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Abstract. We propose a BFGS primal-dual interior point method for minimizing a convex func-
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1. Introduction. We consider the problem of minimizing a smooth convex func-
tion on a convex set defined by inequality constraints. The problem is written as

{

min f(x),
c(x) ≥ 0,

(1.1)

where f : R
n → R is the function to minimize and c(x) ≥ 0 means that each compo-

nent c(i) : R
n → R (1 ≤ i ≤ m) of c must be nonnegative at the solution. To simplify

the presentation and to avoid complicated notation, the case when linear equality
constraints are present is discussed at the end of the paper. Since we assume that the
components of c are concave, the feasible set of this problem is convex.

The algorithm proposed in this paper and the convergence analysis require that
f and c are differentiable and that at least one of the functions f , −c(1), . . . , −c(m) is
strongly convex. The reason for this latter hypothesis will be clarified below. Since the
algorithm belongs to the class of interior point (IP) methods, it may be well suited for
problems with many inequality constraints. It is also more efficient when the number
of variables remains small or medium, say, fewer than 500, because it updates n× n
matrices by a quasi-Newton (qN) formula. For problems with more variables, limited
memory BFGS updates [39] can be used, but we will not consider this issue in this
paper.

Our motivation is based on practical considerations. During the last 15 years
much progress has been realized on IP methods for solving linear or convex mini-
mization problems (see the monographs [29, 10, 38, 44, 23, 42, 47, 49]). For nonlinear
convex problems, these algorithms assume that the second derivatives of the functions
used to define the problem are available (see [43, 35, 36, 12, 38, 26]). In practice, how-
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ever, it is not uncommon to find situations where this requirement cannot be satis-
fied, in particular for large scale engineering problems (see [27] for an example, which
partly motivates this study and deals with the estimation of parameters in a three
phase flow in a porous medium). Despite the possible use of computational differen-
tiation techniques [8, 19, 3, 28], the computing time needed to evaluate Hessians or
Hessian-vector products may be so large that IP algorithms using second derivatives
may be unattractive.

This situation is familiar in unconstrained optimization. In that case, qN tech-
niques, which use first derivatives only, have proved to be efficient, even when there
are millions of variables (see [32, 20] and [9] for an example in meteorology). This fact
motivates the present paper, in which we explore the possibility of combining the IP
approach and qN techniques. Our ambition remains modest, however, since we con-
fine ourselves to the question of whether the elegant BFGS theory for unconstrained
convex optimization [41, 6] is still valid when inequality constraints are present. For
the applications, it would be desirable to have a qN-IP algorithm in the case when
f and −c are nonlinear and not necessarily convex. We postpone this more difficult
subject for future research (see [21, 48] for possible approaches).

Provided the constraints satisfy some qualification assumptions, the Karush–
Kuhn–Tucker (KKT) optimality conditions of problem (1.1) can be written (see [17],
for example) as follows: there exists a vector of multipliers λ ∈ R

m such that







∇f(x) −∇c(x)λ = 0,
C(x)λ = 0,
(c(x), λ) ≥ 0,

where ∇f(x) is the gradient of f at x (for the Euclidean scalar product), ∇c(x) is a
matrix whose columns are the gradients ∇c(i)(x), and C = diag(c(1), . . . , c(m)) is the
diagonal matrix, whose diagonal elements are the components of c. The Lagrangian
function associated with problem (1.1) is defined on R

n × R
m by

`(x, λ) = f(x) − λ>c(x).

Since f is convex and each component c(i) is concave, for any fixed λ ≥ 0, `(·, λ) is
a convex function from R

n to R. When f and c are twice differentiable, the gradient
and Hessian of ` with respect to x are given by

∇x`(x, λ) = ∇f(x) −∇c(x)λ and ∇2
xx`(x, λ) = ∇2f(x) −

m
∑

i=1

λ(i)∇2c(i)(x).

Our primal-dual IP approach is rather standard (see [24, 36, 35, 11, 12, 1, 26, 25,
15, 7, 5]). It computes iteratively approximate solutions of the perturbed optimality
system







∇f(x) −∇c(x)λ = 0,
C(x)λ = µe,
(c(x), λ) > 0

(1.2)

for a sequence of parameters µ > 0 converging to zero. In (1.2), e = (1 · · · 1)>

is the vector of all ones whose dimension will be clear from the context. The last
inequality means that all the components of both c(x) and λ must be positive. By
perturbing the complementarity equation of the KKT conditions with the parameter
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µ, the combinatorial aspect of the problem, inherent in the determination of the active
constraints or the zero multipliers, is avoided. We use the word inner to qualify those
iterations that are used to find an approximate solution of (1.2) for fixed µ, while an
outer iteration is the collection of inner iterations corresponding to the same value
of µ.

The Newton step for solving the first two equations in (1.2) with fixed µ is the
solution d = (dx, dλ) ∈ R

n × R
m of the linear system

(

M −∇c(x)
Λ∇c(x)> C(x)

)(

dx

dλ

)

=

(

−∇f(x) + ∇c(x)λ
µe− C(x)λ

)

,(1.3)

in which M = ∇2
xx`(x, λ) and Λ = diag(λ(1), . . . , λ(m)). This direction is sometimes

called the primal-dual step, since it is obtained by linearizing the primal-dual system
(1.2), while the primal step is the Newton direction for minimizing in the primal
variable x the barrier function

ϕµ(x) := f(x) − µ

m
∑

i=1

log c(i)(x)

associated with (1.1) (the algorithms in [16, 33, 4] are in this spirit). The two problems
are related since, after elimination of λ, (1.2) represents the optimality conditions of
the unconstrained barrier problem

{

min ϕµ(x),
c(x) > 0.

(1.4)

As a result, an approximate solution of (1.2) is also an approximate minimizer of the
barrier problem (1.4). However, algorithms using the primal-dual direction have been
shown to present a better numerical efficiency (see, for example, [46]).

In our algorithm for solving (1.2) or (1.4) approximately, a search direction d
is computed as a solution of (1.3) in which M is now a positive definite symmetric
matrix approximating ∇2

xx`(x, λ) and updated by the BFGS formula (see [14, 17] for
material on qN techniques). By eliminating dλ from (1.3) we obtain

(M + ∇c(x)C(x)−1Λ∇c(x)>)dx = −∇f(x) + µ∇c(x)C(x)−1e = −∇ϕµ(x).(1.5)

Since the iterates will be forced to remain strictly feasible, i.e., (c(x), λ) > 0, the
positive definiteness of M implies that dx is a descent direction of ϕµ at x. Therefore,
to force convergence of the inner iterates, a possibility could be to force the decrease
of ϕµ at each iteration. However, since the algorithm also generates dual variables λ,
we prefer to add to ϕµ the function (see [45, 1, 18])

V(x, λ) := λ>c(x) − µ

m
∑

i=1

log
(

λ(i)c(i)(x)
)

to control the change in λ. This function is also used in [30, 31] as a potential function
for nonlinear complementarity problems. Even though the map (x, λ) 7→ ϕµ(x) +
V(x, λ) is not necessarily convex, we will show that it has a unique minimizer, which is
the solution of (1.2), and that it decreases along the direction d = (dx, dλ). Therefore,
this primal-dual merit function can be used to force the convergence of the pairs
(x, λ) to the solution of (1.2), using line-searches. It will be shown that the additional
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function V does not prevent unit step-sizes from being accepted asymptotically, which
is an important point for the efficiency of the algorithm.

