
Application of the automatic differentiation tool
Odyssée to a system of thermohydraulic equations 1

C. Duval 2 and P. Erhard 2 and Ch. Faure 3 and J.Ch. Gilbert 4
Abstract. The applicability of automatic differentiation on
a set of partial differential equations governing thermohy-
draulic phenomena in heat exchangers is examined. More
specifically, the challenge is to differentiate Thyc-1D, a 1-D
mockup of the 3-D code Thyc implementing these equations,
by means of the automatic differentiator Odyssée with as
few manual interventions as possible. The program to differ-
entiate contains 23 subroutines, including linear solvers and
black-box functions, whose code is not available.

1 Introduction

Automatic differentiation is a set of techniques that are aimed
at differentiating functions from a program that computes its
values at arbitrary points (see for example [1, 5, 8]). The
method differs from finite differences in that the value of the
derivatives are computed exactly (up to rounding errors) in a
much more efficient way. This is particularly true when gradi-
ents (set of partial derivatives) are to be computed. In this case,
the reverse mode of automatic differentiation can be viewed
as a method for generating adjoint codes automatically.

The aim of this work is to differentiate a one-dimensional
mockup Thyc-1D of the 3-D code Thyc from EDF. This
code implements a set of five partial differential equations
governing thermohydraulic phenomena in heat exchangers.
Thyc-1D contains 23 subroutines, including linear solvers
and black-box functions, whose code is not available. This is
achieved by improving and using the automatic differentia-
tor Odyssée [9], developed at INRIA. The challenge is to
differentiate the program with as few manual interventions as
possible, in such a way that the resulting code will be effi-
cient with respect to the CPU time, sufficiently modest on its
memory needs, and will provide accurate derivatives.1 This work was initiated and financed in part by EDF-DER.2 EDF-DER, Département Physique des Réacteurs, 1, avenue du

Général de Gaulle, F-92141 Clamart Cedex, France.3 INRIA Sophia Antipolis, 2004 route des Lucioles, BP 93, F-06902
Sophia-Antipolis Cedex, France.4 INRIA Rocquencourt, BP 105, F-78153 Le Chesnay Cedex, France.

2 Description of the thermohydraulic
application

More concretely, we aim at computing the sensitivity of a
partial differential equation system answer to a set of input
parameters. In fact, even if an industrial computer code is val-
idated on a large experimental data basis, it could provide bad
results particularly when it is used far from the limits of its
applicability domain. Sensitivity evaluation provides infor-
mation on influent parameters according to this calculation
response. These parameters could be boundary or initial con-
ditions, closure laws, : : : An uncertainty may be evaluated on
calculation results by using system answers and their deriva-
tives given by the derivated computer code. In our study, we
aim at knowing closure laws influence in order to perform the
most sensitive ones.

The chosen model is a mock-up of an industrial computer
code for thermohydraulics in bundles, Thyc-1D developed
at EDF/Direction des Etudes et Recherches. This code is used
to study a single or two-phase flow in reactor cores, steam
generators and condensers. The differentiated system con-
sists of: three conservation equations for the mixture (mass,
momentum and energy), one conservation equation for the
vapor mass and a last one for relative momentum between
liquid and vapor phases. The system is shown below.@�@t + div �u = 0;@�u@t + div(�u2 + �c(1� c)u2r)) = �rp+ �g �Mw;@�h@t + div(�uh+ �Lc(1� c)ur) = @p@t + urp+ q;@�c@t + div(�c(u+ (1� c)ur)) =
;@ur@t + (urr)u+ (((1� 2c)ur + u)r)ur= (1�l � 1�v)rp� �1�u� �2ur +
� (1� 2c)ur :

c
 1996 C. Duval et al.
ECCOMAS 96.
Published in 1996 by John Wiley & Sons, Ltd.

The main variables of the previous system are: enthalpy h,
pressure p, mass flow rate of the mixture �u, vapor quality c,
and relative velocity between phases ur .

Many laws close this system: friction pressure loss tensor
(Mw), volumetric power (q), interfacial drag coefficient (beta
terms), interfacial mass transfer term (
), : : : This last closure
law is not well known and system answers sensitivities to this
parameters are very important.

