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Abstract. An algorithm for minimizing a nonlinear function subject to nonlinear inequality constraints is
described. It applies sequential quadratic programming techniques to a sequence of barrier problems, and ust
trust regions to ensure the robustness of the iteration and to allow the direct use of second order derivatives
This framework permits primal and primal-dual steps, but the paper focuses on the primal version of the new
algorithm. An analysis of the convergence properties of this method is presented.
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1. Introduction

Sequential Quadratic Programming (SQP) methods have proved to be very efficient
for solving medium-size nonlinear programming problems [12,11]. They require few
iterations and function evaluations, but since they need to solve a quadratic subprob-
lem at every step, the cost of their iteration is potentially high for problems with large
numbers of variables and constraints. On the other hand, interior-point methods have
proved to be very successful in solving large linear programming problems, and it is
natural to ask whether they can be extended to nonlinear problems. Preliminary com-
putational experience with simple adaptations of primal-dual interior point methods
have given encouraging results on some classes on nonlinear problems (see for ex-
ample [29,14, 28, 2]).

Inthis paper we describe and analyze an algorithm for large-scale nonlinear program-
ming that uses ideas from interior point methadslsequential quadratic programming.
One of its unique features is the use of a trust region framework that allows for the direct
use of second derivatives and the inaccurate solution of subproblems. The algorithm is
well suited for handling equality constraints (see [4]), but for simplicity of exposition
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we will only consider here inequality constrained problems of the form
min f(X)
X

. (1.2)
subject tog(x) < 0,

wheref : R" — Randg: R" — R™ are smooth functions.
Following the strategy of interior point methods (see for example [13,27,19]) we
associate with (1.1) the following barrier problem in the variaBlesds

m
i _ (i)
min f(x) ,u;lns
subject tog(x) + s= 0,

(1.2)

wheren > 0 and where the vector of slack variabtes (sV, ..., s™)Tis implicitly
assumed to be positive.

The main goal of this paper is to propose and analyze an algorithm for finding an
approximate solution to (1.2), for fixed, that can effectively enforce the positivity
conditions > 0 on the slack variables without incurring in a high cost. This algorithm
can be applied repeatedly to problem (1.2), for decreasing valugs tf approxi-
mate the solution of the original problem (1.1). The key to our approach is to view
interior point methods from the perspective of sequential quadratic programming and
formulate the quadratic subproblem so that the steps are discouraged from violating the
boundss > 0. This framework suggests how to generate steps with primal or primal-
dual characteristics, and is well suited for large problems. Numerical experiments with
an implementation of the new method have been performed by Byrd, Hribar and No-
cedal [4], and show that this approach holds much promise. We should note that in
this paper we do not address the important issue of how fast to decrease the barrier
parameter, which is currently an active area of research.

We begin by introducing some notation and by stating the first-order optimality
conditions for the barrier problem. The Lagrangian of (1.2) is

m
Lx.s.2) = f00 — Y Ins® + 21790 +9), (1.3)
i=1

wherei € R™ are the Lagrange multipliers. At an optimal soluticns) of (1.2) we
have

VxL(X, 5, 1) =V (X) + AL =0 (1.4)
VsL(X,5,A) = — uSte+ 1 =0, (1.5)
where
AX) = (VgPx), ..., vg™(x) (1.6)
is the matrix of constraint gradients, and where
1 st
e=1|:],. S= . (1.7)
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To facilitate the derivation of the new algorithm we define
X m
— — (i)
z= (S> 0(2) = f(X)—M;lnS , (1.8)
|=

c(2) =9g(X) +s, (1.9)
and rewrite the barrier problem (1.2) as

min ¢(2)

. (2.10)
subject toc(z) = 0.

We now apply the sequential quadratic programming method (see for example [12,11])
to this problem. At an iterate, we generate a displacement

by solving the quadratic program

mdin Vo(2)'d + 3d"wd

) (1.11)
subject toA(z) 'd + ¢(z) = 0,

whereW is the Hessian of the Lagrangian of the barrier problem (1.10) with respect to
z, and Where&T is the Jacobian of and is given by

A= (AX"). (1.12)

Note that (1.10) is just a restatement of (1.2), and thus from (1.4)—(1.5) we have that
V2 L(x,5,A) O
W= VZL(X,8 1) = ( S Ms_z) . (1.13)

To obtain convergence from remote starting points, and to allow for the case when
W is not positive definite in the null space én;r, we introduce a trust region constraint

in (1.11) of the form
dx
S1ds

where the trust region radiud > 0 is updated at every iteration. The step in the
slack variables is scaled by ! due to the formuS2 of the portion of the Hessian

W corresponding to the slack variables. Since this submatrix is positive definite and
diagonal, it seems to be the best scale at the current point; see also [4] for a discussion
of how this scaling is beneficial when using a conjugate gradient iteration to compute
the step.

<A, (1.14)
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From now on we simplify the notation by writing a vector suchzag/hich hasx
ands-components, as= (X, s) instead oz = (x, s") ". In this way an expression like
that in (1.14) is simply written as

(4| =1 s 1

The trust region constrair{L..14) does not prevent the new slack variable values
S+ ds from becoming negative unlegsis sufficiently small. Since it is not desirable to
impede progress of the iteration by employing small trust regions, we explicitly bound
the slack variables away from zero by imposing the well-known fraction to the boundary
rule [27]

S+ds> (1-1)s,

where the parameter € (0,1) is chosen close to 1. This results in the subprob-
lem
min Ve(z) 'd + 3d"wd
subject toA(z) 'd + c(z) = 0,
[ (dx, S7Hds) || < A

ds > —78.

(1.16)

We will assume for simplicity that the trust region is defined using the Euclidean norm,
although our analysis would be essentially the same for any other fixed norm. It is true
that problen(1.16) could be quite difficult to solve exactly, but we intend to only com-
pute approximate solutions using techniques such as a dogleg method or the conjugate
gradient algorithm. Due to the formulation of our subproblem these techniques will
tend to avoid the boundaries of the constrasts 0 and will locate an approximate
solution with moderate cost. To see that our subprobl&i6) is appropriate, note

that if the slack variables are scaled By!, the feasible region of the transformed
problem has the essential characteristics of a trust region: it is bounded and contains
a ball centered at whose radius is bounded below by a value that depends and

not onz.

Itis well known [26] that the constraints {4.16) can be incompatible since the steps
d satisfying the linear constraints may not lie within the trust region. Several strategies
have been proposed to make the constraints consistent [7,6,24], and in this paper we
follow the approach of Byrd [3] and Omojokun [20], which we have found suitable for
solving large problems [18].

The strategy of Byrd and Omojokun consists of first taking a normal (or transversal)
stepv that lies well inside the trust region and that attempts to satisfy the linear constraints
in (1.16) as well as possible. To compute the normal stege choose a contraction
parameter O< £ < 1 (sayé = 0.8) that determines a tighter version of the constraints
(1.16), i.e., a smaller trust region radigé and tighter lower bounds-&ét. Then we
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approximately solve the problem

min | A@) T + c(@)|
subject to| (vx, S~tvs) | < £A (1.17)

vs > —&T8S,

where here, and for the rest of the papgr,|| denotes the Euclidean (ér) norm.
The normal step determines how well the linear constraints in (1.16) will be satisfied.
We now compute the total stepby approximately solving the following modification
of (1.16)

”Lin Vo(z)'d + 3d"Wwd
subject toA(z) 'd = A(z) Tv
[ (d. S~2ds)[| < A

ds > —18.

(1.18)

The constraints for this subproblem are always consistent; for exalapleis feasible.
Lalee, Nocedal and Plantenga [18] describe direct and iterative methods for approxi-
mately solving(1.18) in the case when the lower bound constraints are not present.

We now need to decide if the trial stepobtained from (1.18) should be accepted,
and for this purpose we introduce a merit function for the barrier problem (1.10). (Recall
that our objective at this stage is to solve the barrier problem for a fixed value of the
barrier parameter.) We follow Byrd and Omojokun and define the merit function to
be

d(z;v) = 9(2) +vc@)|, (1.19)

wherev > 0 is apenalty parameteiSince the Euclidean norm in the second term is not
squared, this merit function is non-differentiable. It is also exact in the sense that if
greater than a certain threshold value, then a Karush-Kuhn-Tucker point of the barrier
problem (1.2) is a stationary point of the merit functip(i.e., the directional derivative
of ¢ in any direction is nonnegative). The stéjs accepted if it gives sufficient reduction
in the merit function; otherwise it is rejected.

We complete the iteration by updating the trust region radiascording to standard
trust region techniques that will be discussed later on.

We summarize the discussion given so far by presenting a broad outline of the new
algorithm for solving the nonlinear programming problem (1.1).

Algorithm Outline

Choose an initial barrier parameter> 0 and an initial iterate = (X, s) and Lagrange
multipliersa.