Let us stress the fact that our algorithm is not a standard BFGS algorithm for
solving the barrier problem (1.4), since it is the Hessian of the Lagrangian that is
approximated by the updated matrix M , not the Hessian of ϕµ. This is motivated by
the following arguments. First, the difference between ∇2

xx`(x, µC(x)−1e) and

∇2ϕµ(x) = ∇2f(x) + µ

m
∑

i=1

(

1

c(i)(x)2
∇c(i)(x)∇c(i)(x)>− 1

c(i)(x)
∇2c(i)(x)

)

(1.6)

involves first derivatives only. Since these derivatives are considered to be available,
they need not be approximated. Second, the Hessian ∇2

xx`, which is approximated by
M , is independent of µ and does not become ill-conditioned as µ goes to zero. Third,
the approximation of ∇2

xx` obtained at the end of an outer iteration can be used as
the starting matrix for the next outer iteration. If this looks attractive, it has also the
inconvenience of restricting the approach to (strongly) convex functions, as we now
explain.

After the computation of the new iterates x+ = x+ αdx and λ+ = λ+ αdλ (α is
the step-size given by the line-search), the matrix M is updated by the BFGS formula
using two vectors δ and γ. Since we want the new matrix M+ to be an approximation
of ∇2

xx`(x+, λ+) and because it satisfies the qN equation M+δ = γ (a property of the
BFGS formula), it makes sense to define δ and γ by

δ := x+ − x and γ := ∇x`(x+, λ+) −∇x`(x, λ+).

The formula is well defined and generates stable positive definite matrices provided
these vectors satisfy γ>δ > 0. This inequality, known as the curvature condition,
expresses the strict monotonicity of the gradient of the Lagrangian between two suc-
cessive iterates. In unconstrained optimization, it can always be satisfied by using
the Wolfe line-search, provided the function to minimize is bounded below. If this is
a reasonable assumption in unconstrained optimization, it is no longer the case when
constraints are present, since the optimization problem may be perfectly well defined
even when ` is unbounded below. Now, assuming this hypothesis on the boundedness
of ` would have been less restrictive than assuming its strong convexity, but it is not
satisfactory. Indeed, with a bounded below Lagrangian, the curvature condition can
be satisfied by the Wolfe line-search as in unconstrained optimization, but near the
solution the information on ∇2

xx` collected in the matrix M could come from a region
far from the optimal point, which would prevent q-superlinear convergence of the it-
erates. Because of this observation, we assume that f or one of the functions −c(i)
is strongly convex, so that the Lagrangian becomes a strongly convex function of x
for any fixed λ > 0. With this assumption, the curvature condition will be satisfied
independently of the kind of line-search techniques actually used in the algorithm.
The question whether the present theory can be adapted to convex problems, hence
including linear programming, is puzzling. We will come back to this issue in the
discussion section.

A large part of the paper is devoted to the analysis of the qN algorithm for solving
the perturbed KKT conditions (1.2) with fixed µ. The algorithm is detailed in the
next section, while its convergence speed is analyzed in sections 3 and 4. In particular,
it is shown that, for fixed µ > 0, the primal-dual pairs (x, λ) converge q-superlinearly
toward a solution of (1.2). The tools used to prove convergence are essentially those of
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the BFGS theory [6, 13, 40]. In section 5, the overall algorithm is presented and it is
shown that the sequence of outer iterates is globally convergent, in the sense that it is
bounded and that its accumulation points are primal-dual solutions of problem (1.1).
If, in addition, strict complementarity holds, the whole sequence of outer iterates
converges to the analytic center of the primal-dual optimal set.

2. The algorithm for solving the barrier problem. The Euclidean or `2
norm is denoted by ‖ · ‖. We recall that a function ξ : R

n → R is said to be
strongly convex with modulus κ > 0, if for all (x, y) ∈ R

n × R
n one has ξ(y) ≥

ξ(x) + ∇ξ(x)>(y − x) + κ‖y − x‖2 (for other equivalent definitions, see, for example,
[22, Chapter IV]). Our minimal assumptions are the following.

Assumption 2.1. (i) The functions f and −c(i) (1 ≤ i ≤ m) are convex and
differentiable from R

n to R and at least one of the functions f , −c(1), . . . , −c(m) is
strongly convex. (ii) The set of strictly feasible points for problem (1.1) is nonempty,
i.e., there exists x ∈ R

n such that c(x) > 0.
Assumption 2.1(i) was motivated in section 1. Assumption 2.1(ii), also called

the (strong) Slater condition, is necessary for the well-posedness of a feasible interior
point method. With the convexity assumption, it is equivalent to the fact that the
set of multipliers associated with a given solution is nonempty and compact (see
[22, Theorem VII.2.3.2], for example). These assumptions have the following clear
consequence.

Lemma 2.2. Suppose that Assumption 2.1 holds. Then, the solution set of prob-

lem (1.1) is nonempty and bounded.

By Lemma 2.2, the level sets of the logarithmic barrier function ϕµ are compact,
a fact that will be used frequently. It is a consequence of [16, Lemma 12], which we
recall for completeness.

Lemma 2.3. Let f : R
n → R be a convex continuous function and c : R

n → R
m

be a continuous function having concave components. Suppose that the set {x ∈ R
n :

c(x) > 0} is nonempty and that the solution set of problem (1.1) is nonempty and

bounded. Then, for any α ∈ R and µ > 0, the set
{

x ∈ R
n : c(x) > 0, f(x) − µ

m
∑

i=1

log c(i)(x) ≤ α

}

is compact (and possibly empty).
Let x1 be the first iterate of our feasible IP algorithm, hence satisfying c(x1) > 0,

and define the level set

LP

1 := {x ∈ R
n : c(x) > 0 and ϕµ(x) ≤ ϕµ(x1)}.

Lemma 2.4. Suppose that Assumption 2.1 holds. Then, the barrier problem (1.4)
has a unique solution, which is denoted by x̂µ.

Proof. By Assumption 2.1, Lemma 2.2, and Lemma 2.3, LP
1 is nonempty and

compact, so that the barrier problem (1.4) has at least one solution. This solution
is also unique, since ϕµ is strictly convex on {x ∈ R

n : c(x) > 0}. Indeed, by
Assumption 2.1(i), ∇2ϕµ(x) given by (1.6) is positive definite.

To simplify the notation we denote by

z := (x, λ)

a typical pair of primal-dual variables and by Z the set of strictly feasible z’s:

Z := {z = (x, λ) ∈ R
n × R

m : (c(x), λ) > 0} .
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The algorithm generates a sequence of pairs (z,M), where z ∈ Z and M is a
positive definite symmetric matrix. Given a pair (z,M), the next one (z+,M+) is
obtained as follows. First

z+ := z + αd,

where α > 0 is a step-size and d = (dx, dλ) is the unique solution of (1.3). The
uniqueness comes from the positivity of c(x) and from the positive definiteness of M
(for the unicity of dx, use (1.5)). Next, the matrix M is updated into M+ by the
BFGS formula

M+ := M − Mδδ>M

δ>Mδ
+
γγ>

γ>δ
,(2.1)

where γ and δ are given by

δ := x+ − x and γ := ∇x`(x+, λ+) −∇x`(x, λ+).(2.2)

This formula gives a symmetric positive definite matrix M+, provided M is symmetric
positive definite and γ>δ > 0 (see [14, 17]). This latter condition is satisfied because
of the strong convexity assumption. Indeed, since at least one of the functions f or
−c(i) is strongly convex, for any fixed λ > 0, the function x 7→ `(x, λ) is strongly
convex, that is, there exists a constant κ > 0 such that

2κ‖x− x′‖2 ≤ (∇x`(x, λ) −∇x`(x
′, λ))

>
(x− x′) for all x and x′.

Since α sizes the displacement in x and λ, the merit function used to estimate
the progress to the solution must depend on both x and λ. We follow an idea of
Anstreicher and Vial [1] and add to ϕµ a function forcing λ to take the value µC(x)−1e.
The merit function is defined for z = (x, λ) ∈ Z by

ψµ(z) := ϕµ(x) + V(z),

where

V(z) = λ>c(x) − µ

m
∑

i=1

log
(

λ(i)c(i)(x)
)

.

