibly (3.32)) hold. Then, the matrix Bk is updated, provided that the PLS
algorithm has not been interrupted prematurely by an update criterion or the failure
of (3.23). Finally, the penalty parameter is updated according to the rules (4.1).

In unconstrained optimization, the curvature condition corresponding to (3.32)
prevents the step-size from being too small, which is important for the global con-
vergence of the algorithm. In constrained problems, this is not necessarily the case,
because condition (3.32) ignores the transversal component of the search path. For
example, when the objective function f is constant the reduced gradient vanishes and
(3.32) is satisfied for any step-sizes, independently of the form of the search path.
Therefore, something has to be done such that the first step-size candidate α1

k (≤ αk)
will not be too small. For the same reason, the first tangent scaling factor τ0

k must
be chosen bounded away from zero. We gather below additional conditions that the
tuning of the PLS algorithm must take into account in order to get global convergence.

Assumptions 4.1. We suppose that the determination of the tangent scaling fac-
tors τ0

k > 0 and the step-sizes α1
k is such that

(i) the sequences {τ0
k}k≥1 and {1/τ0

k}k≥1 are bounded,

(ii) the sequence {α0,1
k }k≥1 is bounded away from zero,

(iii) there exists a constant β ∈ (0, 1) such that for all k ≥ 1 and j ≥ 1, α0,j+1
k ≥

βα0,j
k .
Note that these assumptions are compatible with Assumptions 3.7 and the safe-

guard rules given afterwards. Assumptions 4.1 (ii) and (iii) can be satisfied, for
instance, by using Armijo’s backtracking to determine the first step-size candidate α1

k

from a constant value for α0,1
k . In quasi-Newton methods, τ0

k = 1 and α0,1
k = 1 are

recommended.
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In Proposition 4.2 below, we suppose that a sequence {xk} is generated in Ω.
This implicitly supposes that the PLS algorithm never cycles: situation (i) or (ii)
of Proposition 3.8 occurs at each iteration. We denote by dist(x,Ωc) the Euclidean
distance between a point x and the complementary set of Ω.

Proposition 4.2. Suppose that f and c are differentiable on Ω with Lipschitz
continuous derivatives, that c is a submersion on Ω, that the map A− is continuous
and bounded on Ω, and that Z− is bounded on Ω. Suppose also that the algorithm
for solving problem (1.4) outlined above generates a sequence {xk} in Ω by the PLS
method with Assumptions 3.7 and 4.1 and that the constants ω1 and ω2 are taken in
(0, 1). Suppose finally that the symmetric positive definite matrices Bk used in the
algorithm are such that {Bk} and {B−1

k } are bounded. Then, one of the following
situations occurs:
(i) {σk}k≥1 is unbounded and {xk : σk 6= σk−1} has no accumulation point in Ω,
(ii) σk is modified finitely often and one of the following situations occurs:

(a) gk → 0 and ck → 0,
(b) Θσk

(xk)→ −∞,
(c) dist(xk,Ω

c)→ 0 for some subsequence of indices k →∞.
Proof. First, consider situation (i): {σk} is unbounded. Let K be the subsequence

of indices {k : σk 6= σk−1, k ≥ k1} (k1 given by (4.1)). From (4.1),

σk−1 < ‖λk‖D + σ for k ∈ K.
As {σk}k≥k1 is increasing, if it is unbounded, the inequality above shows that the
sequence {‖λk‖D}k∈K tends to ∞. Then, by continuity of x 7→ λ(x) on Ω, {xk : σk 6=
σk−1} has no accumulation point in Ω.

Suppose now that {σk} is bounded. By (4.1), σk is modified finitely often: σk = σ
for k ≥ k2, say. Suppose also that Θσk

(xk) is bounded from below and that {xk}
remains away from Ωc. We have to prove that situation (ii-a) of the proposition
occurs. We denote by C an “absorbing” positive constant independent of k.