1. If (1.1) is solved to the required accuracy, stop.

2. Compute and approximate solution of the barrier prokledn0), as follows.
Choose an initial trust region radids > 0, a contraction parametére (0, 1), and
a penalty parameter> 0 for the merit function (1.19).
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(a) If the barrier problem (1.10) is solved to the required accuracy, go to 3.
(b) Compute a normal step = (vyx, vs) by approximately solving th@ormal
subproblem

min |A@ v +c@)|
subject tof| (vy, S~tus) || < €A (1.20)
Vs = —%-‘L'S.

(c) Compute the total stegp = (dy, ds) by approximately solving théangential
subproblem

min Ve (2)Td + 3dTWd
subject toA(z) 'd = A(z) Tv

(0. S| = &

ds > —1s.

(1.21)

(d) If the stepd does not give a sufficient reduction in the merit function (1.19),
decrease\ and go to (b). Otherwise, sgt<« X + dx,S < S+ ds, Z = (X, 9),
compute new Lagrange multipliexs and go to (a).

3. Decrease the barrier paramegiesind go to 1.

Since the inequality constraints are already being handled as equalities, this algo-
rithm can be easily extended to handle equality constraints. In that case the nonlinear
constraints in1.10) have the form

e
Cm‘(mm+9‘0

The Jacobian matriA then takes the form

< Acx)" 0
AmT=(Ag},),

whereA: and A denote the matrices of constraint gradients correspondiggdadg;;
see [4] for a detailed discussion on the treatment of equality constraints in our new
method.

In Sect. 2 we discuss in more detail when to accept or reject a step, and how to update
the trust region. This will allow us to give a complete description of the algorithm. We
now digress to discuss the relationship between our approach and other interior point
methods. This discussion makes use of the well-known fact that Sequential Quadratic
Programming, in at least one formulation, is equivalent to Newton’s method applied to
the optimality conditions of a nonlinear program [11].
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1.1. KKT systems

The KKT conditions for the equality constrained barrier problem (1.2) give rise to the
following system of nonlinear equationsxns, A (see (1.4), (1.5))

Vix) + A

—uSlte+r | =0 (1.22)
g(x) +s
Applying Newton’s method to this system we obtain the iteration
vazL 0 AX\ [ d« —~Vf(x)
0 uS?% | ds | =| wuSle |, (1.23)
AT 0 AT —g(X) — s

whereat = A + d;, and where we have omitted the argumen®giL (x, s, 1) for
brevity. Note that the current values of the multiplierenly enter in (1.23) through
V2 L. When the objective function and constraints are linear, we have/that = 0,
and thus the step does not depend on the current values of these multipliers; for this
reason a method based on (1.23) is referred topasyaal interior point method.

Let us now suppose that the quadratic subproblem (1.11) is strictly convex, i.e., that
W is positive definite on the null space Afz) . Then it is easy to see that the solution
of (1.11) coincides with the step generated by (1.23). Therefore the SQP approach (1.11)
with W given by (1.13) is equivalent to a primal interior point iteration on the barrier
subproblem, under the convexity assumption just stated. Several researchers, including
Yamashita [29] have noted this relationship.

It is also possible to establish a correspondence betperral-dualinterior point
methods and the SQP approach. Let us multiply the second r@iva# by Sto obtain
the system

Vi(X) + AX)A
S\ — e =0. (1.24)
9(x) +s

This may be viewed as a modified KKT system for the inequality constrained prob-
lem (1.1), since the second row is a relaxation of the complementary slackness con-
dition (which is obtained whep = 0). In the linear programming case, primal-dual
methods are based on iteratively solvifig24) in x, s, A. Applying Newton’s method

to (1.24), and then symmetrizing the coefficient matrix by multiplying the second block
of equations bys 1, results in the iteration

vazL 0 AKX dx —V f(x)
0 SIA | ds | =| wuStle |, (1.25)
AT 1 0 AT —g(X) — s

where we have defined

A =diaga®, ... M), (1.26)
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Now the current value of influences the step through the matnxand throqufo.
We refer to(1.25) as theprimal-dual iteration

Consider now the SQP subprobleinll) with the Hessian of the Lagrangiai
replaced by

g V2 L(x,s,A) O
W:( o §1A>' (1.27)

Itis easy to see that if the quadratic progrénil) is strictly convex, the step generated

by the SQP approach coincides with the solutio(ila?5). Comparing1.13) and(1.27)

we see that the only difference between the primal and primal-dual SQP formulations
is that the matrixxS~2 has been replaced 1§ 1A.

This degree of generality justifies the investigation of SQP as a framework for
designing interior point methods for nonlinear programming. Several choices for the
Hessian matrixV could be considered, but in this study we focus on the (primal) exact
Hessian versiornil.13) because of its simplicity. We note, however, that much of our
analysis could be extended to the primal-dual approach baséda if appropriate
safeguards are applied.

Many authors, among them Panier, Tits, and Herskovits [21], Yamashita [29],
Herskovits [15], Anstreicher and Vial [1], Jarre and Saunders [17], El-Bakry, Tapia,
Tsuchiya, and Zhang [10], Coleman and Li [8], Dennis, Heinkenschloss and Vicente [9],
have proposed interior point methods for nonlinear programming based on iterations
of the form (1.23) or (1.25). In some of these studﬁ%(L is either assumed positive
definite on the whole space or a subspace, or is modified to be so. In our approach there
is no such requirement; we can either use the exact Hessian of the Lagrangian with
respect tax in (1.23) and (1.25), oany approximationB to it. For exampleB could
be updated by the BFGS or SR1 quasi-Newton formulae. This generality is possible by
the trust region framework described in the previous section.

Plantenga [22] describes an algorithm that has some common features with the
algorithm presented here, but his approach has also important differences. Among these
are the fact that his trust region does not include a scaling, that his iteration produces
affine scaling steps near the solution, and that his approach reverts to an active set
method when progress is slow.

We emphasize that the equivalence between SQP and Newton’s method appliedto the
KKT system holds only if the subproble¢h.16) is strictly convex, if this subproblem is
solved exactly, and if the trust region constraint is inactive. Since these conditions will not
hold in most iterations of our algorithm, the approach presented in this paper is distinct
from those based on directly solving the KKT system of the barrier problem. However,
as the iterates converge to the solution, our algorithm will be very similar to these other
interior point methods. This is because near the solution point, the quadratic subproblem
(1.11) will be convex and the tolerances of the procedure for solyingjl) subject to
the trust region constraint, will be set so that, asymptotically, it is solved exactly [4].
Moreover, as the iterates converge to the solution we expect the trust region constraint
to become inactive, provided a second order correction is incorporated in the algorithm.

In summary the local behavior of our method is similar to that of other interior point
methods, but its global behavior is likely to be markedly different. For this reason the
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analysis presented in this paper will focus on the global convergence properties of the
new method.

Notation.Throughout the papéy - || denotes the Euclidean (6p) norm. The vector of
slack variables at thie-th iteration is written asy, and itsi-th component isl((').

2. Algorithm for the barrier problem

We now give a detailed description of the algorithm for solving the barrier problem
(1.10), that was loosely described in Step 2 of the Algorithm Outline in Sect. 1.

From now on we will letBy stand forv2, L (xk, S, i) or for a symmetric matrix
approximating this Hessian. At an iterdi, ), the ste generated by the algorithm
will be an approximate solution of the tangential probl@n21). Due to the definitions
(1.8), (1.12) and(1.13) we can write this tangential problem as

min v f,[dy — e'Stds + 3d)Bidy + S1dd S 2ds (2.1a)
S.t. A;—dx + ds = AE—UX + Us (21b)
H (dx, ilds) H < Ak (2.1¢)

ds > —75. (2.1d)

Here,V fx = V f(xk), andv is the approximate solution 1d.20).
Now we focus on the merit function and, in particular, on how much it is expected
to decrease at each iteration. The merit function (1.19) may be expressed as

(x5 v) = f(0) + ]9 + ] — Y Ins?. (2.2)
i=1

We can construct a modeik of ¢(-, -; vk) around an iterat€xy, ) using (2.1a) and
a linear approximation of the constraints(h2),

1
mi(d) = fi+ V fldx + Ed)—(erdx + k]| Ok + S + Adx + ds|

— 1 <Z Ins” + e’ ds — %dg S:st) : (2.3)
i=1

We will show in Lemma 4 below thaty is a suitable local model af. We define the
predicted reductiomn the merit functionp to be the change in the modak produced
by a sted,

pred,(d) = mk(0) — mk(d)
= —Vifld — %ijkdX

(g + 0 g+ 5+ Alck + ]

+ 1 (eTszlds —~ %dST s;st) . (2.4)
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We will always choose the weighi sufficiently large that prgdd) > 0, as will be
described in Sect. 2.3.