Having the derivated code of this model is interesting to
study one of the many variables sensitivity ur, the relative
velocity between vapor and liquid phases according to two
parameters included in the interfacial drag coefficient (cd and
qsi) and the following ones: relaxation time tau included in
the previously mentioned interfacial mass exchange closure
law, and power exchanged with the fluid q.

The studied flow is a liquid-vapor mixture. Entering in a
heating tube at its lower part, the fluid gets out with a high
vapor ratio at its top.

3 The automatic differentiation tool
Odyssée

Odyssée is an automatic differentiation tool developed at
INRIA. It is able to “differentiate a program”, with respect to
the input variables (arguments and/or common variables) of
the head-unit. For Odyssée, a program is a set of Fortran-
77 units (functions or subroutines), whose call-graph forms
a tree. The root of the tree is called the head-unit. The result
of the differentiation of a program is a new program, which
can compute at arbitrary points the derivative of the function
evaluated in the original program.
Odyssée can differentiate a program as a whole, detecting

active variables, those whose value depends on the variables
with respect to which the function is differentiated. Both the
direct and reverse modes of differentiation are implemented.
The first one is appropriate for computing directional deriva-
tives, the second is adapted to the efficient computation of
gradients. In Odyssée, the adjoint code generated by the
reverse mode has the same structure as the original code.

3.1 Analysis of the code

The process of differentiation consists of four phases:

1. preparation of the code,
2. interprocedural analysis of the program,
3. differentiation of the algebraic expressions,
4. simplification of the code.

During the first phase, the system modifies the original units
and puts them in a suitable form for differentiation. It rewrites
the nondifferentiable operators abs,min intoif-statements,
which are tractable by Odyssée. Thefunction statements
are also in-lined into the code. The third transformation ap-
plied in this phase comes from theoretical reasons: if the code
is formed of binary expressions, then the complexity of the
calculation of the function and its derivative is less than four
or five times the one of the function alone (this depends on the

differentiation mode, see Section 3.2). We have implemented
a process that splits expressions into equivalent binary ex-
pressions by introducing intermediate variables (see [3]).

During the second phase, Odyssée makes an interproce-
dural analysis of the program, which results in a dependency
graph between the input/output variables of each unit. These
dependencies are stored in a data basis, which is filled by the
differentiator for the available subroutines. For the subrou-
tines whose code is not supplied (black-box subroutines of
Thyc-1D or user-supplied derivatives), the user has to fill
first the data basis, by declaring what are the arguments of the
subroutine and which are the input or/and output variables.
This information is enough forOdyssée to make a consistent
analysis of the overall program. At that point, the system is
able to propagate the active variables from the head-unit to all
the other units. Thus the active inputs of each subroutine are
known and Odyssée can differentiate them independently.

In the third phase, the unit by unit differentiation of the pro-
gram is done, according to the following two rules. First, each
subroutine of the program is differentiated with respect to its
input variables, and not with respect to the input variables
of the head-unit. Secondly, the differentiation is maximal in
the sense that a subroutine is differentiated with respect to
the maximum set of input variables appearing in every call
statement. This allows Odyssée to generate only one sub-
routine for each unit of the original program. The methods
used to differentiate a subroutine are described in the next
section.

The fourth phase aims at simplifying the resulting code.
The algebraic expressions are simplified in the same way as
in Computer Algebra Systems except that the arguments of
sums and products cannot be reordered modulo associativity
and commutativity. The dead code is suppressed, which is
very important in the reverse mode of differentiation, because
the system generates to many saving instructions.

3.2 Two modes of differentiation

Automatic differentiation is based on two principles. The first
one is that a program can be seen as a composition of func-
tions, the second one is the chain rule.

In its simplest form a program is formed of a finite sequence
of assignment statements. At each of these statements, one
can associate a function leaving unchanged all the variables
of the program except the one modified by the statement.
Then, the whole program can be viewed a composition of
these functions.

Now, suppose that there are K statements in the program.
Then the function f that it computes is the composition of K
element functions: f = fK � � � � � f2 � f1. Denote by Jk the
Jacobian matrix of fk computed at (fk�1�fk�2�: : :�f1)(x).
From the chain rule, the Jacobian matrix of f at x isJ = JK � � � J2J1;
and the transposed Jacobian matrix of f is of courseJ>= J>1 J>2 � � � J>K :

Section Title 2 C. Duval et al.