Note that

∇ψµ(z) =

(

∇f(x) − 2µ∇c(x)C(x)−1e+ ∇c(x)λ
c(x) − µΛ−1e

)

.(2.3)

Using ψµ as a merit function is reasonable provided the problem

{

min ψµ(z),
z ∈ Z(2.4)
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has for unique solution the solution of (1.2) and the direction d = (dx, dλ) is a descent
direction of ψµ. This is what we check in Lemmas 2.5 and 2.6 below.

Lemma 2.5. Suppose that Assumption 2.1 holds. Then, problem (2.4) has a

unique solution ẑµ := (x̂µ, λ̂µ), where x̂µ is the unique solution of the barrier prob-

lem (1.4) and λ̂µ has its ith component defined by (λ̂µ)(i) := µ/c(i)(x̂µ). Furthermore,

ψµ has no other stationary point than ẑµ.

Proof. By optimality of the unique solution x̂µ of the barrier problem (1.4)

ϕµ(x̂µ) ≤ ϕµ(x) for any x such that c(x) > 0.

On the other hand, since t → t − µ log t is minimized at t = µ and since µ =
c(i)(x̂µ)(λ̂µ)(i) for all index i, we have

V(ẑµ) ≤ V(z) for any z ∈ Z.

Adding up the preceding two inequalities gives ψµ(ẑµ) ≤ ψµ(z) for all z ∈ Z. Hence
ẑµ is a solution of (2.4).

It remains to show that ẑµ is the unique stationary point of ψµ. If z is stationary,
it satisfies

{

∇f(x) − 2µ∇c(x) C(x)−1e+ ∇c(x) λ = 0,
c(x) − µΛ−1e = 0.

Canceling λ from the first equality gives ∇f(x) − µ∇c(x)C(x)−1e = 0, and thus

x = x̂µ is the unique minimizer of the convex function ϕµ. Now, λ = λ̂µ by the
second equation of the system above.

Lemma 2.6. Suppose that z ∈ Z and that M is symmetric positive definite. Let

d = (dx, dλ) be the solution of (1.3). Then

∇ψµ(z)>d = −(dx)>(M+∇c(x)ΛC(x)−1∇c(x)>)dx−‖C(x)−1/2Λ−1/2(C(x)λ−µe)‖2,

so that d is a descent direction of ψµ at a point z 6= ẑµ, meaning that ∇ψµ(z)>d < 0.
Proof. We have ∇ψµ(z)>d = ∇ϕµ(x)>dx + ∇V(z)>d. Using (1.5),

∇ϕµ(x)>dx = −(dx)>(M + ∇c(x)C(x)−1Λ∇c(x)>)dx,

which is nonpositive. On the other hand, when d satisfies the second equation of (1.3),
one has (see [1])

∇V(z)>d = (∇c(x)λ− µ∇c(x) C(x)−1e)>dx + (c(x) − µΛ−1e)>dλ

= (e− µC(x)−1Λ−1e)>(Λ∇c(x)>dx + C(x)dλ)

= −(µe− C(x)λ)>C(x)−1Λ−1(µe− C(x)λ)

= −‖C(x)−1/2Λ−1/2(C(x)λ− µe)‖2,

which is also nonpositive. The formula for ∇ψµ(z)>d given in the statement of the
lemma follows from this calculation. Furthermore, ∇ψµ(z)>d < 0, if z 6= ẑµ.

We can now state precisely one iteration of the algorithm used to solve the per-
turbed KKT system (1.2). The constants ω ∈ ]0, 1[ and 0 < τ < τ ′ < 1 are given
independently of the iteration index.
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Algorithm Aµ (for solving (1.2); one iteration).
0. At the beginning of the iteration, the current iterate z = (x, λ) ∈ Z is

supposed available, as well as a positive definite matrix M approximating
the Hessian of the Lagrangian ∇2

xx`(x, λ).
1. Compute d := (dx, dλ), the solution of the linear system (1.3).
2. Compute a step-size α by means of a backtracking line search.

2.0. Set α = 1.
2.1. Test the sufficient decrease condition:

ψµ(z + αd) ≤ ψµ(z) + ωα∇ψµ(z)>d.(2.5)

2.2. If (2.5) is not satisfied, choose a new trial step-size α in [τα, τ ′α] and
go to Step 2.1. If (2.5) is satisfied, set z+ := z + αd.

3. Update M by the BFGS formula (2.1) where γ and δ are given by (2.2).

By Lemma 2.6, d is a descent direction of ψµ at z, so that a step-size α > 0 satisfy-
ing (2.5) can be found. In the line-search, it is implicitly assumed that (2.5) is not
satisfied if z + αd 6∈ Z, so that (c(x+), λ+) > 0 holds for the new iterate z+.

We conclude this section with a result that gives the contribution of the line-
search to the convergence of the sequence generated by Algorithm Aµ. It is in the
spirit of a similar result given by Zoutendijk [50] (for a proof, see [6]). We say that
a function is C1,1 if it has Lipschitz continuous first derivatives. We denote the level
set of ψµ determined by the first iterate z1 = (x1, λ1) ∈ Z by

LPD

1 := {z ∈ Z : ψµ(z) ≤ ψµ(z1)}.

Lemma 2.7. If ψµ is C1,1 on an open convex neighborhood of the level set LPD
1 ,

there is a positive constant K such that for any z ∈ LPD
1 , if α is determined by the

line-search in Step 2 of Algorithm Aµ, one of the following two inequalities holds:

ψµ(z + αd) ≤ ψµ(z) −K|∇ψµ(z)>d|,

ψµ(z + αd) ≤ ψµ(z) −K
|∇ψµ(z)>d|2

‖d‖2
.

It is important to mention here that this result holds even though ψµ may not be
defined for all positive step-sizes along d, so that the line-search may have to reduce
the step-size in a first stage to enforce feasibility.

3. The global and r-linear convergence of Algorithm Aµ. In the con-
vergence analysis of BFGS, the path to q-superlinear convergence traditionally leads
through r-linear convergence (see [41, 6]). In this section, we show that the iterates

generated by Algorithm Aµ converge to ẑµ = (x̂µ, λ̂µ), the solution of (1.2), with that
convergence speed. We use the notation

Ĉµ := diag(c(1)(x̂µ), . . . , c(m)(x̂µ)) and Λ̂µ := diag((λ̂µ)(1), . . . , (λ̂µ)(m)).

Our first result shows that, because the iterates (x, λ) remain in the level set LPD
1 ,

the sequence {(c(x), λ)} is bounded and bounded away from zero.
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Lemma 3.1. Suppose that Assumption 2.1 holds. Then, the level set LPD
1 is

compact and there exist positive constants K1 and K2 such that

K1 ≤ (c(x), λ) ≤ K2 for all z ∈ LPD

1 .

Proof. Since λ>c(x) − µ
∑

i log(λ(i)c(i)(x)) is bounded below by mµ(1 − log µ),
there is a constant K ′

1 > 0 such that ϕµ(x) ≤ K ′
1 for all z = (x, λ) ∈ LPD

1 . By
Assumption 2.1 and Lemma 2.3, the level set L′ := {x : c(x) > 0, ϕµ(x) ≤ K ′

1} is
compact. By continuity, c(L′) is also compact, so that c(x) is bounded and bounded
away from zero for all z ∈ LPD

1 .
What we have just proven implies that {ϕµ(x) : z = (x, λ) ∈ LPD

1 } is bounded
below, so that there is a constantK ′

2 > 0 such that λ>c(x)−µ∑i log(λ(i)c(i)(x)) ≤ K ′
2

for all z = (x, λ) ∈ LPD
1 . Hence the λ-components of the z’s in LPD

1 are bounded and
bounded away from zero.