The predicted reduction is used as a standard for accepting the step and for updating
the trust region. We choose a parameter (0, 1), and if

P(Xk + dx, Sk + ds; vk) < d(Xk, Sk; vk) — 1 pred(d), (2.5)

we accept the stegpand possibly increase the trust region radiys otherwise we de-
crease\k by a constant fraction, e.g.x <— Ag/2, and recomputa. Since preg(d) > 0
this implies that the merit function decreases at each step. More sophisticated strategies
for updatingAy are useful in practice, but this simple rule will be sufficient for our
purposes.

Next we consider conditions that determine when approximate solutions to the nor-
mal and tangential subproblems are acceptable. Since these conditions require detailec
justification, we consider these subproblems separately.

2.1. Computation of the normal step

Ateach step of the algorithm for the barrier problem we first solve the normal subproblem
(1.20), which can be written as

min [|gic+ S+ Agvx + vs

st | (vx. Sctos) | = Ax (2.6)
vs > —§T,
where we have defined
Ak = EAx. (2.7)

We now present two conditions that an approximate solutiaf (2.6) must satisfy,
in addition to the constraints @2.6). To do this we introduce the change of variables

Ux = Vx, Us = SK_lvs, (2.8)
so that probleng2.6) becomes
muin |9k + s« + Adux + Scus||

S.t. || (ux, Us)|| < Ak (2.9)

Us > —&t.

If the lower bound constraints are disregarded, it is straightforward to show [18] that
(2.9) has a solution in the range of
A
: 2.10
(%) (2.10
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Even when the lower bounds are present, keepinghe range of2.10) will preventu

from being unreasonably long, and in the implementation of the new method described
in [4], uis chosen always in this space. A condition of this type is important as it allows
us to limit the increase in the objective function due to the normal step, and as we will
see, to limit the magnitude of For the analysis in this paper it suffices to impose the
following weaker condition.

Range Space Condition.The approximate solutiony of the normal problem2.6)

must be of the form
Ak>
vk = Wk, (2.11)
(

for some vectomwy € R™, whenever2.6) has an optimal solution of that form.

The second condition on the normal step requires that the reduction in the objective of
(2.6) be comparable to that obtained by minimizing along the steepest descent direction
in u. This direction is the gradient of the objective in problé®) atu = 0, which is
a multiple of

A
i = (Sf) (G + 90 (2.12)
Transforming back to the original variables we obtain the vector
Ak
v = (33> (Ok + S0, (2.13)

which we call thescaled steepest descent directidve refer to the reduction in the
objective of(2.6) produced by a step = (v, vs) as thenormal predicted reductian

vpred.(v) = [k + Sl — |9k + S + Advx + vs|, (2.14)
and we require that this reduction satisfy the following condition.

Normal Cauchy Decrease Condition.An approximate solutiong of the normal prob-
lem (2.6) must satisfy

vpred (vk) > vy vpred, (egvy), (2.15)
for some constant, > 0, whereayg solves the problem
; T
min [ gk + s+ a(Ack +v9) |

s.t. Ha(vf(, ilvg) H < Ag (2.16)

avg > —&1.
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Note that the normal Cauchy decrease condition and the range space cq@ditipare
satisfied, withy, < 1, by an optimal solution of2.6). Both conditions are also satisfied

if the step is computed by truncated conjugate gradient iterations in the vauiale

the objective 0f2.9) (see Steihaug [25]), and the results are transformed back into the
original variables. Also, since = 0 is a feasible solution of2.16), it is clear from
(2.15) that

vpred (vk) > 0. (2.17)

In Lemma 2 we give a sharper bound on the normal predicted reductionXpked
of an approximate solution that satisfies the normal Cauchy decrease condition. First
we will find it useful to establish this generalization of the one-dimensional version of
a result by Powell [23].

Lemma 1. Consider the one dimensional problem
rznzig ¥(2) = a2 — bz
st.z<t,
where b> 0and t> 0. Then the optimal valug satisfies
b . b
Yy < —5 min {t, H} .

Proof. Consider first the case whan> 0. Theng1 > 0 is the unconstrained minimizer
of y. If g < t, then the unconstrained minimizer solves the problem and

b b?
* = - =—. 2.18
v v (a) 2a ( )
On the other hand, ig > t, sincey is decreasing ofD, 9] andat < b,
Ve = Y(b) = %at2 — bt < —%. (2.19)

In the casa < 0, ¢ is concave everywhere so that
Ve = Y(1) < —bt (2.20)
Since one 0f2.18), (2.19) or (2.20) must hold, the result follows.

Applying this to the normal problem yields the following result.

Lemma 2. Suppose thatis> 0 and thatvky = (vyx, vs) is an approximate solution of
(2.6) satisfying the normal Cauchy decrease condi{i15). Then

ok + sl vpred,(vk) = llgk + Sr<||(||9k + 5l = [ gk + S+ Advx + Us”)

T
[(Ad S)I”

Yv

- 2

(g(") (gk+a<)H min | A, &z,

wherey, is defined in(2.15).
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Proof. Inequality (2.21) clearly holds wheru; = 0 becaus&2.12) implies that the
right hand side of the inequality is zero. Therefore, we now assume §hat0.

By the normal Cauchy decrease conditi@8) and(2.12), the scalaaﬁ is a solution
of

2
.o
min % (A7 S9ug]” - ug]?

a>0 N
st o < 2K
T gl (2.22)
o < ————— foralli such thatu¢ O - 0.
( )(I) I( S)
ug

Note that the upper bounds of probl€in2?2) are satisfied if

. Ak &t
a < mln{ Huﬁ | y ||UE|| } .

Using this and Lemma 1 we have,

1
5 (19 sc+ of (AL + 19| ~ g+ sl?)

(@©)?
= O A s~ o ug)?
Ll { min(A g gl }
-2 lukl (a7 sgug)?
< _M min {Ak, £T, 7\\%” } .
-2 [(AF S))°

Now, since the normal Cauchy decrease condition hold$2[dyh and(2.15),

gk + sl vpred(wo) = vollgk + sl (llg + sl — g+ sc + (AL +29) )

= 2 (o 5P = o+ s+ e (AL + 1) [*)

v

2o ue] min { Ay rﬁ
2 14 {A’S’Hmzsouz}’

where we used the inequalitp@ — b) > a2 — b?. Substituting fou§ by its value given
by (2.12), we obtain(2.21).

O

161
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2.2. Approximate solution of the tangential problem

Consider now the tangential subproblégnl). We will write d = vk + h, wherewvg

is the approximate solution of the normal subproblem. Substituting this expression in
(2.1) and omitting constant terms involving in the objective function, leads to the
following problem inh = (hy, hg),

min (V fic + Biwy) Thy + $h) Bihy (2.23a)
1 (67 hs — 0§ %hs - 3nIS 2hs) (2.23b)

s.t. Alhy +hs=0 (2.23c)
|(hx, Scths)|| < Ak (2.23d)

S tws+he) > —1. (2.23e)

This problem is equivalent t@®.1) if the normal step satisfies the range space condition
(2.11) and we set

A= (82— o 591

since then the vectdhy, S, *hs) is orthogonal tdvx, S, tvs).

When orthogonality is not imposed, we will still chooag in (2.23) to have the
property that ifthy, hs) satisfies (2.23d), thedlk = vk + hi satisfies (2.1c). For example,
this can be achieved by setting

R [

B

although this choice restrictsmore than (2.1c) in some cases. In our analysis, we will
always make the assumption

Ak > A > (1 — &) Ay, (2.24)

which is satisfied by the choices mentioned above.

We now describe a decrease condition that an approximate solut(@®28j must
satisfy. For this purpose we define tiamgential predicted reductigproduced by a step
h = (hy, hs) as the change in the objective function(2f23),

hpreg(h) = —(V fi + Biux) Thx — $h) Bihy

(2.25)
+ 1 (€78 hs = 0§ %hs — h{S.%hs)

Next, we letZy = (ZI ZST)Tdenote a null space basis matrix for the equality constraints
in problem(2.23), i.e., Zx is an(n + m) x n full rank matrix satisfying

(Al 1)Zk= Al Zx + Zs = 0. (2.26)
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A simple choice oy is to defineZy = (I — Ao T, but many other choices are possible,
and some may have advantages in different contexts. In this paper we will 2} ooy
be any null space basis matrix satisfying

IZkl <y, and omin(Zk) >y, 1, forallk, (2.27)

wherey, is a positive constant anghin(Zk) denotes the smallest singular valueZaf
If {Ax} is bounded this condition is satisfied @y = (I — Ax)T and by many other
choices ofZy.

Any feasible vector for(2.23) may be expressed dis= Zyp for somep € R".
Thus, writingh = (hy, hs) = (Zxp, Zsp), the tangential subproble(g.23) becomes

min (¥ fic+ Biwx) ' Zxp — (S e~ §%us) ' Zp
1
+ 5P (ZxBZx + uZs§*Zs)p
st [[(Zxp. S'Zsp) | = A«
S s+ Zsp) = —t.