The direct mode of differentiation consists in calculating the
directional derivative Ju with the first formula, while the
reverse mode of differentiation consists in computing J>v
with the second formula. If f is defined fromRn toR, one sees
that the reverse mode can compute the n partial derivatives
forming the gradient of f by a sequence of K matrix-vector
products (take v = 1 above).

Given a program P (an example is the subroutine sample
given in Figure 1) and some input or independent variables,
Odyssée can generate two kinds of codes: the tangent codeTP and the cotangent code T �P . The tangent code computes
the product of the Jacobian matrix by a vector u (direct mode)
and the cotangent code computes the product of the transposed
Jacobian matrix by a vector v (reverse mode). It is important to
note that in the reverse mode, it is necessary either to store or
to recalculate the intermediate values (f1(x), f2(f1(x)), : : :
in the example above) to be able to compute the transposed
Jacobian matrix.

SUBROUTINE sample (x,y,z)
PARAMETER (n = 3)
DIMENSION x(n), y(n)

CALL norme2 (x,xx)
CALL norme2 (y,yy)
IF (xx.le.yy) THEN

z = xx-yy
ELSE

z = yy-xx
END IF
RETURN
END

SUBROUTINE norme2 (x,y)
PARAMETER (n = 3)
DIMENSION x(n)

y = 0.
DO i =1, n

y = y + x(i)**2
END DO
RETURN
END

Figure 1. Sample code

In the tangent code TP generated by Odyssée (see Fig-
ure 2 for the tangent code sampletl associated with the
subroutine sample of Figure 1), a new variable vtl (with
suffix tl) is introduced for each variable v in the original
code. It represents its directional derivative. The tangent code
is obtained by inserting one assignment statement before each
assignment statement of the original code. Its goal is to com-
pute the directional derivative of the modified variable. The
control structure of the code is preserved.

In the case of the subroutine sampletl, the directional
derivatives of the input variables x and y are supposed given
in xtl and ytl, and the directional derivative of the output

SUBROUTINE sampletl (x, y, z, xtl, ytl, ztl)
PARAMETER (n = 3)
DIMENSION x(n), y(n), xtl(n), ytl(n)

CALL norme2tl (x, xx, xtl, xxtl)
CALL norme2tl (y, yy, ytl, yytl)
IF (xx.LE.yy) THEN

ztl = -yytl+xxtl
z = -yy+xx

ELSE
ztl = yytl-xxtl
z = yy-xx

END IF
RETURN
END

SUBROUTINE norme2tl (x, y, xtl, ytl)
PARAMETER (n = 3)
DIMENSION x(n), xtl(n)

ytl = 0.
y = 0.
DO i = 1, n

ytl = ytl+2*xtl(i)*x(i)
y = y+x(i)**2

END DO
RETURN
END

Figure 2. Tangent code of sample generated by Odyssée, for
the input variables x and y

variable z is placed in ztl. After execution, one has

ztl := @z@x xtl+ @z@y ytl:
Each subroutine of the cotangent code T �P generated

by Odyssée is formed of two parts (see Figure 3 for the
cotangent code samplead associated with the subroutine
sample of Figure 1). In the first part, the original code is ex-
ecuted with appropriate savings. In the second part, the adjoint
variables vad (with suffix ad) associated with the original
variables v are computed by transposition of tangent code,
as explained above. As a result, the execution flow of the
second part is reversed with respect to the one of the original
code. For example, the do-loop DO i=1,n of the subroutine
norme2 becomes DO i=n,1,-1 in norme2ad.

In the case of the subroutine samplead, the adjoint vari-
ables xad and yad are computed from the adjoint variables
xad, yad, zad, and from the value of the original variables
x, y, and z. After execution, one has

xad := xad+ @z@x zad
yad := yad+ @z@y zad
zad := 0:

Section Title 3 C. Duval et al.

SUBROUTINE samplead (x, y, z, xad, yad, zad)
PARAMETER (n = 3)
DIMENSION x(n), y(n), xad(n)
LOGICAL save

xxad = 0.
yyad = 0.