From the definition (3.28) of F ikk , (3.26), the fact that (3.18c) holds for i = 1,
. . . , ik − 1, g>kZktk ≤ 0, (4.1), (3.18d), and the boundedness of {Bk}, we have the
following for k ≥ k2:

F ikk = −ω1

ik−1∑

i=0

(αi+1
k − αik)Θ′σ(xik; dik)

≥ ω1

ik−1∑

i=0

(αi+1
k − αik)

(
ω2 τ

i
k g
>
kB
−1
k gk + σ‖c(xik)‖

)

≥ C
(
ik−1∑

i=0

τ ik (αi+1
k − αik) ‖gk‖2 +

ik−1∑

i=0

(αi+1
k − αik) ‖c(xik)‖

)
.(4.3)

As the sequence {Θσ(xk)}k≥k2 decreases and is bounded below, it converges. Then,
from (3.31) and ω1 νk(αk) ≤ −F ikk (use (3.29) with i = ik), we see that F ikk → 0.
Therefore, the terms in the right-hand side of (4.3) converge to zero when k →∞:





ik−1∑

i=0

τ ik (αi+1
k − αik) ‖gk‖2 → 0,

ik−1∑

i=0

(αi+1
k − αik) ‖c(xik)‖ → 0.

(4.4)



804 JEAN CHARLES GILBERT

The result (ii-a) will be proved if we show that the step-size candidates α1
k are

bounded away from zero. Indeed, from (4.4) and Assumption 4.1 (i), this implies
that gk → 0 and ck → 0. We proceed by contradiction, supposing that for some
subsequence K of indices k ≥ k2 we have

α1
k → 0, when k →∞ in K.(4.5)

By Assumptions 4.1 (ii) and (iii), we can suppose that, for k ∈ K, α1
k < α0,1

k (therefore

α1
k = α0,j1

k for some j1 ≥ 2) and α0,j1−1
k ≤ 1.

Observe first that we can also suppose that, for k ∈ K, α0,j1−1
k is not accepted by

the search algorithm because the descent condition (3.21) does not hold for i = 0 and
α = α0,j1−1

k . Indeed, otherwise we would have a subsequence K′ ⊂ K such that

x0,j1−1
k 6∈ Ω for k ∈ K′.(4.6)

Recall that rk = −A−k ck. We have x0,j1−1
k −xk = α0,j1−1

k (τ0
k tk + rk) and, by Assump-

tion 4.1 (iii), α0,j1−1
k ≤ α1

k/β ≤ αk/β. Then, using the boundedness of {α1
k}k∈K (due

to (4.5)); Assumption 4.1 (i); the boundedness of {Z−k }, {B−1
k }, and {A−k }; and (4.4);

we have for k →∞ in K

‖α0,j1−1
k τ0

k tk‖2 ≤ C α1
k τ

0
k ‖gk‖2 → 0,

‖α0,j1−1
k rk‖ ≤ C α1

k ‖ck‖ → 0.

Therefore, (x0,j1−1
k −xk)→ 0 for k →∞ in K, and (4.6) would imply that dist(xk,Ω

c)
tends to 0 for k →∞ in K′, in contradiction with our assumptions.

Therefore, we can suppose that (3.21) is not satisfied for i = 0, α = α0,j1−1
k , and

k ∈ K, i.e.,

Θσ(x0,j1−1
k ) > Θσ(xk) + ω1 α

0,j1−1
k

(
τ0
k g
>
kZktk + λ>kck − σ‖ck‖

)
.(4.7)

We obtain a contradiction with (4.5) by showing that this may not occur for too small
α0,j1−1
k . For this, we expand the left-hand side of (4.7) about xk.

First, using the Lipschitz continuity of f ′ on Ω,

f(xk + α τ tk + α rk) ≤ fk + α τ g>kZktk + αλ>kck + Cα2
(
τ2 ‖tk‖2 + ‖rk‖2

)
.

Similarly, using the Lipschitz continuity of c′ on Ω, we get the following for α ≤ 1:

‖c(xk + α τ tk + α rk)‖ ≤ ‖ck − α ck‖+ Cα2
(
τ2 ‖tk‖2 + ‖rk‖2

)

= ‖ck‖ − α ‖ck‖+ Cα2
(
τ2 ‖tk‖2 + ‖rk‖2

)
.