Again, this has the form of a trust region subproblem for unconstrained optimization,
with bounds at some distance from zero (in the scaled variables) and by analogy with
standard practice, we will require that the step= Zypk give as much reduction in

the objective 012.28) as a steepest descent step. The steepest descent direction for the
objective function 0{2.28) at p = 0 is given by

pE = —ZJ(V fi + Brux) + ,uZST(Sk_le— Szzvs). (2.29)

We are now ready to state the condition we impose on the tangential step.

(2.28)

Tangential Cauchy Decrease Condition.The approximate solutiongof the tangen-
tial problem(2.23) must satisfy

hpreg(hk) > yn hpreg (6 Zx py). (2.30)
for some constant, > 0, wheredy solves the problem

renig — hpreq, (62« py)
st [0(Zxp5 S1Zspf) | < Ax (31)
vs +0ZspPy = — T
Here Z is a null space basis matrix satisfyitig.27) and A satisfieg2.24).

The tangential Cauchy decrease condition is clearly satisfied by the optimal solution of
(2.28). It is also satisfied if the step is chosen by truncated conjugate gradient iterations
in the variablep on the objective 0{2.28) (see Steihaug [25]). Note also that since

6 = 0 is a feasible solution t(2.31),

hpreq.(hx) > 0. (2.32)

The following result establishes a lower bound on the tangential predicted reduction
hpreq (hy) for a step satisfying the tangential Cauchy decrease condition.
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Lemma 3. Suppose thatys> 0 and that ik = (hy, hs) satisfies the tangential Cauchy
decrease conditio2.30). Then

npreho = 2 o] min( min (A, (1~ &)7) I )

1232+ 208225 7?1278z + nZIS*Zs|
(2.33)

where [y is given by(2.29) and yy is used in(2.30).

Proof. Note that the problen2.31) may be expressed as
1

min — hpred, (02«pg) = 5 (P§) '(Z4BkZx + nZIS°Zs) 6 — | pg [0
s.t]0] < Ak
| (ZxpE St Zspf) | (2.34)
0 < —M for all i such tha(S;*zspg)” < o,
(Sx_lzspﬁ)(l)

Since the normal problem ensures th@*vs) ¥ > —&z, it follows from the defin-
ition of the Euclidean norm that the upper bound¥an the last group 0f2.34) are
greater than or equal to

(1-9r
| (ZxpE Sc*Zsmf) |
Applying Lemma 1 to probleni2.34) we then have

— hpreq, (65Zxpy)

min{Ak. (1 — £)7) EAR
(ZxPE ST ZsP) | |(PE) (27 BkZx + 1 ZTS2Zs) B

The result(2.33) then follows from norm inequalities an@.30) .

1 2 .
< —2 | p&]“ min
2 |

2.3. Detailed description of the algorithm

Now that we have specified how the normal and tangential subproblems are to be solved,
we can give a precise description of our algorithm for solving the barrier protdlé&n

Algorithm I. Choose the initial iterategp = (Xo, S0, 20) With 59 > 0, the initial trust
region radiusAg > 0, four constants, n, p, andr in (0, 1) and a positive constant ;.
Setk =0.

1. Compute the normal stex = (vx, vs) by solving approximately(2.6), in such
a way thatvy satisfies the range space conditi@11) and the normal Cauchy
decrease conditiof2.15).
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2. Compute the tangent stép = (hx, hs) by solvingapproximately2.23), in such
a way thaty satisfies the tangential Cauchy decrease condifd@9), and the total
stepdk = (dy, ds) = vk + hy satisfies| (dx, S ds)|| < Ax.

3. Update the penalty parameter of the merit functi2@) as follows. Letvk be the
smallest value ofy, such that

pred(dk) > pvk vpred(vk). (2.35)

If Dk < vk_1, Setvk = vk_1; otherwise setx = max(vk, 1.5vk_1).
4. If

d(Xk + dx, S + ds; vk) > d(Xk, Sk; vk) — 1 pred,(dy)

decrease\i by a constant factor and go to 1.
5. Setxk+1 = Xk + dx, Sk+1 = max(s + ds, —gk+1), compute a new multipliexy1,
updateBy, choose a new valu&y1 > Ay, increas&k by 1 and go to 1.

Steps 3 and 5 need some clarification. Writthg= hy + vx andds = hs + vs, the
total predicted reductio(2.4) becomes

pred(dv) =

—V flvg — %UIBWX — (Vi 4 Bywy) Thy — %hIBkhx

ok (I sl = g+ 5+ Al + i)

+ u (eTSK_lvs — %v§$2vs> + u <eTSK_1hS — v;rSK_ZhS — %h;rSK_ZhS) .
Recalling the definitiong2.14) and (2.25) of the normal and tangential predicted
reductions, we obtain

pred.(dk) = vk vpred(vk) + hpreg (hk) + xk, (2.36)

where
T 1+ Tl 1 1e2
xk = —V i v — va Bkux + | e S "vs — EUSSK_ vs | . (2.37)

We have noted i2.17) and(2.32) that vpreg (vk) and hpreg(hk) are both nonnegative,
but xk, which gives the change in (2.1a) due to the normal stepgan be of any sign.
Condition (2.35) in Step 3 compensates for the possible negativity of this term by
choosing a sufficiently large value of, so that pregldy) is at least a fractiop of

vk vpred(vk). More precisely, fron(2.36) we see that if vprgdvk) > 0, (2.35) holds
when

VK = — Xk .
(1 — p) vpred,(vk)

On the other hand, if vprgduk) = 0, then by(2.21) andsk > O, it must be the case that
Ok + & = 0. In that case = 0 is a solution ta2.6) and by the range space condition
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vk is in the range otAkT SE)T. Sincesc > 0 the squared objective ¢2.6) is a positive
definite quadratic on that subspaceypse 0 is the unique minimizer in that space. This
uniqueness implies thag = 0. In that caserx = 0 and(2.35) is satisfied for any value
of vk.

In Step 5 we do not always set;1 = s + ds, because whelgjl(('}rl < 0, the
i-th constraint is feasible and we have more freedom in choosing the corresponding
slack,sﬁ'll. In this case our rule ensures that the new slack is not unnecessarily small.
Furthermore, it is always the case thgxky + dy, Sc+1; vk) < ¢(Xk + dx, S+ ds; vk), SO
that this update rule fasi.1 does not increase the value of the merit function obtained
after acceptance of the trust region radius.

Finally note that we have left the strategy for computing the Lagrange multipliers and
Bk unspecified. The treatment in this paper alldygo be any bounded approximation
to V)%XL(xk, S, Ak), and allowsik to be any multiplier estimate consistent with this
boundedness. The important question of what choicdaind ik are most effective
is not addressed here, and we refer the reader to [4] for some possibilities.

3. Well-posedness of Algorithm |

The purpose of this section is to show that, if an itefate s¢) is not a stationary point

of the barrier problem, then the trust region radius cannot shrink to zero and prevent
the algorithm from moving away from that point. We begin by showing thais an
accurate local model of the merit functign To analyze this accuracy we define the
actual reductiorin the merit functionp from (xk, ) to (Xk + dx, S + ds) as

ared(d) = ¢(Xk, S vk) — (X + dx, Sk + ds; V). (3.1)
Step 4 of Algorithm | thus states that a st&fs acceptable if
aredi(d) > npred,(d). (3.2)

Lemma 4. Suppose thaV f and A are Lipschitz continuous on an open convex set
X containing all the iterategxyx} generated by Algorithm I, and assume thBk} is
bounded. Then there is a positive constgnsuch that for any iteratéxy, ) and any
step(dy, ds) such that the segmepy, xx + dy] isin X and d; > —1%,

| pred,(d) — ared(d)] < y1 (1 + wlldxl|? + | S ds|?).

Proof. Using the Lipschitz continuity of\, we have for some positive constarit

[190% + o) + 86 + dsll = | gk + 5 + At + |

< ” g(Xk +dx) — Ok — A;—dxH

= sup  [IA(E) — Axll lldxll
£€ Xk, X+ 0]

< y/|ldy]1?.
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Similarly, for any scalars ando’ satisfyingo > 0 ando’ > —10,

o o

t o

/

, o
Inc +0") —Ino — —
o

< sup
telo,0+0’]

/N 2 I\ 2
o o 1 o
= —_ < J— .
a+a/<a) _l—t<0>
Using these two inequalities, the definitiof81), (2.4) of ared(d) and preg(d), the

Lipschitz continuity ofV f, and the boundedness{@y}, we have

| pred(d) — ared(d)|

(3.3)

1
f(xk + dy) — fx — Vi dy — EolxT Bidx

+ Vi (Ilg(xk +0h) + S+ dsll — || gk + S+ Addx + dsll)

Zm (0 o & 1fd i
i
- K In(s¢ + ds) —ln% _W—'_E(W)

i=1 SN SN
< "L+ wlldk )l + (rlr + %) | Sctds|,
for some positive constapt’.
i
This lemma implies that
| pred.(d) — ared(d)| < y1(1+ )AL (3.4)

In the next proposition, we show that Algorithm | determines an acceptable step with
a finite number of reductions afy, i.e., that there can be no infinite cycling between
Steps 1 and 4 of Algorithm I. For this it is important that we ensure that, by decreasing
the trust region radius, we are able to make the displacemesrariitrarily small.