We have shown that LPD
1 is included in a compact set. Now, it is itself compact

by continuity of ψµ.
The next proposition is crucial for the technique we use to prove global conver-

gence (see [6]). It claims that the proximity of a point z to the unique solution of (2.4)
can be measured by the value of ψµ(z) or the norm of its gradient ∇ψµ(z). In un-
constrained optimization, the corresponding result is a direct consequence of strong
convexity. Here, ψµ is not necessarily convex, but the result can still be established
by using Lemma 2.5 and Lemma 3.1. The function ψµ is nonconvex, for example,
when f(x) = x2 is minimized on the half-line of nonnegative real numbers.

Proposition 3.2. Suppose that Assumption 2.1 holds. Then, there is a constant

a > 0 such that for any z ∈ LPD
1

a‖z − ẑµ‖2 ≤ ψµ(z) − ψµ(ẑµ) ≤ 1

a
‖∇ψµ(z)‖2.(3.1)

Proof. Let us show that ψµ is strongly convex in a neighborhood of ẑµ. Using

(2.3) and the fact that Ĉµλ̂µ = µe, the Hessian of ψµ at ẑµ can be written as

∇2ψµ(ẑµ) =

(

∇2
xx`(x̂µ, λ̂µ) + 2µ∇c(x̂µ) Ĉ−2

µ ∇c(x̂µ)> ∇c(x̂µ)

∇c(x̂µ)> 1
µ Ĉ

2
µ

)

.

From Assumption 2.1, for fixed λ > 0, the Lagrangian is a strongly convex function
in the variable x. It follows that its Hessian with respect to x is positive definite at
(x̂µ, λ̂µ). Let us show that the above matrix is also positive definite. Multiplying the
matrix on both sides by a vector (u, v) ∈ R

n × R
m gives

u>∇2
xx`(x̂µ, λ̂µ)u+ 2µu>∇c(x̂µ) Ĉ−2

µ ∇c(x̂µ)>u+ 2u>∇c(x̂µ)v +
1

µ
v>Ĉ2

µv

= u>∇2
xx`(x̂µ, λ̂µ)u+ µu>∇c(x̂µ)Ĉ−2

µ ∇c(x̂µ)>u+ ‖µ1/2Ĉ−1
µ ∇c(x̂µ)>u+ µ−1/2Ĉµv‖2.

Since ∇2
xx`(x̂µ, λ̂µ) is positive definite and c(x̂µ) > 0, this quantity is nonnegative. If

it vanishes, one deduces that u = 0 and next that v = 0. Hence ∇2ψµ(ẑµ) is positive
definite.

Let us now prove a local version of the proposition: there exist a constant a′ > 0
and an open neighborhood N ⊂ Z of ẑµ such that

a′‖z − ẑµ‖2 ≤ ψµ(z) − ψµ(ẑµ) ≤ 1

a′
‖∇ψµ(z)‖2 for all z ∈ N .(3.2)
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The inequality on the left comes from the fact that ∇ψµ(ẑµ) = 0 and the strong
convexity of ψµ near ẑµ. For the inequality on the right, we first use the local convexity
of ψµ: for an arbitrary z near ẑµ, ψµ(ẑµ) ≥ ψµ(z) + ∇ψµ(z)>(ẑµ − z). With the
Cauchy–Schwarz inequality and the inequality on the left of (3.2), one gets

ψµ(z) − ψµ(ẑµ) ≤ ‖∇ψµ(z)‖
(

ψµ(z) − ψµ(ẑµ)

a′

)
1
2

.

Simplifying and squaring give the inequality on the right of (3.2).
To extend the validity of (3.2) for all z ∈ LPD

1 , it suffices to note that, by virtue
of Lemma 2.5, the ratios

ψµ(z) − ψµ(ẑµ)

‖z − ẑµ‖2
and

ψµ(z) − ψµ(ẑµ)

‖∇ψµ(z)‖2

are well defined and continuous on the compact set LPD
1 \ N . Since ẑµ is the unique

minimizer of ψµ on LPD
1 (Lemma 2.5), the ratios are respectively bounded away from

zero and bounded above on LPD
1 \ N , by some positive constants K ′

1 and K ′
2. The

conclusion of the proposition now follows by taking a = min(a′,K ′
1, 1/K

′
2).

The proof of the r-linear convergence rests on the following lemma, which is part
of the theory of BFGS updates. It can be stated independently of the present context
(see Byrd and Nocedal [6]). We denote by θk the angle between Mkδk and δk:

cos θk :=
δ>kMkδk

‖Mkδk‖ ‖δk‖
and by d·e the roundup operator: dxe = i when i− 1 < x ≤ i and i ∈ N.

Lemma 3.3. Let {Mk} be positive definite matrices generated by the BFGS for-

mula using pairs of vectors {(γk, δk)}k≥1, satisfying for all k ≥ 1

γ>k δk ≥ a1‖δk‖2 and γ>k δk ≥ a2‖γk‖2,(3.3)

where a1 > 0 and a2 > 0 are independent of k. Then, for any r ∈ ]0, 1[, there exist

positive constants b1, b2, and b3, such that for any index k ≥ 1,

b1 ≤ cos θj and b2 ≤ ‖Mjδj‖
‖δj‖

≤ b3(3.4)

for at least drke indices j in {1, . . . , k}.
The assumptions (3.3) made on γk and δk in the above lemma are satisfied in

our context. The first one is due to the strong convexity of one of the functions f ,
−c(1), . . . , −c(m), and to the fact that λ is bounded away from zero (Lemma 3.1).
When f and c are C1,1, the second one can be deduced from the Lipschitz inequality,
the boundedness of λ (Lemma 3.1), and the first inequality in (3.3).

Theorem 3.4. Suppose that Assumption 2.1 holds and that f and c are C1,1

functions. Then, Algorithm Aµ generates a sequence {zk} converging to ẑµ r-linearly,

meaning that lim supk→∞ ‖zk − ẑµ‖1/k < 1. In particular,

∑

k≥1

‖zk − ẑµ‖ <∞.

Proof. We denote by K ′
1, K

′
2, . . . positive constants (independent of the iteration

index). We also use the notation

cj := c(xj) and Cj := diag(c(1)(xj), . . . , c(m)(xj)).
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The bounds on (c(x), λ) given by Lemma 3.1 and the fact that f and c are C1,1

imply that ψµ is C1,1 on some open convex neighborhood of the level set LPD
1 , for

example, on
(

c−1

( ]

K1

2
,+∞

[m )

×
]

K1

2
, 2K2

[m)

∩ O,

where O is an open bounded convex set containing LPD
1 (this set O is used to have ∇c

bounded on the given neighborhood).
Therefore, by the line-search and Lemma 2.7, there is a positive constant K ′

1 such
that either

ψµ(zk+1) ≤ ψµ(zk) −K ′
1|∇ψµ(zk)

>dk|(3.5)

or

ψµ(zk+1) ≤ ψµ(zk) −K ′
1

|∇ψµ(zk)
>dk|2

‖dk‖2
.(3.6)

Let us now apply Lemma 3.3: fix r ∈ ]0, 1[ and denote by J the set of indices j
for which (3.4) holds. Using Lemma 2.6 and the bounds from Lemma 3.1, one has for
j ∈ J

|∇ψµ(zj)
>dj | = (dxj )

>(Mj + ∇cjΛjC
−1
j ∇c>j )dxj + ‖C−1/2

j Λ
−1/2
j (Cjλj − µe)‖2

≥ (dxj )
>Mjd

x
j +K−2

2 ‖Cjλj − µe‖2

≥ b1
b3

‖Mjd
x
j ‖2 +K−2

2 ‖Cjλj − µe‖2

≥ K ′
2

(

‖Mjd
x
j ‖2 + ‖Cjλj − µe‖2

)

.