CALL norme2 (x, xx)
CALL norme2 (y, yy)
save = xx.LE.yy
IF (save) THEN
z = xx-yy

ELSE
z = yy-xx

END IF

IF (save) THEN
xxad = xxad+zad
yyad = yyad-zad
zad = 0.

ELSE
xxad = xxad-zad
yyad = yyad+zad
zad = 0.

END IF
CALL norme2ad (y, yy, yad, yyad)
CALL norme2ad (x, xx, xad, xxad)
RETURN
END

SUBROUTINE norme2ad (x, y, xad, yad)
PARAMETER (n = 3)
DIMENSION x(n), xad(n)

DO i = n, 1, -1
xad(i) = xad(i)+yad*(2*x(i))
END DO
RETURN
END

Figure 3. Cotangent (or adjoint) code of sample generated by
Odyssée, for the input variables x and y

3.3 Limitations and future work

The current limitations of Odyssée are the following:

– common blocs with different partitions and equiva-
lence statements are not accepted,

– an argument of a subroutine cannot be a subroutine
name,

– only subroutines can be differentiated (not the func-
tions or programs),

– the gotos are not accepted in reverse mode.

Odyssée generates the derivatives of all the variables of
the code that depend on the input variables. In the present
version, Odyssée does not take advantage of a selection of
output variables to reduce the execution time.

4 Using Odyssée on Thyc-1D

As described in Section 2, we study how the variables cd,
qsi, tau, and puisvol = q influence ur = ur . Therefore
the program Thyc-1D must be differentiated with respect to
these four input variables. More precisely, we want to know
how the maximum (in time and space) of ur is influenced by
these variables. Since this maximum occurs at the time step
306 and the node 23 in space, it is the program that computes
urmax = ur(306,23) that is differentiated.

4.1 Treatment of black-box subroutines and
linear solvers

Two difficulties have been encountered in differentiatingThyc
-1D. First, the program has black-box subroutines, whose
code is not available. Secondly, Thyc-1D contains linear
solvers implementing iterative algorithms (Jacobi’s and Gauss-
Seidel’s methods) with stopping tests, so that the number of
iterations is not known beforehand and depends on the value
given to the independent variables.

The derivatives of the black-box subroutines have been
hand-coded, using finite differences to approximate the deriva-
tives.

For the linear solvers, we have chosen to supply the asso-
ciated subroutines to Odyssée instead of letting it generate
the code. This simplifies the code generation (differentiating
iterative processes is a rather sophisticated operation, see [4])
and makes the resulting code very efficient.

To be more specific, suppose that the original subroutine
solves the linear system in yAy = b;
where A is a nonsingular matrix and b is a vector. Then in
direct mode, the associated subroutine has to solve Ay = b
to find y and the linear systemA _y = _b� _Ay
to find _y. Here _v denotes the directional derivatives of the
variable v. In reverse mode, the adjoint variables �A, �b, and �y
are obtained by8><>: A>z = �y (to solve in z)�b := �b+ z�A := �A� zy>�y := 0:
More details can be found in [2].

4.2 Description of user-differentiated
subroutines

The subroutines that must not be processed by Odyssée
(here, the black-box subroutines and the linear solvers) have
to be described in a file that is read by the system before
it analyses the program. This description specifies what are

Section Title 4 C. Duval et al.

the dummy arguments and whether they are input or output
variables.

An appropriate language is used for this task. For example,
we have described the black-box function tbalps by:

setdummys tbalps (p1 p2 p3 p4 p5 tbalps)
setinout tbalps (p2 p3) () (tbalps) ()

and the linear solver tdma by:

setdummys tdma (c a d b x imax)
setinout tdma (c a d b x) () (c a d b x) ()

This information is enough forOdyssée to make a consistent
analysis of the overall program.

4.3 Towards derivatives

As described in Section 3, Odyssée can derive a set of
subroutines, whose call graph forms a tree, the root of which
is called the head-unit. To give this structure to the set of units
to derive in Thyc-1D, we had to build the head-unit, called
princp sub, and had to specify the input variables of this
subroutine.