Proposition 1. Suppose thatys> 0 and that(xk, k) is not a stationary point of the
barrier problem(1.2). Thenthere exista? > 0, suchthatifAk € (0, AD), the inequality
(3.2) holds.

Proof. We proceed by contradiction, supposing that there is a subsequence (indexed
by i, the iteration countek is fixed here) of trust region radihx; converging to
zero, and corresponding stefisi = vk i + hxi and penalty parameterg, such that
ared i (dgi) < npred(dgi) foralli.
The inequality aregi (dki) < npred ;(dki) and the assumption € (0, 1) imply
that| preq; (dki) — ared;(dki)| > (1 — n) preq; (dki). This together with the limits
K 0,d% — 0, and Lemma 4 gives

predy (cki) = (L-+ vico([d' ) + oo ) 35)
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We will show that this equation leads to a contradiction, which will prove the proposition.
For the rest of the proafy, v, . .. , denote positive constants (independernthmit not

of k), and to simplify the notation, we omit tikegunents in vpred; (vki ), hpreg ; (hk;i),

and preg; (d.i).

Consider first the case whegx + s« = 0. From (2.14) and (2.17), we see that
vpred; = 0. Also, sincegk + & = 0, (2.6) has a solutiom(= 0) in the range space of
(AkT SE)T, so that the range space conditi@dil 1) implies thaty ; is of the form(2.11),
for some vectong ;. Therefore O= vpred,; = ||(AkTAk + S%)wk,i I, which implies
thatwygi = 0 andvgj = 0, because the matrix inside the parenthesis is nonsingular.
Given that vpreg; andvg; both vanish, we have fror®.36), (2.37) and(2.32) that
predi; = hpreq; > 0. Hence, inequality2.35) holds independently of the value of
vk.i, iImplying that{vgj }i>1 is bounded. Thereforé3.5) gives

pred.; = o(|d" ) + o([d5"|)- (3.6)

On the other hand, fror2.29) andvyj = 0 we see thap; = —Z[V f + uZJS e,
This vector is nonzero; otherwise the KKT conditions of the barrier proljle®) and
the definition(2.26) of Zk, would imply that(xk, ) is a stationary point of the problem.
Then, forAk,i sufficiently small, inequality2.33), the trust region in2.23), and the
fact thathy; = di; give

pred,; = hpred; > y1Aki > v (&', §7ds") | = va( o' + [65])-

This contradictg3.6).
Consider now the case wher + s¢ # 0. Since the matriXA, ) has full rank,

and byAk,i — 0, we deduce froni2.21) that fori large
vpredi; > v4Axi. (3.7)

Then, from Step 3 of the algorithrf8.7), and the fact thatd!?i ||—|—||ds'f’i | < (yg)—lﬁk,i,
we obtain
predi; > pvki vpreq
> ,OVk,iVéAk,i

> PVKiV3Va (”dlf' |+ a5 ”) :

Since,vci > v_1 > 0 this contradict$3.5), concluding the proof.

4. Global analysis of Algorithm |

We now analyze the global behavior of Algorithm | when applied to the barrier prob-
lem (1.2) for a fixed value ofu. To establish the main result of this section we make
the following assumptions about the problem and the iterates generated by the algo-
rithm.
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Assumptions 1. (a) The functionsf andg are differentiable on an open convex set
X containing all the iterates, and f, g, and A are Lipschitz continuous oW.
(b) The iteratesxx form an infinite sequence, the sequendg} is bounded below,
and the sequencé¥ fy}, {gk}, { Ak} and{By} are bounded.

Note that we have not assumed that the matrices of constraint gradighdse full
rank because we want to explore how the algorithm behaves in the presence of dependen
constraint gradients. Our most restrictive assumption is (b), which could be violated if
the iterates are unbounded. The practical value of our analysis, as we will show, is that
the situations under which Algorithm | can fail represent problem characteristics that
are of interest to a user and that can be characterized in simple mathematical terms. As
we proceed with the analysis, we will point out how it makes specific demands on some
of the more subtle aspects of Algorithm | whose role may not be apparent to the reader
at this point. Therefore the analysis that follows provides a justification for the design
of our algorithm.

We adopt the notation™ = max(0, «), for a scalarx, while for a vectoru™ is
defined component-wise by ™) = u®)*. We also make use of the measure of
infeasibility x — [|g(x)™||, which vanishes if and only i is feasible for the original
problem(1.1). Note that|g(-) |2 is differentiable and has for gradient

VIgeoTII? = 2A0900 "
We make use of the following definitions; he#d’ denotes thé-th column ofA.

Definitions 1. Asequencéxy} isasymptotically feasiblé g(xk)™ — 0.We saythatthe
sequencé(gk, Ax)} has a limit point(@, A) failing the linear independence constraint
qualification if the set{ A" : g) = 0} is rank deficient.

Note that the concept of constraint qualification usually applies to a poibiit
that we extend it to characterize limit points of the sequdiige Ax)}, and thus our
definition is not standard. The main result we will establish for Algorithm 1 is the
following.

Theorem 1. Suppose that Algorithm | is applied to the barrier probléh?) and that
Assumptiond hold. Then,
1) the sequence of slack variablgsg} is bounded,
2) Ax(gk+ ) — Oand K(gk + ) — 0.
Furthermore, one of the following three situations occurs.
(i) The sequendg} is not asymptotically feasible. In this case, the iterates approach
stationarity of the measure of infeasibility>¢ | g(x)™ ||, meaning that ,{eg,‘f — 0,
and the penalty parameterg tend to infinity.
(i) The sequencéxy} is asymptotically feasible, but the sequericgk, Ax)} has
a limit point(g, A) failing the linear independence constraint qualification. In this
situation also, the penalty parametesistend to infinity.
(ili) The sequencgxy} is asymptotically feasible and all limit points of the sequence
{(gk, Ax)} satisfy the linear independence constraint qualification. In this situation,
every component 4k} is bounded away from zero, the penalty paramejeis
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constant and gis negative for all large indices k, and stationarity of problem
(1.2) is obtained, i.e.V fx + Akik — 0, where the multipliers are defined by
=S te asin(1.4) and(L.5).

This theorem isolates two situations where the KKT conditions may not be satisfied
in the limit, both of which are of interest. Outcome (i) is a case where, in the limit, there
is no direction improving feasibility to first order. This indicates that finding a feasible
pointis a problem that a local method cannot always solve without a good starting point.
In considering outcome (ii) we must keep in mind that in some cases the solution to
problem(1.2) is a point where the linear independence constraint qualification fails,
and which is not a KKT point. Thus outcome (ii) may be just as relevant to the problem
as satisfying the KKT conditions.

The rest of the section is devoted to the proof of this theorem, which will be
presented in a sequence of lemmas addressing in order all the statements in the theoren
It is convenient to work with the following multiple of the merit functign

PO S) = Tp( ) = - (f(x) - lens(i)) Flg+sl (s> 0.
Vv V

i=1

Since Step 4 of Algorithm | requires thatbe reduced sufficiently at every new iterate,
we have that

npred._q
I

P (Xk» Sk Vk—1) < P(Xk—1, SK-1; Vk—1) —

and therefore
s - 1 1 m : npred,_
P (Xk> Sk; V) < P(Xk—1, Sk-15 Vk—1) + (— - —) fic—p Y In ) - ¢
Vk  Vk—1 -y Vk—1
(4.1)
This indicates that the sequeni@gxx, Sc; vk)} is not necessarily monotone whespis

updated. To deal with this difficulty, we first establish that, under mild assumptions, the
slack variables are bounded above.

Lemma 5. Assume thaf fx} is bounded below and thdtk} is bounded. Then the
sequencésg} is bounded, which implies th&b(xk, s; vk)} is bounded below.

Proof. Let y be an upper bound for fx and for||gk||. Since

m
> In s = minjsdloe < miniscll, (4.2)
i=1

equation(4.1), the fact that the sequendex} is monotone non-decreasing, and the
non-negativity of preggive

3 s 1 1
d(Xk, Sk k) < d(Xo, So; vo) + (— — —) (y +pm max In|is;j). (4.3)
V0 Vk O<j=<k
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On the other hand, from the definition ¢fand (4.2) we have that for aty

3 1
d(Xk, S k) > _v_k(” + pmin|iscd) + skl — lokll- (4.4)

Now, consider the indicdgsuchthafls; | = maxxi; [Is|l- Then combining (4.3)—(4.4)
for k given by any such; we obtain

1
_?(V +pminfis; D+ ls; 1l = llay I
i

J

- 1 1
< $(xo, Soi vo) + (— - —) (v 4+ umin|is; |,
1% v
and thus
- 1
81l < ¢(Xo0, 05 vo) + ¥ + v—o(y+um|n s 1D- (4.5)

Since the ratiain |[s||)/||s| tends to O wherfs|| — oo, relation (4.5) implies thas; }
must be bounded. By definition of the indidgswve conclude that the whole sequence
{s«} is bounded.