Grouping these estimates, we obtain the following for α ≤ 1:

Θσ(xk + α τ tk + α rk) ≤ Θσ(xk) + α
(
τ g>kZktk + λ>kck − σ ‖ck‖

)

+ Cα2
(
τ2 ‖tk‖2 + ‖rk‖2

)
.

Using this inequality in (4.7) gives (recall that α0,j1−1
k ≤ 1 for k ∈ K)

(1− ω1)α0,j1−1
k

(
τ0
k g
>
kB
−1
k gk − λ>kck + σ‖ck‖

)

< C(α0,j1−1
k )2

(
(τ0
k )2‖gk‖2 + ‖ck‖2

)
for k ∈ K.
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With the boundedness of {Bk}, {τ0
k} and {1/τ0

k} and the inequalities ω1 < 1 and
σ ≥ ‖λk‖D + σ, we obtain

α0,j1−1
k ‖gk‖2 + α0,j1−1

k ‖ck‖ < C(α0,j1−1
k )2

(
‖gk‖2 + ‖ck‖2

)
for k ∈ K.

By (4.4) and α0,j1−1
k ≤ α1

k/β, α0,j1−1
k ‖ck‖ → 0. Hence, the inequality above gives

α0,j1−1
k ‖gk‖2 + α0,j1−1

k ‖ck‖ < C(α0,j1−1
k )2‖gk‖2 + Cεkα

0,j1−1
k ‖ck‖ for k ∈ K,

where εk → 0 for k ∈ K. Finally,

α0,j1−1
k ‖gk‖2 < C(α0,j1−1

k )2‖gk‖2 for large k ∈ K.

Clearly, this strict inequality shows that {α0,j1−1
k }k∈K is bounded away from zero. As

α1
k ≥ βα0,j1−1

k , {α1
k}k∈K cannot converge to zero, contradicting (4.5).

This contradiction concludes the proof.
When g is Lipschitz continuous on Ω, Assumptions 4.1 are no longer necessary

to prove that gk → 0. This can be shown by a standard argument, using (3.32) and
(4.4). But we were not able to prove that ck → 0 without these assumptions, for
the reasons given above the statement of Assumptions 4.1. On the other hand, once
Assumptions 4.1 hold, condition (3.32) is no longer useful for the global convergence
(it is not used in the proof above). In this case, if the PLS algorithm is replaced by
the PLS-rst method described in section 3.6, the conclusion of Proposition 4.2 still
holds.

5. Numerical experiment. The behavior of the PLS technique introduced in
section 3 and the reduced quasi-Newton algorithm presented in section 4 have been
tested on two model problems with a dimension ranging from n = 2 to 500 and a
single constraint. They consist in minimizing quadratic functions on the unit sphere.
Since there is just one constraint, this problem does not favor reduced SQP methods.
A full SQP method should be more efficient on this problem.

The numerical experiments have been done in double precision on a SUN SPARC-
station 1, with a program written in Fortran-77.

Test problem I. In the first test problem, the function f to minimize and the
constraint function c are defined on Ω = {x ∈ Rn : x(1) > 0} by

f(x) =
1

2

n∑

i=1

(a(i)x(i) − 1)2, c(x) =
1

2
(‖x‖22 − 1).

Here v(i) denotes the ith component of a vector v. The constants a(i) are set to
(n + 1 − i)/n for 1 ≤ i ≤ n. The problem is more and more difficult to solve as n
increases because the order of the updated matrices and the condition number of the
reduced Hessian of the Lagrangian increase with n.

The Jacobian matrix of the constraints A(x) = x> is surjective if x 6= 0. The
matrix Z−(x), whose columns form a basis of the space tangent to the constraint
manifold, and the restoration operator A−(x) are chosen as follows:

Z−(x) =

(
−x(2) − · · · − x(n)

x(1)In−1

)
, A−(x) =

x

‖x‖22
,(5.1)

where In−1 is the identity matrix of order n − 1. These matrices are well defined
and injective for x ∈ Ω. The form of A−(x) shows that the transversal steps are
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Table 5.1
Test problems.

n x∗(1) κ2(B∗)
2 0.69 1.
5 0.53 6.