Then the global analysis of the set of units starting with
princp sub was performed by Odyssée, which was able
to differentiate the overall program either in direct mode to
generate the tangent codeprincp subtlor in reverse mode
to generate the cotangent code princp subad. The hand-
derivated subroutines (for the black-box functions and linear
solvers) fit the required format, so that all the subroutines
could be compiled and linked together.

Then, we had to write the main programs princptl
and princpad that compute the four partial derivatives of
urmaxwith respect to the four input variables, either in direct
mode (by calling princp subtl) or in reverse mode (by
calling princp subad).

In direct mode,princp subtl has to be called four times
to get the four derivatives. The part of the code computing
and printing the derivatives with respect to cd and qsi is:

cdtl = 1.
qsitl = 0.
tautl = 0.
puisvoltl = 0.
call princp_subtl (npas)
print *, "durmaxdcd = ", urmaxtl

cdtl = 0.
qsitl = 1.
tautl = 0.
puisvoltl = 0.
call princp_subtl (npas)
print *, "durmaxdqsi = ", urmaxtl
...

In reverse mode, princp subad has to be called only
once to get the four derivatives. The part of the code comput-
ing and printing the four derivatives is:

cdad = 0.
qsiad = 0.
tauad = 0.
puisvolad = 0.
urmaxad = 1.
call princp_subad (npas)
print *, "durmaxdcd = ", cdad
print *, "durmaxdqsi = ", qsiad
print *, "durmaxdtau = ", tauad
print *, "durmaxdpuisvol = ", puisvolad

5 Numerical results

We have compared the results obtained by the tangent and
cotangent codes generated by Odyssée with the derivatives
approximated by finite differences. For the latter, we have
chosen the step-size giving the largest number of correct sig-
nificant digits (this requires trying many step-sizes). Compar-
isons have been made in single and double precision.

Here, we present results obtained for the derivatives of all
the 25 space components of ur, not only the 23rd giving the
maximum of ur, with respect to the four inputs. This requires
running princp subtl four times (in direct mode) and
princp subad twenty five times (in reverse mode).

5.1 Comparison between tangent and
cotangent codes

The differentiation of the black-box subroutines by finite dif-
ferences can be done in different ways. In order to make the
tangent and cotangent codes more similar, we have chosen to
compute in both modes the Jacobian matrix of the function
realized by each of these subroutines. In direct mode there is
a cheaper way of doing, which consists in computing only the
directional derivative of the function.

Figures 4 and 6 show the values of the 25 components of the
derivatives of ur with respect to cd and qsi, as computed
by the tangent code. We do not show those computed by
the cotangent code because they are similar. Table 1 shows
the values of the derivatives of urmax = ur(306,23)
computed with the two modes of differentiation. We see that
these derivatives have between 8 and 12 significant digits in
common.

5.2 Comparisons with finite differences

The step-size for the finite differences has been chosen to
make the derivatives as precise as possible. This optimal step-
size has been obtained in the following way. The approximate
derivatives of urmax has been computed for several step-
sizes and the one that gives the greatest number of unvariant
significant digits has been chosen. For example, for the deriva-
tive with respect to cd, we have tried ten different step-sizes.
The results are given in Table 2. In this case, we see that the
optimal step-size is 5 10�6 and that the correct derivative is
likely to be �2:6877707 : : :.

In Table 3, we show the approximate derivatives obtained
by finite differences and those computed by Odyssée. In

Section Title 5 C. Duval et al.

-3

-2.5

-2

-1.5

-1

-0.5

0

0 5 10 15 20 25

"tl_cd.res"

Figure 4. Derivatives in direct mode with respect to cd

-15

-14

-13

-12

-11

-10

-9

-8

0 5 10 15 20 25

"tlad_cd"
"tldd_cd"

"addd_cd"

Figure 5. Comparison of derivatives with respect to cd

Tangent code
cd �2:6877707476674D + 00
qsi �1:1283833581385D � 02
tau 2:3953473434534D � 01
puisvol 8:4189731568450D � 09

Cotangent code
cd �2:6877707476626D + 00
qsi �1:1283833581488D � 02
tau 2:3953473304208D � 01
puisvol 8:4189731614290D � 09

Table 1. Derivatives of ur(306,23) by Odyssée in double
precision

the latter case, we only display the most significant digits in
common to the tangent and cotangent derivatives. The last
column shows the maximum number of correct significant
digits that Odyssée can yield with respect to “optimal” finite
differences.