O

Given that the slack variables are bounded above andthatbounded below, it is
clear that we may redefine the objective function by adding a constant to it — so that

m
fi — 1 Z Ins.’ >0
i=1
at all iterates, and that this change does not affect the problem or the algorithm in any

way. This positivity, the fact thaty is nondecreasing and.1) imply that

npreq._q
Vk—1

P (XK. S k) < (X1, K13 Vk-1) — (4.6)

for all k.

We can now show that our rule in Step 5 of Algorithm | for determining the new slack
variables sq;+1 = max(sqc + ds, —0k+1), iS such that the step between two successive
iterates is still controlled by the trust radin.

Lemma 6. Assume thaf fx} is bounded below, thafgy} is bounded, and that g is

Lipschitz continuous on an open sgtcontaining all the iterates x Then there exists
a positive constang; such that for all k> 1,

[ (Xiet15 Ser1) — Xk, SO < 1Ak
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Proof. Clearly,||(Xk+1, Sk+1) — %k, SO = X1 =Xl + [ St-1 — Skl and| X1 — Xkl =
Ikl < lld]l < Ak
Consider now the step & Let 2= 0 be the bound ofsx} given by Lemma 5. For
the componentsof s such thasy) ; — s\’ = d{”, one has
Iscs — s | < sl < 7] SMds| < viAk.
For the other components,

(i _

s\ (

s < —dP < [ds|l < YAK
andsgi1 = —gl((i}rl so that, using the fact thak + s > 0 (whenk > 1), one has
(i) (i) (0 (i) (i) (i)
1~ % = G+ % — (G +

wherey’ > 0 denotes the Lipschitz constantgf

) < g1 — gkl < ¥'lldkll < ¥ Ax,

O

With the above two lemmas, we can begin to address convergence in the next result.
It deals with the functiorix, s) € R" x R i [lg(x) + s||2, which is another measure
of infeasibility for the original problenil.1). Note that if the slack variables are scaled
by il, the gradient of this function with respect to the scaled variables is

2 (Ag)) (9(X) + ).

We now show that the iterates generated by the algorithm approach stationarity for this
infeasibility function||g(x) + s||2.

Lemma 7. Assume that the sequendeg}, { A}, and{By} are bounded, that fy} is
bounded below, and that g, A, altf are Lipschitz continuous on an open convex set
X containing all the iteratesi Then

kimoo (g’;) (Ok +s0) =0.

Proof. By the assumptions oA andg, and since Lemma 5 implies thig} is contained
in a bounded open sét, we have that the function

0(X,S) = H (Ag()) (gx) +9

is Lipschitz continuous on the open sEtx S containing all the iterate&, ); i.e.,
there is a constant > 0 such that

16(X, ) — O(x1, 9)| <y 11X, ) — (X1, ), (4.7)

for any two pointgx, s) and(x;,§) in X x S.
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Now consider an arbitrary iterate|, §) such that, = 6(x;, 5) # 0. We first want
to show that in a neighborhood of this iterate all sufficiently small steps are accepted by
Algorithm I. To do this define the ball

Bi={x9:1(x99 -, <6/(2)}

By (4.7), for any(Xx, s) € B; we have that
0(x,s) > 19
b u— 2 |9

which implies thag(x) + s # 0. We also know that the normal step satisf221), and
have shown in Lemma 5 thés} is bounded. Using this, (2.35) and the boundedness
assumptions ofAc} and{gk + sk}, we see that there is a constant(independent ok
andl), such that for any such iterat®, §) and any iteratéxy, ) € B

pred, > pvcvpred, > w16 min (&7, Ag, 6)). (4.8)
Therefore, ifAk is sufficiently small we have
pred, > vky1é Ax.

Using this together with Lemma 4, and recalling the trust region constraint and the fact
thatAx = Ak, we obtain

ared —pred | _ yi((L+volldl?+ [ Sds[?) |y L+ moad
pred B kY101 Ax T wnnfEAK

By makingAk sufficiently small we can ensure that the last term is less than or equal to
1 — n, and therefore for aky € 1) and all suchA,

ared, > npred, 4.9

implying (by (3.2)) acceptance of the step in Algorithm 1.

Next we want to show that the rest of the iterafpegk-| cannot remain ir3;. We
proceed by contradiction and assume that fok alll, xx € B and therefore (4.9) holds
for sufficiently smallAg; this implies that there exista® > 0 such thatay > A0 for
all k > |. This, together with(4.6) and (4.8) gives

Pri1 < Pk — Vlk pred, < ¢k — ny;6 min <§r, ENO, 9|) )

wheregy = ¢(xk. S; vk). Since the last term in the right hand side is constant, this
relation implies thatyy — —oo, contradicting the conclusion of Lemma 5 thak} is
bounded below. Therefore the sequence of iterates must dee somek > 1.
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In that case, letxk+1, Sk+1) be the first iterate aftefx, §) that is not contained
in B. We must consider two possibilities. First, if there exists sgnaell, k] such that
Aj > min(r, 6), then we have fron4.6) and (4.8) that

¢~5k+1 = 4~5j+1
< $j - - pred
Vj
< ¢j — ny16 min £z, 6)
< ¢ — ny;6 min (&, 6) . (4.10)

The other possibility is that for all € [I, k], Aj < min(ét, 9)). In that case it follows
from (4.6) and (4.8) that

k

Prr1 < h— ) Ulj preg

=
ok

< ¢ — ) nrifEA;. (4.11)
=l

Then, using Lemma 6 and the fact thiat 1, sc+1) has left the balls;, whose radius is
61/(2y[) give

k 1 o,
DA = =01 Se) — (0, ) = oo
=l ri yLrt
Substituting in(4.11) we obtain
b1 < B — €6/ (2v{ ). (4.12)

To conclude the proof note that sin{:&ik} is decreasing and bounded below, we
have thatyy — ¢, for some infimum value,. Sincel was chosen arbitrarily, the fact
that either (4.10) or (4.12) must hold@t, §) implies thaty, — O.

O

This result shows thafx(gk + k) — 0 andS(gk + k) — 0. This is of course
satisfied whem + s« — 0, that is when feasibility is attained asymptotically. However
it can also occur whegk+ s« # 0 and the matrice8yx andS, approach rank deficiency,
a possibility we now investigate.

The procedure for updating the slack variables in Step 5 of Algorithm | becomes
important now. It ensures that

k+>0 >0 (4.13)

holds at every iteration. Lemma 8 first uses this relation to show that the gr:Migjit
of the measure of infeasibility — %||g(x)+||2 converges to zero. Then Lemma 8
shows that the cam* -4 0 implies that the penalty parameters tend to infinity.



A trust region method based on interior point techniques for nonlinear programming 175

Lemma 8. Under the conditions of Lemn¥a Akgk+ — 0. Moreover, if the sequence of
iterates is not asymptotically feasible, i.e., ﬂf g 0, then the penalty parameterg
tend to infinity.

Proof. Let A, 0, ands be limit points of the sequencésy}, {gk}, and{s}. Since these
sequences are bounded, we only have to showAfjat= 0.

If §© > 0, the condition$s > 0 and S(g + §) = 0 (from Lemma 7) imply that
80 = 0.1f g0 < 0, then from(4.13), 8" £ 0, which together with the equation
S(§+3) = 0implies tha8? = —g®. This shows thafj+ 3§ = §*. Using the equation
A+ 8 = 0 (from Lemma 7), we obtain thak§t = 0, which proves the first part of
the lemma.

If g /4 0, (4.13) implies that there is an indéxsuch thatgk + s /4 0. Since

S(gk + ) — 0, there is a subsequence of indiesuch thaﬁi') — 0 and Ins;‘((') —
—o0. Since{ fx} is bounded below, this is incompatible with the decreasgxy, sq; v)
for a fixed value of the penalty parameter- 0. Thereforevi is increased infinitely
often, and because this is always at least by a constant fagtprs unbounded.

O

This completes our discussion of the case when the seqdegids not asymptoti-
cally feasible (itenm(i) of Theorem 1).

To continue the analysis we consider from now on only the case when feasibility
is approached asymptotically. We will divide the analysis in two cases depending on
whether the matricefA, S) lose rank or not. We use the notatiemin(M) to denote
the smallest singular value of a matihk, and recall that in Definitions 1 we describe
our notion of linear independence constraint qualification.

Lemma 9. Suppose that the sequen¢gg and{ Ay} are bounded, thatfx} is bounded
below, and that g+ s« — 0. Then, either there is some boufd- 0 such that

omin((Ax S)) = 6

for all k, or the sequencé(gk, Ax)} has a limit point(g, A) failing the linear inde-
pendence constraint qualification. In the latter case, the penalty paramggoes to
infinity.