10 0.42 9.
20 0.32 14.
50 0.22 26.

100 0.16 46.
200 0.12 84.
500 0.075 192.

orthogonal (for the Euclidean scalar product) to the space tangent to the constraint
manifold.

Table 5.1 gives some information on the problems: n is the number of variables
(hence, n − 1 is the dimension of the constraint manifold and the order of the ma-
trix to update), x∗(1) is the first component of the solution, and κ2(B∗) is the `2
condition number of the reduced Hessian of the Lagrangian at the solution (com-
puted by the LAPACK program DSYEV). Note that although the Hessian of the
Lagrangian L(x, λ) is a diagonal matrix and Z−(x) is sparse, the reduced Hessian
Z−(x)>L(x, λ)Z−(x) is dense: its (i, j) element is (a2

1 +λ)xi+1xj+1 + (a2
i+1 +λ)x2

1δij .
To globalize the algorithm, the exact `1 penalty function (with the `1-norm in

(1.12)) is used with σ1 = 2‖λ1‖∞ initially. Next, σk is updated by the rule (4.2) with
σ = σ1/100 and σ̃ = 2. The initial point x1 has its ith component set to (−1)i−110,
and the algorithm stops at the point xk when

‖ck‖2 ≤ 10−7‖c1‖2 and ‖gk‖2 ≤ 10−7‖g1‖2.

The update of the matrix B−1
k is done with the inverse BFGS formula when it

is appropriate (this depends on the algorithm and is specified below). The first time
this occurs, for k = k0 say, the inverse matrix is first initialized to γ>k0δk0/‖γk0‖2I
before being updated.

The results of our experiments on test problem I are given in Tables 5.2 to 5.6
and summarized in Table 5.7. Here are some common symbols: “n” is the dimension
of the problem, “iter” is the number of iterations, “lin” is the number of times the
constraints are linearized, “func” is the number of function calls, “skip” is the number
of times the matrix update is skipped, and “σ ↗” is the number of increases of the
penalty parameter. The meaning of some other symbols is given below.

To serve as a reference, the first runs have been made with Armijo’s backtracking
along dk = tk+rk and the skipping rule: if at the point found by the search algorithm
γ>k δk is positive, Bk is updated; otherwise, the update is skipped. This algorithm is
denoted by AS-skip. The results are given in Table 5.2.

We see that the number of skips is usually small, except for the cases n = 20 and
n = 500.

In the next experiment, Armijo’s backtracking is still used as search technique,
but a correction is made to δk when γ>k δk is not sufficiently positive (the so-called

Powell’s correction; see Powell [34]): δ̃k = θδk + (1− θ)B−1
k γk, where

θ =

{
1 if γ>k δk ≥ 0.2 γ>kB

−1
k γk,

0.8
γ>kB

−1
k γk

γ>kB
−1
k γk−γ>k δk

otherwise.
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Table 5.2
AS-skip: Armijo’s search and skipping rule (I).

n iter func skip σ ↗
2 17 23 1 0
5 55 58 1 1

10 88 93 5 1
20 110 116 31 2
50 82 89 3 3

100 83 95 2 3
200 72 90 3 4
500 91 98 11 5

Table 5.3
AS-Powell: Armijo’s search and Powell’s correction (I).

n iter func P-cor σ ↗
2 17 23 1 0
5 55 58 2 1

10 86 89 3 1
20 98 110 14 2
50 74 82 6 3

100 95 118 18 3
200 78 89 4 4
500 104 132 11 5

The update of B−1
k is then made with (γk, δ̃k) instead of (γk, δk). This algorithm is

denoted by AS-Powell. Table 5.3 shows the results: “P-cor” is the number of Powell’s
corrections, i.e., the number of times θ 6= 1 in the formula of δ̃k above. We see that
this algorithm works slightly better than the method with skipping rule for small n
(n ≤ 50) and slightly worse for larger n. We believe that this may not be fortuitous
and may come from update pairs (γk, δk) of bad quality, in particular of the initial
one, which is used to scale the matrix. Indeed, for small n, the effect of an initial
pair with wrong information is rapidly compensated by updates with good pairs (this
is clearly the case when n = 2, since then the matrix to update has order 1 and the
update formula is memoryless). On the other hand, from our experience [20], if n is
large and if the first pair used to scale the matrix is spoiled, it may take many updates
to recover from this bad initial scaling.