Let us denote by K ′
4 a positive constant such that ‖∇c(x)‖ ≤ K ′

4 for all x ∈ LPD
1 . By

using (2.3), (1.5), and the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2), we obtain

‖∇ψµ(zj)‖2

= ‖∇xψµ(zj)‖2 + ‖∇λψµ(zj)‖2

= ‖ − (Mj + ∇cjC−1
j Λj∇c>j )dxj + ∇cj(λj − µC−1

j e)‖2 + ‖cj − µΛ−1
j e‖2

≤
(

‖Mjd
x
j ‖ +K−1

1 K2K
′
4
2‖dxj ‖ +K−1

1 K ′
4‖Cjλj − µe‖

)2

+K−2
1 ‖Cjλj − µe‖2

≤ 3

(

1 +
K−2

1 K2
2K

′
4
4

b22

)

‖Mjd
x
j ‖2 +K−2

1 (3K ′
4
2

+ 1)‖Cjλj − µe‖2

≤ K ′
3

(

‖Mjd
x
j ‖2 + ‖Cjλj − µe‖2

)

and also, by (1.3),

‖dj‖2 = ‖dxj ‖2 + ‖dλj ‖2

= ‖dxj ‖2 + ‖µC−1
j e− λj − C−1

j Λj∇c>j dxj ‖2

≤ ‖dxj ‖2 + 2‖C−1
j Λj∇c>j dxj ‖2 + 2‖C−1

j (Cjλj − µe)‖2

≤ 1 + 2K−2
1 K2

2K
′
4
2

b22
‖Mjd

x
j ‖2 + 2K−2

1 ‖Cjλj − µe‖2

≤ K ′
5

(

‖Mjd
x
j ‖2 + ‖Cjλj − µe‖2

)

.
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Combining these inequalities with (3.5) or (3.6) gives for some positive constant K ′
6

and for any j ∈ J

ψµ(zj+1) ≤ ψµ(zj) −K ′
6‖∇ψµ(zj)‖2.

The end of the proof is standard (see [41, 6]). Using Proposition 3.2, for j ∈ J ,

ψµ(zj+1) − ψµ(ẑµ) ≤ ψµ(zj) − ψµ(ẑµ) −K ′
6‖∇ψµ(zj)‖2

≤ τ
1
r (ψµ(zj) − ψµ(ẑµ)),

where τ := (1 − K ′
6a)

r ∈ [0, 1[. On the other hand, by the line-search, ψµ(zk+1) −
ψµ(ẑµ) ≤ ψµ(zk) − ψµ(ẑµ) for any k ≥ 1. By Lemma 3.3, |[1, k] ∩ J | ≥ drke ≥ rk, so
that the last inequality gives for any k ≥ 1

ψµ(zk+1) − ψµ(ẑµ) ≤ K ′
7τ

k,

where K ′
7 is the positive constant (ψµ(z1) − ψµ(ẑµ)). Now, using the inequality on

the left in (3.1), one has for all k ≥ 1

‖zk+1 − ẑµ‖ ≤ 1√
a
(ψµ(zk+1) − ψµ(ẑµ))

1
2 ≤

(

K ′
7

a

)
1
2

τ
k
2 ,

from which the r-linear convergence of {zk} follows.

4. The q-superlinear convergence of Algorithm Aµ. With the r-linear con-
vergence result of the previous section, we are now ready to establish the q-superlinear
convergence of the sequence {zk} generated by Algorithm Aµ. By definition, {zk}
converges q-superlinearly to ẑµ if the following estimate holds:

zk+1 − ẑµ = o(‖zk − ẑµ‖),

which means that ‖zk+1 − ẑµ‖/‖zk − ẑµ‖ → 0 (assuming zk 6= ẑµ). To get this result,
f and c have to be a little bit smoother, namely twice continuously differentiable near
x̂µ. We use the notation

M̂µ := ∇2
xx`(x̂µ, λ̂µ).

We start by showing that the unit step-size is accepted asymptotically by the line-
search condition (2.5), provided the updated matrix Mk becomes good (or sufficiently
large) in a sense specified by inequality (4.1) below and provided the iterate zk is
sufficiently close to the solution ẑµ.

Given two sequences of vectors {uk} and {vk} in some normed spaces and a
positive number β, we write uk ≥ o(‖vk‖β), if there exists a sequence of {εk} ⊂ R

such that εk → 0 and uk ≥ εk‖vk‖β for all k.
Proposition 4.1. Suppose that Assumption 2.1 holds and that f and c are twice

continuously differentiable near x̂µ. Suppose also that the sequence {zk} generated by

Algorithm Aµ converges to ẑµ and that the positive definite matrices Mk satisfy the

estimate

(dxk)
>
(

Mk − M̂µ

)

dxk ≥ o(‖dxk‖2)(4.1)

when k → ∞. Then the sufficient decrease condition (2.5) is satisfied with αk = 1 for

k sufficiently large provided that ω < 1
2 .
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Proof. Observe first that the positive definiteness of M̂µ with (4.1) implies that

(dxk)
>Mkd

x
k ≥ K ′‖dxk‖2(4.2)

for some positive constant K ′ and sufficiently large k. Observe also that dk → 0
(for dxk → 0, use (1.5), (4.2), and ∇ϕµ(xk) → 0). Therefore, for k large enough, zk
and zk + dk are near ẑµ and one can expand ψµ(zk + dk) about zk. A second order
expansion gives for the left-hand side of (2.5)

ψµ(zk + dk) − ψµ(zk) − ω∇ψµ(zk)
>dk

= (1 − ω)∇ψµ(zk)
>dk +

1

2
d>k∇2ψµ(zk)dk + o(‖dk‖2)

=

(

1

2
− ω

)

∇ψµ(zk)
>dk(4.3)

+
1

2

(

∇ψµ(zk)
>dk + d>k∇2ψµ(zk)dk

)

+ o(‖dk‖2).

We want to show that this quantity is negative for k large.
Our first aim is to show that

(

∇ψµ(zk)
>dk + d>k∇2ψµ(zk)dk

)

is smaller than a
term of order o(‖dk‖2). For this purpose, one computes

d>k∇2ψµ(zk)dk

= (dxk)
>∇2

xx`(xk, λ̃k)d
x
k + 2µ(dxk)

>∇ckC−2
k ∇c>kdxk

+ 2(dxk)
>∇ckdλk + µ(dλk)>Λ−2

k dλk ,

where λ̃k = 2µC−1
k e− λk. On the other hand, using

C
−1/2
k Λ

−1/2
k (Ckλk − µe) = −C−1/2

k Λ
1/2
k ∇c>kdxk − C

1/2
k Λ

−1/2
k dλk ,

one gets from Lemma 2.6

∇ψµ(zk)
>dk

= −(dxk)
>Mkd

x
k − (dxk)

>∇ckC−1
k Λk∇c>kdxk − ‖C−1/2

k Λ
−1/2
k (Ckλk − µe)‖2

= −(dxk)
>Mkd

x
k − 2(dxk)

>∇ckC−1
k Λk∇c>kdxk − 2(dxk)

>∇ckdλk − (dλk)>CkΛ
−1
k dλk .

With these estimates, (4.1), and the fact that ∇2
xx`(xk, λ̃k) → M̂µ and Ckλk → µe,

with Lemma 3.1 and the boundedness of {∇ck}, (4.3) becomes

ψµ(zk + dk) − ψµ(zk) − ω∇ψµ(zk)
>dk

=

(

1

2
− ω

)

∇ψµ(zk)
>dk

− 1

2
(dxk)

>
(

Mk −∇2
xx`(xk, λ̃k)

)

dxk + (dxk)
>∇ck

(

µC−2
k − C−1

k Λk

)

∇c>kdxk

+
1

2
(dλk)>

(

µΛ−2
k − CkΛ

−1
k

)

dλk + o(‖dk‖2)

≤
(

1

2
− ω

)

∇ψµ(zk)
>dk + o(‖dk‖2).(4.4)

Since ω < 1
2 , it is clear that the result will be proven if we show that, for some

positive constant K and k large, ∇ψµ(zk)
>dk ≤ −K‖dk‖2. To show this, we use the
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last expression of ∇ψµ(zk)
>dk and an upper bound of |(dxk)>∇ckdλk |, obtained by the

Cauchy–Schwartz inequality:

2
∣

∣(dxk)
>∇ckdλk

∣

∣ = 2

∣

∣

∣

∣

(

C
−1/2
k Λ

1/2
k ∇c>kdxk

)>(

C
1/2
k Λ

−1/2
k dλk

)

∣

∣

∣

∣

≤ 2
∥

∥

∥
C

−1/2
k Λ

1/2
k ∇c>kdxk

∥

∥

∥

∥

∥

∥
C

1/2
k Λ

−1/2
k dλk

∥

∥

∥

≤ 3

2
(dxk)

>∇ckC−1
k Λk∇c>kdxk +

2

3
(dλk)>CkΛ

−1
k dλk .