Proof. If liminf omin((A[ S<)) = 0, there is a subsequence of iterates for which
the smallest singular value c(fA[ Sk) converges to 0. Thus, since the sequence
{(Ax, Ok, Sk} is bounded (by the assumptions), it has a limit p@iAt g, S) such that
the matrix(AT S) is rank deficient. Nov&is diagonal, so that the sét= {i : 3V = 0}
cannot be empty and the columns Afwith index in Z must be linearly dependent.
Since we assumg + s« — 0, we have tha’ = 0if and only ifi € Z, and it follows
that the sefA") : g = 0} is rank deficient. _

Since fori € Z, a subsequence <{)$f<')} tends to zero, a subsequenceefin sf(')}
goes to infinity. Becausi} is bounded anlfy} is bounded below, this is incompatible
with the decrease af(xk, ; v), which would occur ifux were eventually constant. By
the update rule for the penalty parametenyifis changed infinitely often thefuy} is
unbounded.

|
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For the rest of this section we will focus on the case Wl‘awﬁﬁ-((AkT Sk)) >0 >0
for all k, which implies thagk + s« — 0. First we will use this condition to bound the
length of the normal step = (vx, vs) by a constant multiple of vprgdLemma 10);
then we can use this relation to show that the sequence of penalty parameiers
bounded (Lemma 11). Finally we will be able to show that the stationarity conditions
for problem (1.2) are asymptotically satisfied (Lemma 12).

Lemma 10. Suppose that Assumptioh&old and that for somé > 0,
omin((Ad %)) =6 >0, (4.14)
for all k. Then, there are positive constamtsand ys such that if| gk + k|| < 2,
| (vx, Sctvs) || < vavpred,. (4.15)

Proof. Recall that, by Lemma 2, the normal step must satisfy

H( )<gk+s«>H

Al S|

Y

9k + sl vpred, = 0l

<g><g +s«>” min | &z, Ay,

We may assume thaj + s« # 0, for otherwise vpregd= 0, vk = 0 (by the same
argument as in the proof of Proposition 1), and (4.15) is trivially satisfied.
Using (4.14) and letting1 = sup [[(A] S)II, this implies

A

vpred, > VUZG min (Er, A, M) . (4.16)

2
01

Let us now assume thigk + || is strictly smaller than the constag’rt&lz/&. Thenthe
minimum in (4.16) cannot occur &t, and(4.16) becomes

vpred, > )/”70 min (Ak, M) . (4.17)

We now consider two cases:

Case 1.Supposeé g+l > % k. Then, using < o7 and the trust region constraint,

~ ~2 ~3
wpred, = 2 mi (1, ;) Az 22 (o 509

2
201

From this inequality, (4.15) follows immediately.
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Case 2.Suppose

1
2
Consider an arbitrary vectar € R™™ in the range of Al ) that gives a lower
objective in the normal subproble¢®.6) thanv = 0. We claim such a vector satisfies

the constraints 0f2.6) if [|gk + | is sufficiently small. Sincé = (A] ) Tw for
some vectow € R™,

ok + || < =6 Ak (4.18)

2
gk + S =

Ok + S+ (A &) (é’(‘) w
or )
| (AA+ S)w]® < —2(a+ 50T (AL A+ F)w.
Using the Cauchy-Schwarz inequality, this implies that
[ (A¢ A+ SO < 2llgk+ sl
and by (4.14), it follows that

[ (ox, Sc*os) | = H (gf) wH < éllgk + 5l (4.19)

Together(4.18) and(4.19) imply v is within the trust region. In addition, for each slack
variables, (4.19) implies

NG _ _ 2
(S9) " = = (Bx. S M99) | = g + sl = ¢, (4.20)
provided that|gk + sl < (§16)/2. Thusv is feasible for2.6).

Now consider the probleli2.6) and its transformed equivale(.9). Since(A[ Sk)
is of full rank there is a solutionto the equatiogk+ s+ AkTuX+ Sus = 0, of minimum

Euclidean norm, which is known to lie in the range(aﬁfkT Sk)T. Thusv = (Oy, SUs)
lies in the range ofAkT §§)T, and gives a value of zero for the objective(@f6). By
the above argument, jfgx + || is sufficiently smallp is feasible for probleni2.6),
and is therefore a solution {@.6). Sincev is a solution to(2.6) lying in the range of
(AkT SE)T, the range space conditio®.11) implies that the normal stegk must also lie
in the range of Al ). This implies that, since vpretbi) > 0, vy satisfies(4.19),
so that

[ (vx, §ctos) || < §||g|<+a<||. (4.21)

Now recall that by4.17) and(4.18),

QN

o . o
vpred, > 2% min ( £, 2 ) gk + sl
2 52

which together with4.21) implies (4.15).
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For future reference we note that in the case widet¥) holds, so thagk + s« — O,
(4.15) implies that

w—>0 & k— .

Note also that if the Lagrange multipliexg are defined as the least squares solution to

V fk + AkA —0

Sh—pue ) 7
then the boundedness (¥ fy}, {Ax}, {s}, and (4.14) imply that the sequencg.y}
is bounded. The boundedness assumptioBpis now easy to enforce in this case,
particularly if By is defined ay)%XL(xk, S, Ak).

With the bound4.15) on the normal step, in the case wheret+ sk — 0, we can
show that the parameteg eventually becomes fixed.

Lemma 11. Suppose that Assumptiodsare satisfied, and tha{4.15) holds for k
sufficiently large. Then, the sequence of penalty paramgigrss bounded. In addition,
there exists an index kand positive scalars andy, such that for all k> ki,

VK="V
and
pred.(dk) > yahpreq. (4.22)
Proof. In Step 3 of Algorithm I,vk is chosen to be sufficiently large such that
pred.(dk) > pvk vpred, (4.23)

where, as in2.36)—(2.37)

pred (dg) = vk vpred, + hpreg

1 1 4.24
-V vaX — vaTBkvx +u (eTS:le - Ev;rslzzvs) . ( )

We consider the terms in the second line of the above equation. By Assumptidik}L,

{Ac}, and{By} are all bounded. Note also thapred,} is bounded, since by2.14),
vpred, < |lgk + ||, and this quantity is bounded as a consequence of Assumption 1
and Lemma 5. Therefore, usiig.15), there is a constamt; > 0 such that

1 1
v fkTvx — EUIBkvX + 1 (eTﬁzlvs — évsT$2vs> > — y; vpred.
Hence from(4.24) the predicted decrease satisfies

pred.(dk) > vk vpred, + hpreg, —y; vpred. (4.25)

Since vpregand hpreg are nonnegative, we deduce from this inequality that condi-
tion (4.23) is satisfied ifux > y;/(1—p). Therefore, ik becomes larger thar / (1—p),
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it will never be increased. This, together with the fact that whenever Algorithm | in-
creasesy it does so by a constant factor, implies that after some itekatgay, vk will
remain unchanged at some value

Now (4.25) and4.23) imply

/

pred.(ck) > hpreg —y; vpred; > hpred, — L predy(d).
PVK

so that (4.22) holds with/ly4 = 1+ y{/(pV).
O

Lemma 12. Suppose that Assumptioh$iold and that the singular values of the ma-
trices (A, S) are bounded away from zero. Then,

(i) {s}is bounded away from zero ang § negative for all large k,

(i) V i+ uAS e — 0.

Proof. By Lemma 7,0k + s« — 0, and thus (4.15) eventually holds at all iterates. So,
by Lemma 11, we have thag = v for all k > k1. Since Algorithm | decreases the merit
function at every iteration we have

DXk, S V) < (X, S V), fork > ky.

Thus
m .
—1 Y Ins? < Xy, Sq: D) — fi— gk + Sl
i=1
Since we assume théfy} is bounded below and becausg} is bounded (Lemma 5),
this implies that there is a vectsr> 0 such that
% >S5, fork>1.

Thus, becausgk + s« — 0, we have thagk < O for largek, proving (i).
Next, recall that, by Lemma 3hy, hs) satisfies

Wi o . min(Ag (1—87) | il
hpreq > — | pg| min ; ;
= g mn (DGt e
(4.26)
where
PE = —Z(V fic + Byvx) + nZJ (S e — Sc2vs), (4.27)

and where the null space basis ma#jx= (Z, ZJ)Tisassumed to have singular values
that are both bounded above and bounded away from zero. Since we have shown that
all components o$ are bounded away from zero, it follows tr{zitIZx + ZSTSK‘ZZS}

is bounded. In addition sincgBy} is bounded{Z By Zx + 1 ZI S *Zs) is bounded.
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Hence, inequality (4.26) becomes

hpred, = 1 | g min (1. Ax. |l ) . (4.28)

for some positive constan .
To show thatv fx + ,uAkszletends to zero, we relate this quantityf. Note that

the matrix(I —Ay) " is a null space basis (s€2.26)), and that using the equivalence
of null space bases we get

k= Vf+ MAk$1e = (I —Ax vVite
= —M%_le
_ V f(Xk)
= (I —AVZ(Z{Z) tZ]

( k) k( k k) Kk <—MSK_19
for the chosen null space bastk. By the boundedness d&x and of the singular
values of Zx it follows from (4.29) that {gk} is bounded by a constant multiple of
1Z4V fk — nZd Sctell. Hence, by(4.27), for some positive constangsg andy;

) . (4.29)

PS> vhllall — v4llukll,  forallk.