For two reasons, we introduce an update criterion in the algorithm AS-Powell.
First, we want to see whether an update criterion improves the algorithm by selecting
good pairs (γk, δk) and, second, we want to offer a fairer comparison with algorithms
using the PLS, which naturally require update criteria. We take the following in-
equality as update criterion:

‖rk‖2 ≤ µ ‖e1
k	2‖2 ‖tk‖2.(5.2)

An update is desirable when the inequality holds. In this criterion, µ is a positive
constant, k	 2 is the index of the last but one iteration at which an update occurred
before iteration k (see [16] or [18]), and e1

k = α1
kdk. The value used for µ is important

for the efficiency of the criterion. In order to get a sufficiently good initial pair, we
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Table 5.4
AS-Powell-UC: Armijo’s search, Powell’s correction, and update criterion (I).

n iter func skip P-cor σ ↗
2 18 27 3 1 0
5 19 26 7 0 1

10 27 35 5 0 1
20 40 51 8 2 2
50 56 72 8 4 3

100 43 50 4 1 3
200 48 63 5 1 3
500 57 79 10 6 4

Table 5.5
PLS: Piecewise line-search and update criterion (I).

n iter lin func skip σ ↗
2 16 21 30 3 0
5 19 20 26 7 1

10 27 28 35 5 1
20 37 38 46 7 2
50 51 53 63 7 3

100 43 44 50 7 3
200 47 48 61 5 3
500 43 56 66 10 4

take for µ the quotient

µ = 0.1
‖r1‖2

‖e1
1‖2 ‖t1‖2

,

so the update criterion cannot be satisfied before a few iterations have been done.
This forces the algorithm to choose as its initial scaling pair (γk0 , δk0) a better pair
than (γ1, δ1).

The results of algorithm AS-Powell with this update criterion, denoted as AS-
Powell-UC, are given in Table 5.4. They are remarkably better than those of algorithm
AS-Powell: the number of iterations and function calls has decreased by 49 % and
43 %, respectively. This confirms our feeling on the importance of selecting good
pairs (in particular the first one).

The last two experiments use the PLS technique, provided that the update cri-
terion (5.2) holds. Hence, the update is skipped when the PLS is interrupted by
the update criterion or by the test on the penalty parameter (step 5 of the search
algorithm). As far as the PLS algorithm is concerned, we have always set ρik = 1 in
(3.25), which corresponds to a demanding search. The results with ρik = 0 hardly
differ, essentially because the unit step-size is usually accepted by the PLS. The first
tangent scaling factor τ0

k and the step-size candidates αi,1k are always set to 1 and
αik + 1, respectively. Safeguarded quadratic interpolation is used to determine the

intermediate step-sizes {αi,jk }
ji
j=2.

In the first experiment, whose results are given in Table 5.5, the plain PLS method
described in sections 3.2 and 3.4 is used with τ ik always set to 1 (without tangential
extrapolation). A first observation is that the PLS algorithm never cycles, as this is
suggested by the theory (Proposition 3.8). Now, comparing the number of lineariza-
tions with those of the algorithms with Powell’s correction, we observe an important
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Table 5.6
PLS-rst: Piecewise line-search (with resetting) and update criterion (I).

n iter lin func rst skip σ ↗
2 17 19 27 1 3 0
5 19 20 26 0 7 1

10 27 28 35 0 5 1
20 37 38 46 0 7 2
50 51 53 65 1 8 3

100 43 44 50 0 7 3
200 47 48 61 0 5 3
500 48 52 65 1 10 4

Table 5.7
Compared performance of the algorithms (I).