It follows that

∇ψµ(zk)
>dk ≤ −(dxk)

>Mkd
x
k − 1

2
(dxk)

>∇ckC−1
k Λk∇c>kdxk − 1

3
(dλk)>CkΛ

−1
k dλk .

Therefore, using (4.2) and Lemma 3.1, one gets

∇ψµ(zk)
>dk ≤ −K‖dk‖2

for some positive constant K and k large.
Proposition 4.1 shows in particular that the function V, which was added to ϕµ

to get the merit function ψµ, has the right curvature around ẑµ, so that the unit
step-size in both x and λ is accepted by the line-search.

In the following proposition, we establish a necessary and sufficient condition of
q-superlinear convergence of the Dennis and Moré [13] type. The analysis assumes
that the unit step-size is taken and that the updated matrix Mk is sufficiently good
asymptotically in a manner given by the estimate (4.5), which is slightly different
from (4.1).

Proposition 4.2. Suppose that Assumption 2.1 holds and that f and c are

twice differentiable at x̂µ. Suppose that the sequence {zk} generated by Algorithm Aµ

converges to ẑµ and that, for k sufficiently large, the unit step-size αk = 1 is accepted

by the line-search. Then {zk} converges q-superlinearly towards ẑµ if and only if

(Mk − M̂µ)dxk = o(‖dk‖).(4.5)

Proof. Let us denote by M the nonsingular Jacobian matrix of the perturbed
KKT conditions (1.2) at the solution ẑµ = (x̂µ, λ̂µ):

M =

(

M̂µ −∇c(x̂µ)

Λ̂µ∇c(x̂µ)> Ĉµ

)

.

A first order expansion of the right-hand side of (1.3) about ẑµ and the identities

∇f(x̂µ) = ∇c(x̂µ)λ̂µ and Ĉµλ̂µ = µe give

(

Mk −∇ck
Λk∇c>k Ck

)(

dxk
dλk

)

= −M(zk − ẑµ) + o(‖zk − ẑµ‖).

Subtracting Mdk from both sides and assuming a unit step-size, we obtain

(

Mk − M̂µ −(∇ck −∇c(x̂µ))

Λk∇c>k − Λ̂µ∇c(x̂µ)> Ck − Ĉµ

)(

dxk
dλk

)

= −M(zk+1 − ẑµ) + o(‖zk − ẑµ‖).(4.6)
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Suppose now that {zk} converges q-superlinearly. Then, the right-hand side
of (4.6) is of order o(‖zk − ẑµ‖), so that

(Mk − M̂µ)dxk + o(‖dλk‖) = o(‖zk − ẑµ‖).

Then (4.5) follows from the fact that, by the q-superlinear convergence of {zk}, zk −
ẑµ = O(‖dk‖).

Let us now prove the converse. By (4.5), the left-hand side of (4.6) is an o(‖dk‖)
and due to the nonsingularity of M, (4.6) gives zk+1 − ẑµ = o(‖zk − ẑµ‖) + o(‖dk‖).
With a unit step-size, dk = (zk+1 − ẑµ)− (zk − ẑµ), so that we finally get zk+1 − ẑµ =
o(‖zk − ẑµ‖).

For proving the q-superlinear convergence of the sequence {zk}, we need the
following result from the BFGS theory (see [40, Theorem 3] and [6]).

Lemma 4.3. Let {Mk} be a sequence of matrices generated by the BFGS for-

mula from a given symmetric positive definite matrix M1 and pairs (γk, δk) of vectors

verifying

γ>k δk > 0 for all k ≥ 1 and
∑

k≥1

‖γk −Mδk‖
‖δk‖

<∞,(4.7)

where M is a symmetric positive definite matrix. Then, the sequences {Mk} and

{M−1
k } are bounded and

(Mk −M)δk = o(‖δk‖).(4.8)

By using this lemma, we will see that the BFGS formula gives the estimate

(Mk − M̂µ)dxk = o(‖dxk‖).

Note that the above estimate implies (4.5), from which the q-superlinear convergence
of {zk} will follow.

A function φ, twice differentiable in a neighborhood of a point x ∈ R
n, is said to

have a locally radially Lipschitzian Hessian at x, if there exists a positive constant L
such that for x′ near x, one has

‖∇2φ(x) −∇2φ(x′)‖ ≤ L‖x− x′‖.

Theorem 4.4. Suppose that Assumption 2.1 holds and that f and c are C1,1

functions, twice continuously differentiable near x̂µ with locally radially Lipschitzian

Hessians at x̂µ. Suppose that the line-search in Algorithm Aµ uses the constant ω <
1
2 . Then the sequence {zk} = {(xk, λk)} generated by this algorithm converges to

ẑµ = (x̂µ, λ̂µ) q-superlinearly and, for k sufficiently large, the unit step-size αk = 1 is

accepted by the line-search.

Proof. Let us start by showing that Lemma 4.3 with M = M̂µ can be applied.
First, γ>k δk > 0, as this was already discussed after Lemma 3.3. For the convergence
of the series in (4.7), we use a Taylor expansion, assuming that k is large enough (f
and c are C2 near x̂µ):

γk − M̂µδk =

∫ 1

0

(

∇2
xx`(xk + tδk, λk+1) −∇2

xx`(x̂µ, λk+1)
)

δk dt

+
(

∇2
xx`(x̂µ, λk+1) − M̂µ

)

δk.
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With the local radial Lipschitz continuity of ∇2f and ∇2c at x̂µ and the boundedness
of {λk+1}, there exist positive constants K ′ and K ′′ such that

‖γk − M̂µ δk‖ ≤ K ′‖δk‖
(
∫ 1

0

‖xk + t δk − x̂µ‖dt+ ‖λk+1 − λ̂µ‖
)

≤ K ′‖δk‖
(
∫ 1

0

(

(1 − t)‖xk − x̂µ‖ + t‖xk+1 − x̂µ‖
)

dt

+ ‖λk+1 − λ̂µ‖
)

≤ K ′′‖δk‖
(

‖xk − x̂µ‖ + ‖zk+1 − ẑµ‖
)

.

Hence the series in (4.7) converges by Theorem 3.4. Therefore, by (4.8) with M = M̂µ

and the fact that δk is parallel to dxk,

(Mk − M̂µ)dxk = o(‖dxk‖).(4.9)

By the estimate (4.9) and Proposition 4.1, the unit step-size is accepted when
k is large enough. The q-superlinear convergence of {zk} follows from Proposition
4.2.

5. The overall primal-dual algorithm. In this section, we consider an overall
algorithm for solving problem (1.1). Recall from Lemma 2.2 that the set of primal
solutions of this problem is nonempty and bounded. By the Slater condition (As-
sumption 2.1(ii)), the set of dual solutions is also nonempty and bounded. Let us

denote by ẑ = (x̂, λ̂) a primal-dual solution of problem (1.1), which is also a solution
of the necessary and sufficient conditions of optimality







∇f(x̂) −∇c(x̂)λ̂ = 0,

C(x̂)λ̂ = 0,

(c(x̂), λ̂) ≥ 0.