We use a similar argument to that used in the proof of Lemma 7. To obtain a contra-
diction, suppose that = %Iim SUR, « IOk]l IS nonzero. Sincex — 0, we can find an
iterate(x|, §) with arbitrarily largel such that|q || > 3¢ and such thag;||vk| < y50
forall k > |. Letj_ be the Lipschitz constant fayx, s) = V f(x) + ©A(X)S te. Then
any iterate(xg, &), with k > I, in the ballBy = {(X,s) : [|(X,S) — (X, )] < 6/},
satisfies

102l = va (larll = o — akl) — vallvkll = y5(30 — 6 — 6) = y46.
By Lemma 11 and (4.28), we have wit} = y4y; v,
pred, > yahpreq > y,0min (1, Ay, y56). (4.30)

Now since{¢k} is bounded below, prgd— 0, and thus by4.30), Ak — 0 for the
subsequence aéffor which (4.30) holds, Therefore, we can taksufficiently large that
for anyk > | with (xk, s) € Bi, we haveAy < min (1, y56), and thus

pred, > y40Ax. (4.31)

Now by (3.4), if (Xk, %) € B

— 1+ D)AZ
ared —prede| _ n A+ DA _, (4.32)
pred Y40 Ak

for Ak sufficiently small, implying acceptance of the step. This implies thegifsc) €
By for all k > |, Ax would eventually stop decreasing. This is impossible since we
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have shown above thaik — 0. Thus the sequence must eventually leByefor
somek > |.

In that case, letxk+1, Sk+-1) be the first iterate aftefx, §) that is not contained
in B;. It follows from (4.31) and 2.24) that

k
$kr1 < ¢ —n ) _pred

=

k
< — =8 A
j=I

< ¢ — ny4s(L— 6%/ (4.33)

The last inequality follows from the fact thétx,1, Sk+1) has left the ball5;, whose
radius isf/ 7L, so that, as at the end of Lemmay?,‘_ Aj > /7.

Since the sequendey} is decreasing and bounded below, it converges. This is in
contradiction with the fact thatmay be chosen arbitrarily large in (4.33), and the fact
thatd # 0. Thereforegx — O.

O

Now we have established all points of our main convergence result, Theorem 1,
which we restate and whose proof we now summarize.

Theorem 2. Suppose that Algorithm | is applied to the barrier probl€h®) and that
Assumptiond hold. Then,
1) the sequence of slack variablgsg} is bounded,

2) Ak(Gk + ) — Oand K(gk + ) — 0.
Furthermore, one of the following three situations occurs.
(i) The sequencéxy} is not asymptotically feasible. In this situation, the iterates
approach stationarity of the measure of infeasibilityx ||g(x) " ||, meaning that
Akg"(Ir — 0, and the penalty parameterg tend to infinity.

(i) The sequencéxy} is asymptotically feasible, but the sequencgx, Ax)} has
alimit point(g, A) failing the linear independence constraint qualification. In this
situation also, the penalty parametesstend to infinity.

(ili) The sequencexy} is asymptotically feasible and all limit points of the sequence
{(gk, Ax)} satisfy the linear independence constraint qualification. In this situation,
{sx} is bounded away from zero, the penalty parameteis constant and gis
negative for all large indices k, and stationarity of probl€¢h2) is obtained, i.e.,
V fk + Akik — O, where the multipliers are defined by = ,uﬁ(‘le.

Proof. Conclusion (1) was established in Lemma 5, and conclusion (2) in Lemma 7. In
the case thdixy} is not asymptoticallyfeasibleg( -4 0), itwas shown in Lemma 8 that
situation(i) occurs. IfgkF — 0, it was shown in Lemma 9, Lemma 11, and Lemma 12
that eithe(ii) or (iii ) must hold.

O
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5. Overall algorithm

In this section we consider the overall algorithm, in which Algorithm I is run for
decreasing values of the barrier paramgtéiVe are not concerned here with conditions
assuring a good rate of convergence, but consider only the global convergence properties
of this algorithm.

Algorithm II. Choose an initial valugi; > 0 for the barrier parameter, a reduction
factora € (0, 1), and a sequence of stopping toleranegl- 1 that tends to zero. Choose
an initial iterate(xg, ) and set = 1 andkg = 0.

1. Apply Algorithm | from the point(xy_,, S¢_,) until it finds a point(xy, S ) satis-
fying

IOk + ¢l e, (5.1)

IV fi + Ak Il < e, (5.2)

wherery = Qle.
Chooseui+1 € (0, auy).
3. Increasé by 1, and go to Step 1.

N

All the iterates generated by this algorithm form a single sequéngesq) }k=o-
The indexk_1 (I > 1) labels the starting point of tHéh outer iteration, which ends at
the point(xy,, S )-

Theorem 3. Suppose thaf(xk, )} is generated by Algorithm Il and that, for each
barrier problem, Assumptiorishold. Then, one of the following two possible outcomes
can occur.

(A) For some parameten,, either inequality(5.1) is never satisfied, in which case
the stationarity condition for minimizing x> ||g(x)™| is satisfied in the limit,
i.e., Ax\g(xk)+T — 0, orelse g + s« — 0but inequality(5.2) is never satisfied,
in which case the sequen¢@y, Ax)} has a limit point(g, A) failing the linear
independence constraint qualification.

(B) At each outer iteration | of Algorithm Il, the inner algorithm succeeds in finding
a pair (Xy , S ) satisfying(5.1)—(5.2). All limit pointsX of {xy, } are feasible. Fur-
thermore, if any limit poink of {xy} satisfies the linear independence constraint
qualification, then the first order optimality conditions of the problem

n}(in f(x)

s.t.gx) <0

hold atX: there exists. € R™ such that

vi+Ai=0, §<0, 1>0 ¢§'i=0.
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Proof. Suppose that, for some value of, Algorithm Il fails to find a point satisfy-
ing (5.1) and(5.2). This implies that Algorithm | generates an infinite sequence for
problem(1.2) with « = w, but that outcoméiii ) of Theorem 2 does not occur. Since
Assumptions 1 hold this implies that, for that valueigfeither outcomei) or (ii) of
Theorem 2 occurs, which leads to conclusiéY).

The only other possibility is that Algorithm Il satisfi€5.1)—(5.2) for all | > 1.
Let £ be a subsequence of indickssuch thatxy, — X whenl — oo in L. Since
0 < gq < Oy +S andgyg +s¢ — 0, one hagy = g(X) < 0 (X is feasible) and
S — S=—gwhenl — ocoin L.

Now suppose that the linear independence constraint qualification hotdarat
consider the set of indices

Z={i:9" =0}

Fori ¢ Z, " < 0ands® > 0, so thamg) = M/q((:) — 0 whenl — oo in £. From
this andVv fi, + A i — 0, we deduce that

Vi + > M Vgl — 0. (5.3)
el

By the constraint qualification hypothesis, the vectpvg") : i e Z} are linearly
independent, so that, li%.3), the positive sequendey, }|c, converges to some value
A > 0. Now, it remains to take the limit i fy, + Ay A, whenl — oo in £ and to
observe thagTX = 0. Therefore conclusio(B) holds.

|

6. Final remarks

In this paper we have presented and analyzed a trust region method for solving the barrier
problem(1.2). This is an optimization problem with nonlinear equality constraints, plus
the implicit constrains > 0. Our strategy has been to use a well-developed algorithm
for equality constrained optimization and enforce the constsain0 by means of the

trust region and the barrier term. Another benefit of using a trust region is the ability of
the method to deal with indefiniteness of the Hessian and near rank deficiency of the
constraints.

The algorithmic framework given in Sect. 1 can be used to implement primal or
primal-dual interior point methods. In this paper we have focused on primal methods
because they are easier to analyze and we have devoted much attention to their globa
convergence properties because the analysis provides important clues on how to desigr
the algorithms. Computational experience with the primal interior point method is given
in [16,4]; those papers also provide computational results with primal-dual methods.

Another question to be dealt with is how to ensure that a good rate of convergence is
obtained. This requires, among other things, a careful strategy for updating the barrier
parametemw and deciding how accurately to solve the barrier subproblems [5]. We
should also mention that since our merit function is non-differentiable, getting fast
convergence may necessitate use of a second-order correction or a watch-dog strategy
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to avoid the Maratos effect. Our computational experience [18,4] indicates that use of
a second-order correction can be an efficient strategy for this purpose.
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