Algorithm iter lin func
AS-skip 598 606 662
AS-Powell 607 615 701
AS-Powell-UC 308 316 403
PLS 283 308 377
PLS-rst 289 302 375

improvement with respect to algorithm AS-Powell and a small one with respect to
algorithm AS-Powell-UC. The results look quite satisfactory, particularly if we ob-
serve that the small improvement with respect to algorithm AS-Powell-UC is due
to a very limited use of the PLS technique. Only the cases n = 2, n = 50, and
n = 500 use this technique, as this can be seen by a positive number of inner iter-
ations: “lin” − “iter” − 1 > 0. Now the results with n = 500 are not very good,
since the PLS algorithm requires a great number of inner iterations. By looking more
closely at these results, however, we have observed that the deterioration is due to a
single iteration and that a phenomenon resembling the one described in the example
of section 3.6 occurs.

The last experiment is done with the PLS-rst algorithm of section 3.6. The PLS
algorithm is interrupted as soon as condition (3.35) holds. Furthermore, the tangent
scaling factor τ ik may be different from 1: either τ ik is determined by a safeguarded
quadratic or cubic extrapolation formula using the values g(xik)>Zktk or (when this
is unsuccessful, due to the inconsistency of the interpolating values) τ ik is doubled at
each inner iteration (provided that the descent test (3.18b) has always been verified
with αik = αi−1,1

k during the current PLS). The results are given in Table 5.6. The
number of iterations with “resettings” are given in a column labeled by ‘rst’: it is the
number of times condition (3.35) differs from (3.32). Of course, only the results of the
cases n = 2, n = 50, and n = 500 may change. We see that the very few “resettings”
slightly improve the results. We also observe that the number of inner iterations used
by the PLS-rst algorithm (= “lin”− “iter”− 1) is now very small.

To summarize, we add up the number of iterations, linearizations, and function
calls used by the considered algorithms for all the runs: see Table 5.7 (for every run
with AS-skip or AS-Powell, “lin” = “iter” + 1). The results of PLS-rst compare
favorably with those of the other techniques.

Test problem II. The second test problem is obtained by changing the objective
function in the first test problem. It is now the quadratic form 1

2x
>Qx− q>x, where
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Table 5.8
Compared performance of the algorithms (II).

Algorithm iter lin func
AS-skip 1109* 1117* 1294*
AS-Powell 495 503 583
AS-Powell-UC 381 389 490
PLS 375 462 533
PLS-rst 354 382 440

Table 5.9
Compared performance for Test problem I with tangent basis (5.3).

Algorithm iter lin func saving in “lin”
AS-skip 453 461 503 24 %
AS-Powell 388 396 440 36 %
AS-Powell-UC 279 287 370 9 %
PLS 254 262 324 15 %
PLS-rst 254 262 324 13 %

Table 5.10
Compared performance for Test problem II with tangent basis (5.3).

Algorithm iter lin func saving in “lin”
AS-skip 235 243 298 78 %*
AS-Powell 230 238 303 53 %
AS-Powell-UC 252 260 357 33 %
PLS 226 242 300 48 %
PLS-rst 228 238 295 38 %

Qi,j = (i + j − 1)−1 and qi = n for all i, j ∈ {1, . . . , n}. Table 5.8 summarizes the
results. The “*” in this table indicates that algorithm AS-skip failed to satisfy the
stopping test for n = 500. This is due to the fact that the matrix update is very often
skipped in this run. The same type of comments as for Test problem I can be given:
• Algorithm AS-Powell works much better than AS-skip;
• The update criterion in AS-Powell-UC improves algorithm AS-Powell signifi-

cantly;
• The less satisfactory results of the plain PLS algorithm are due to a large number

of inner iterations in the PLS (no resettings, see section 3.6);
• The PLS-rst algorithm has the best results, with very few inner iterations.

Change of tangent basis. We would like to mention the results obtained by chang-
ing the field of tangent basis Z−. We now take

Z−(x) =

(
−x(2)/x(1) − · · · − x(n)/x(1)

In−1

)
.(5.3)

Hence, the elements of the previous matrix Z− in (5.1) have been divided by x(1).
This is motivated by the fact that this new basis satisfies property (3.7) for some
parametrization ψk, while the basis (5.1) does not (see [19]). All the other parameters
of the algorithms have been kept unchanged.