(5.1)

Our overall algorithm for solving (1.1) or (5.1), called Algorithm A, consists in
computing approximate solutions of the perturbed optimality conditions (1.2), for a
sequence of µ’s converging to zero. For each µ, the primal-dual Algorithm Aµ is used
to find an approximate solution of (1.2). This is done by so-called inner iterations.
Next µ is decreased and the process of solving (1.2) for the new value of µ is repeated.
We call an outer iteration the collection of inner iterations for solving (1.2) for a fixed
value of µ. We index the outer iterations by superscripts j ∈ N\{0}.

Algorithm A (for solving problem (1.1); one outer iteration).

0. At the beginning of the jth outer iteration, an approximation zj1 := (xj1, λ
j
1)

∈ Z of the solution ẑ of (5.1) is supposed available, as well as a positive
definite matrix M j

1 approximating the Hessian of the Lagrangian. A value
µj > 0 is given, as well as a precision threshold εj > 0.

1. Starting from zj1, use Algorithm Aµ until zj := (xj , λj) satisfies

‖∇f(xj) −∇c(xj)λj‖ ≤ εj and ‖C(xj)λj − µje‖ ≤ εj .(5.2)

2. Choose a new starting iterate zj+1
1 ∈ Z for the next outer iteration, as

well as a positive definite matrix M j+1
1 . Set the new parameters µj+1 > 0

and εj+1 > 0, such that {µj} and {εj} converge to zero when j → ∞.
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To start the (j+1)th outer iteration, a possibility is to take zj+1
1 = zj andM j+1

1 =
M j , the updated matrix obtained at the end of the jth outer iteration.

As far as the global convergence is concerned, how zj , M j , and µj are determined
is not important. Therefore, on that point, Algorithm A leaves the user much freedom
to maneuver, while Theorem 5.1 gives us a global convergence result for such a general
algorithm.

Theorem 5.1. Suppose that Assumption 2.1 holds and that f and c are C1,1

functions. Then Algorithm A generates a bounded sequence {zj} and any limit point

of {zj} is a primal-dual solution of problem (1.1).
Proof. By Theorem 3.4, any outer iteration of Algorithm A terminates with an

iterate zj satisfying the stopping criteria in Step 1. Therefore Algorithm A generates
a sequence {zj}. Since the sequences {µj} and {εj} converge to zero, any limit point
of {zj} is a solution of problem (1.1). It remains to show that {zj} is bounded.

Let us first prove the boundedness of {xj}. The convexity of the Lagrangian
implies that

`(xj , λj) + ∇x`(x
j , λj)>(x1 − xj) ≤ `(x1, λj).

Using the positivity of λj and c(x1) and next the stopping criteria of Algorithm A, it
follows that

f(xj) ≤ f(x1) + (λj)>c(xj) + ∇x`(x
j , λj)>(xj − x1)

≤ f(x1) + o(1) + o(‖xj − x1‖).

If {xj} is unbounded, setting tj := ‖xj − x1‖ and yj := xj−x1

tj , one can choose a
subsequence J such that

lim
j→+∞

j∈J

tj = +∞ and lim
j→+∞

j∈J

yj = y 6= 0.

From the last inequality we deduce that

f ′∞(y) := lim
j→+∞

j∈J

f(x1 + tjyj) − f(x1)

tj
≤ 0.

Moreover, since c(xj) > 0, we have (−c(i))′∞(y) ≤ 0 for i = 1, . . . ,m. It follows that
x̂+R+y ⊂ {x : c(x) ≥ 0, f(x) ≤ f(x̂)} (see, for example, [22, Proposition IV.3.2.5] or
[2, Formula (1)]). Therefore, the solution set of problem (1.1) would be unbounded,
which is in contradiction with what is claimed in Lemma 2.2.

To prove the boundedness of the multipliers, suppose that the algorithm generates
an unbounded sequence of positive vectors {λj}j∈J ′ for some subsequence J ′. The
sequence {(xj , λj/‖λj‖)}j∈J ′ is bounded and thus has at least one limit point, say,
(x∗, ν∗). Dividing the two inequalities in (5.2) by ‖λj‖ and taking limits when j → ∞,
j ∈ J ′, we deduce that ν∗ ≥ 0, ∇c(x∗)ν∗ = 0, and (ν∗)>c(x∗) = 0. Using the concavity
of the components c(i), one has

c(x∗) + ∇c(x∗)>(x1 − x∗) ≥ c(x1) > 0,

where the inequality on the right follows from the strict feasibility of the first iterate.
Multiplying by ν∗, we deduce that (ν∗)>c(x1) = 0, and thus ν∗ = 0, a contradiction
with ‖ν∗‖ = 1.
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In the rest of this section, we give conditions under which the whole sequence
{zj} converges to a particular point called the analytic center of the primal-dual
optimal set. This actually occurs when the following two conditions hold: strict
complementarity and a proper choice of the forcing sequence εj in Algorithm A,
which has to satisfy the estimate

εj = o(µj),

meaning that εj/µj → 0 when j → ∞.
Let us first recall the notion of analytic center of the optimal sets, which under

Assumption 2.1 is uniquely defined (see Monteiro and Zhou [37], for related results).
We denote by opt(P ) and opt(D) the sets of primal and dual solutions of problem
(1.1). The analytic center of opt(P ) is defined as follows. If opt(P ) is reduced to
a single point, its analytic center is precisely that point. Otherwise, opt(P ) is a
convex set with more than one point. In that case, f is not strongly convex and,
by Assumption 2.1(i), at least one of the constraint functions, −c(i0) say, is strongly
convex. It follows that the index set

B := {i : there exists x̂ ∈ opt(P ) such that c(i)(x̂) > 0}

is nonempty (it contains i0). The analytic center of opt(P ) is then defined as the
unique solution of the following problem:

max
x̂∈opt(P )
cB(x̂)>0

(

∑

i∈B

log c(i)(x̂)

)

.(5.3)

The fact that this problem is well defined and has a unique solution is the matter of
Lemma 5.2 below. Similarly, if opt(D) is reduced to a single point, its analytic center
is that point. In case of multiple dual solutions, the index set

N := {i : there exists λ̂ ∈ opt(D) such that λ̂(i) > 0}

is nonempty (otherwise opt(D) would be reduced to {0}). The analytic center of
opt(D) is then defined as the unique solution of the following problem:

max
λ̂∈opt(D)

λ̂N>0

(

∑

i∈N

log λ̂(i)

)

.(5.4)

Lemma 5.2. Suppose that Assumption 2.1 holds. If opt(P ) (resp., opt(D)) is not

reduced to a singleton, then problem (5.3) (resp., (5.4)) has a unique solution.

Proof. Consider first problem (5.3) and suppose that opt(P ) is not a singleton. We
have seen that B is nonempty. By the convexity of the set opt(P ) and the concavity
of the functions c(i), there exists x̂ ∈ opt(P ) such that cB(x̂) > 0. Therefore the
feasible set in (5.3) is nonempty. On the other hand, let x̂0 be a point satisfying the
constraints in (5.3). Then the set

{

x̂ : x̂ ∈ opt(P ), cB(x̂) > 0, and
∑

i∈B

log ci(x̂) ≥
∑

i∈B

log ci(x̂0)

}

is nonempty, bounded (Lemma 2.2), and closed. Therefore, problem (5.3) has a
solution. Finally, by Assumption 2.1(i), we know that there is an index i0 ∈ B such
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that −c(i0) is strongly convex. It follows that the objective in (5.3) is strongly concave
and that problem (5.3) has a unique solution.

By similar arguments and the fact that the objective function in (5.4) is strictly
concave, it follows that problem (5.4) has a unique solution.

By complementarity (i.e., C(x̂)λ̂ = 0) and convexity of problem (1.1), the index
sets B and N do not intersect, but there may be indices that are neither in B nor
in N . It is said that problem (1.1) has the strict complementarity property if B∪N =
{1, . . . , n}. This is equivalent to the existence of a primal-dual solution satisfying strict
complementarity.