In Figures 5 and 7, we have compared the values of the
derivatives computed by finite differences with optimal step-
size, with those computed by Odyssée. The curves show
the relative differences between two methods (the vertical
axis has a logarithmic scale): one compares the tangent code
to finite differences (dashed line), another compares the cotan-
gent code to finite differences (dotted line) and the last one

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0 5 10 15 20 25

"tl_qsi.res"

Figure 6. Derivatives in direct mode with respect to qsi

-15

-14

-13

-12

-11

-10

-9

-8

-7

0 5 10 15 20 25

"tlad_qsi"
"tldd_qsi"

"addd_qsi"

Figure 7. Comparison of derivatives with respect to qsi

Step-size Approximate derivative5:E � 11 �2:687743361207140E + 005:E � 10 �2:687798428269161E + 005:E � 09 �2:687771161191677E + 005:E � 08 �2:687771023524022E + 005:E � 07 �2:687770758846852E + 005:E � 06 �2:687770744280727E + 005:E � 05 �2:687770756817365E + 005:E � 04 �2:687771680981221E + 005:E � 03 �2:687864088674541E + 005:E � 02 �2:697140333223182E + 00
Table 2. Trial step-sizes for the derivative of urmax with respect

to cd.

compares the tangent and cotangent codes (plain line). The
lowest curve indicates the couple of methods that most agree.
In each case, it is formed of the tangent and cotangent codes
of Odyssée.

The same tests have been performed in single precision.
The derivatives of urmax obtained by Odyssée are given
in Table 4.

As in double precision, we have chosen the “optimal” step-
size for computing approximate derivatives by finite differ-
ences and have compared them with the one obtained by
Odyssée. The results are shown in Table 5. To give an in-
terpretation to these results, let us compare them to those in

Section Title 6 C. Duval et al.

Finite differences Odyssée Max gain
cd �2:6877707D + 00 �2:68777074766D + 00 +4
qsi �1:1283833D � 02 �1:1283833581 D � 02 +3
tau 2:395347 D � 01 2:3953473 D � 01 +1
pui. 8:4189731D � 09 8:4189731 D � 09 +0

Table 3. Comparison of derivatives in double precision

Tangent code Cotangent code
cd �2:68763E + 00 �2:68763E + 00
qsi �1:12781E � 02 �1:12782E � 02
tau 2:39515E � 01 2:39520E � 01
puisvol 8:41967E � 09 8:41967E � 09

Table 4. Derivatives of ur(306,23) by Odyssée in single
precision

Table 3. If we trust the first significant digits obtained by finite
differences in double precision, we see that with the optimal
step-size, only the last digit may be erroneous in the second
column of Table 5. We also see that the digits in common to
the direct and reverse mode of Odyssée are not necessary
correct: up to 2 digits can be erroneous. This implies that the
number in the column ‘Max gain’ in Table 3 are not the ac-
tual number of digits that Odyssée can yield with respect
to finite differences. It is an upper bound for this number. On
the other hand, always based on the digits obtained in double
precision, we can give the number of digits that Odyssée
yields in single precision, with respect to finite differences.
They are given in the last column of Table 5.

Finite differences Odyssée Actual gain
cd �2:68E + 00 �2:68763E + 00 +1
qsi �1:19E � 02 �1:1278 E � 02 +1
tau 2: E � 01 2:395 E � 01 +3
pui. 8:3 E � 09 8:41967E � 09 +2

Table 5. Comparisons of derivatives in single precision

5.3 Efficiency in memory-space and CPU
time

In order to compare the efficiency of the codes generated by
Odyssée, we have generated the derivatives of Thyc-1D
with respect to 1 input variable (cd), 2 input variables (cd,
qsi), 3 input variables (cd, qsi,tau), and 4 input variables
(cd, qsi, tau, puisvol). Table 6 shows the results: the
CPU column gives the CPU time in seconds, thetext column
gives the text length in bytes, and the bss column gives the
size of the initialized data in bytes.