Tables 5.9 and 5.10 give the results corresponding to Test problems I and II. We
observe an important improvement in the number of linearizations (last column, i.e.,
saving in “lin”). Note that this is not due to a change in the conditioning of the
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problem: since the previous basis has just been divided by x(1), the condition number
of the reduced Hessian of the Lagrangian at the solution has not changed. We still do
not know whether the fact that the basis (5.3) satisfies (3.7) is a key to explain the
improvement (see [19] for a possible explanation).

Comments on the numerical experiments. Among the techniques used to maintain
the positive definiteness of the reduced matrices that have been tested (skipping rule,
Powell’s corrections, PLS technique), the PLS technique appears to be the best one,
provided that the method is carefully implemented (PLS-rst version of the algorithm).
For the test-problems we considered, two other tools are of great importance for
the efficiency of reduced SQP methods: the use of update criteria and a proper
choice of the tangent basis field Z−. It is clear that this small amount of tests
impedes from giving final conclusions. More experiments with more realistic problems
are necessary before asserting the usefulness of the PLS technique. We have found,
however, that these results are encouraging and we believe that this limited number
of tests demonstrates the feasibility of the PLS approach.

6. Conclusions. This paper proposes a method for maintaining the positive def-
initeness of the matrices in reduced quasi-Newton algorithms for equality constrained
optimization. By using a PLS (as opposed to a traditional line-search) technique,
which conducts the search of the next iterate along a piecewise linear path, some re-
duced Wolfe conditions are satisfied whenever desired. One of these conditions is such
that between two successive iterates, the function to minimize, reduced to the current
manifold, seems to have positive curvature. This allows the algorithm to sustain the
positive definiteness of the reduced Hessian approximations from one iteration to the
other.

A few numerical experiments have shown that a careful implementation of the
technique can do better than other methods, such as the skipping rule or Powell’s
correction of the BFGS update. This improvement is obtained with reduced methods,
despite of their important defect, which is that they have no means to improve the
orientation of the transversal component of the step. Because this defect is crucial in
the present context (due to the first condition in (3.11)) and because it is not shared
with the SQP method, it is expected that the PLS technique could be more clearly
efficient when the updated matrices approximate the full Hessian of the augmented
Lagrangian. This discussion also raises the question whether an update criterion based
on (3.11) rather than on the comparison of the transversal and tangential components
of the step can be conceived.

Another feature of the PLS technique is to offer the possibility to have cleaner
algorithms. At least, this is an advantage for their analysis. For example, in [18],
a strong superlinear convergence result has been proven for an algorithm with PLSs
and the update criterion (5.2). It is shown, indeed, that if in the Coleman and
Conn reduced algorithm the points {xik}k,i converge to a solution satisfying sufficient
second order conditions of optimality, then no intermediate point exists eventually
(ik = 1 for k large) and the sequence converges q-superlinearly. In this result, the
matrices are supposed to be generated by the BFGS formula from any positive definite
starting matrix. No other assumptions on the generated matrices are necessary. To
our knowledge, this is the first extension of Powell’s result (see [32]) to constrained
problems.
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Paris, France.

[38] M. Spivak (1979), Differentiable Geometry, Volume I, 2nd ed., Publish or Perish, Inc., Houston,
TX.

[39] J. Stoer (1984), Principles of sequential quadratic programming methods for solving nonlin-
ear programs, in Proc. NATO ASI on Computational Mathematical Programming, Bad
Windsheim, Germany.

[40] R. A. Tapia (1977), Diagonalized multiplier methods and quasi-Newton methods for con-
strained optimization, J. Optim. Theory Appl., 22, pp. 135–194.

[41] R. A. Tapia (1988), On secant updates for use in general constrained optimization, Math.
Comput., 51, pp. 181–202.

[42] R. B. Wilson (1963), A Simplicial Algorithm for Concave Programming, Ph.D. thesis, Grad-
uate School of Business Administration, Harvard University, Boston, MA.

[43] P. Wolfe (1969), Convergence conditions for ascent methods, SIAM Rev., 11, pp. 226–235.
[44] P. Wolfe (1971), Convergence conditions for ascent methods II: Some corrections, SIAM Rev.,

13, pp. 185–188.