Tangent code Cotangent codeCPU text bss CPU text bss0 5:72 270336 105608 5:93 270336 1056081 14:08 417792 266680 27:61 573440 25407122 26:91 417792 266712 27:30 573440 25409123 38:25 417792 267592 27:20 581632 25405444 55:21 417792 267616 27:31 581632 2540608
Table 6. Execution time and memory space

Let T (P) be the execution time of the original code,T (TP) be the execution time of the tangent code,T (T �P) be
the execution time of the cotangent code, and n be the number
of input variables. Extrapolating the results in Table 6 leads
to the following ratios:T (TP)T (P) � 2:3 n
and T (T �P)T (P) � 4:6:
These numbers are in accordance with the theoretical bounds,
which are 4n for the first ratio and 5 for the second (see for
example [7, 6, 5]).

In terms of the size of the code, the tangent code takes 35%
more memory space whereas the cotangent code takes about
twice that of the original code. As for the size of the data space,
it is approximately doubled in the tangent code and multiplied
by 25 in the cotangent code. One must notice that the only
memory management strategy implemented in the current
version of Odyssée saves all the modified variables. Other
strategies are being studied for the next version of Odyssée.

6 Conclusion

These tests show that, in double precision, 7 or 8 correct sig-
nificant digits can be obtained by “optimal” finite differences.
With respect to this, the derivatives obtained by Odyssée are
likely to have between 1 and 3 more correct significant digits.
We believe that the accuracy of the derivatives obtained by
Odyssée have been limited by the need to differentiate by
finite differences frequently used black-box functions.

As for the CPU time efficiency, it fits the theory: the eval-
uation of the tangent code takes about 2:3 times the time to
run the original code, and the evaluation of the cotangent
code takes around 4:6 times the time to evaluate the original
function. The size of the memory used by the tangent code
is twice as large as the memory used by the original code,
while the cotangent code used about 25 times more mem-
ory than the original code. It is likely that this last number
could be reduced by using more sophisticated strategies for
determining the information to save during the computation
of the original code. This optimization will become necessary
when automatic differentiation of the industrial code Thyc

Section Title 7 C. Duval et al.

will be undertaken, which is next stage of the EDF-INRIA
collaboration.

REFERENCES
[1] G. Corliss, A. Griewank (Editors). Automatic Differentiation

of Algorithms: Theory, Implementation, and Application, num-
ber 53 in Proceedings in Applied Mathematics. SIAM, Philadel-
phia, (1991).

[2] F. Eyssette, Ch. Faure, J.Ch. Gilbert, N. Rostaing-Schmidt
(1996). Applicabilité de la différentiation automatique à un
système d’équations aux dérivées partielles régissant les
phénomènes thermohydrauliques dans un tube chauffant. Rap-
port de Recherche INRIA no 2795 ou Rapport EDF/DER, HT-
13/96/001/A.

[3] C. Faure (1996). Splitting of Algebraic Expressions for Auto-
matic Differentiation. In Martin Berz, Christian Bischof, George
Corliss, and Andreas Griewank, editors, Computational Differ-
entiation : Techniques, Applications, and Tools. SIAM, Philadel-
phia, Penn., 1996. (To appear).

[4] J.Ch. Gilbert (1992). Automatic differentiation and iterative
processes. Optimization Methods and Software, 1, 13–21.

[5] J.Ch. Gilbert, G. Le Vey, J. Masse (1991). La différentiation au-
tomatique de fonctions représentées par des programmes. Rap-
port de Recherche no 1557, INRIA, BP 105, F-78153 Le Ches-
nay, France.

[6] A. Griewank (1989). On automatic differentiation. In M. Iri,
K. Tanabe (Editors), Mathematical Programming: Recent De-
velopments and Applications, pages 83–108. Kluwer Academic
Publishers, Dordrecht.

[7] J. Morgenstern (1985). How to compute fast a function and
all its derivatives, a variation on the theorem of Baur-Strassen.
SIGACT News, 16, 60–62.

[8] N. Rostaing-Schmidt (1993). Différentiation automatique : ap-
plication à un problème d’optimisation en météorologie. Thèse,
Université de Nice-Sophia Antipolis, France.

[9] N. Rostaing, S. Dalmas, A. Galligo (1993). Automatic differen-
tiation in Odyssée. Tellus, 45, 558–568.

Section Title 8 C. Duval et al.