Theorem 5.3. Suppose that Assumption 2.1 holds and that f and c are C1,1

functions. Suppose also that problem (1.1) has the strict complementarity property

and that the sequence {εj} in Algorithm A satisfies the estimate εj = o(µj). Then the

sequence {zj} generated by Algorithm A converges to the point ẑ0 := (x̂0, λ̂0), where

x̂0 is the analytic center of the primal optimal set and λ̂0 is the analytic center of the

dual optimal set.

Proof. Let (x̂, λ̂) be an arbitrary primal-dual solution of (1.1). Then x̂ minimizes

`(·, λ̂) and λ̂>c(x̂) = 0, so that

f(x̂) = `(x̂, λ̂) ≤ `(xj , λ̂) = f(xj) − λ̂>c(xj).

Using the convexity of `(·, λj) and the stopping criterion (5.2) of the inner iterations
in Algorithm A, one has

f(x̂) − (λj)>c(x̂) = `(x̂, λj)

≥ `(xj , λj) + ∇x`(x
j , λj)>(x̂− xj)

= f(xj) − (λj)>c(xj) − εj‖xj − x̂‖
≥ f(xj) −mµj −m

1
2 εj − εj‖xj − x̂‖,

because (λj)>c(xj) = mµj +e>(C(xj)λj−µje) ≤ mµj +m
1
2 εj . By Theorem 5.1, there

is a constant C1 such that m
1
2 +‖xj − x̂‖ ≤ C1. Then, adding the corresponding sides

of the two inequalities above leads to

λ̂>NcN (xj) + (λjB)>cB(x̂) = λ̂>c(xj) + (λj)>c(x̂) ≤ mµj + C1ε
j .(5.5)

We pursue this by adapting an idea used by McLinden [34] to give properties of

the limit points of the path µ 7→ (x̂µ, λ̂µ). Let us define Γj := C(xj)λj − µje. One
has for all indices i

c(i)(x
j) =

µj + Γj
(i)

λj(i)
and λj(i) =

µj + Γj
(i)

c(i)(xj)
.

Substituting this in (5.5) and dividing by µj give

∑

i∈N

λ̂(i)

λj(i)

µj + Γj
(i)

µj
+
∑

i∈B

c(i)(x̂)

c(i)(xj)

µj + Γj
(i)

µj
≤ m+ C1

εj

µj
.

By assumptions, εj = o(µj), so that Γj
(i) = o(µj). Now supposing that (x̂0, λ̂0) is a

limit point of {(xj , λj)} and taking the limit in the preceding estimate provide

∑

i∈N

λ̂(i)

(λ̂0)(i)
+
∑

i∈B

c(i)(x̂)

c(i)(x̂0)
≤ m.
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Necessarily, cB(x̂0) > 0 and (λ̂0)N > 0. Observe now that, by strict complementarity,
there are exactly m terms on the left-hand side of the preceding inequality. Hence,
by the arithmetic-geometric mean inequality

(

∏

i∈N

λ̂(i)

(λ̂0)(i)

)(

∏

i∈B

c(i)(x̂)

c(i)(x̂0)

)

≤ 1

or
(

∏

i∈N

λ̂(i)

)(

∏

i∈B

c(i)(x̂)

)

≤
(

∏

i∈N

(λ̂0)(i)

)(

∏

i∈B

c(i)(x̂0)

)

.

One can take λ̂N = (λ̂0)N > 0 or cB(x̂) = cB(x̂0) > 0 in this inequality, so that

∏

i∈B

c(i)(x̂) ≤
∏

i∈B

c(i)(x̂0) and
∏

i∈N

λ̂(i) ≤
∏

i∈N

(λ̂0)(i).

This shows that x̂0 is a solution of (5.3) and that λ̂0 is a solution of (5.4). Since the
problems in (5.3) and (5.4) have unique solutions, all the sequence {xj} converges to

x̂0 and all the sequence {λj} converges to λ̂0.

6. Discussion. By way of conclusion, we discuss the results obtained in this
paper, give some remarks, and raise some open questions.

Problems with linear constraints. The algorithm is presented with convex
inequality constraints only, but it can also be used when linear constraints are present.
Consider the problem







min f(x),
Ax = b,
c(x) ≥ 0,

(6.1)

obtained by adding linear constraints to problem (1.1). In (6.1), A is a p× n matrix
with p < n and b ∈ R

p is given in the range space of A.
Problem (6.1) can be reduced to problem (1.1) by using a basis of the null space

of the matrix A. Indeed, let x1 be the first iterate, which is supposed to be strictly
feasible in the sense that

Ax1 = b and c(x1) > 0.

Let us denote by Z an n × q matrix whose columns form a basis of the null space
of A. Then, any point satisfying the linear constraints of (6.1) can be written

x = x1 + Zu with u ∈ R
q.

With this notation, problem (6.1) can be rewritten as the problem in u ∈ R
q:

{

min f(x1 + Zu),
c(x1 + Zu) ≥ 0,

(6.2)

which has the form (1.1).
Thanks to this transformation, we can deduce from Assumption 2.1 what are

the minimal assumptions under which our algorithm for solving problem (6.2) or,
equivalently, problem (6.1) will converge.
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Assumption 6.1. (i) The real-valued functions f and −c(i) (1 ≤ i ≤ m) are convex
and differentiable on the affine subspace X := {x : Ax = b} and at least one of the
functions f , −c(1), . . . , −c(m) is strongly convex on X. (ii) There exists an x ∈ R

n

such that Ax = b and c(x) > 0.
With these assumptions, all the previous results apply. In particular, Algo-

rithm Aµ converges r-linearly (if f and c are also C1,1) and q-superlinearly (if f
and c are also C1,1, twice continuously differentiable near x̂µ with locally radially
Lipschitzian Hessian at x̂µ). Similarly, the conclusions of Theorem 5.1 apply if f and
c are also C1,1.

Feasible algorithms and qN techniques. In the framework of qN methods,
the property of having to generate feasible iterates should not be only viewed as a
restriction limiting the applicability of a feasible algorithm. Indeed, in the case of
problem (6.2), if it is sometimes difficult to find a strictly feasible initial iterate, the
matrix to update for solving this problem is of order q only, instead of order n for
an infeasible algorithm solving problem (6.1) directly. When q � n, the qN updates
will approach the reduced Hessian of the Lagrangian Z>(∇2`)Z more rapidly than
the full Hessian ∇2`, so that a feasible algorithm is likely to converge more rapidly.

About the strong convexity hypothesis. Another issue concerns the exten-
sion of the present theory to convex problems, without the strong convexity assump-
tion (Assumption 2.1(i)).

Without this hypothesis, the class of problems to consider encompasses linear
programming (f and c are affine). It is clear that for dealing properly with linear
programs, our algorithm needs modifications, since then γk = 0 and the BFGS formula
is no longer defined. Of course, it would be very ineffective to solve linear programs
with the qN techniques proposed in this paper (Mk = 0 is the desired matrix), but
problems that are almost linear near the solution may be encountered, so that a
technique for dealing with a situation where ‖γk‖ � ‖δk‖ can be of interest.

To accept γk = 0, one can look at the limit of the BFGS formula (2.1) when
γk → 0. A possible update formula could be

Mk+1 := Mk − Mkδkδ
>
kMk

δ>kMkδk
.

The updated matrix satisfies Mk+1δk = 0 and is positive semidefinite, provided Mk

is already positive semidefinite. The fact that Mk+1 may be singular raises some
difficulties, however. For example, the search direction dx may no longer be defined
(see formula (1.5), in which the matrix M + ∇c(x)C(x)−1Λ∇c(x)> can be singular).
Therefore, the present theory cannot be extended in a straightforward manner.

On the other hand, the strong convexity assumption may not be viewed as an im-
portant restriction, because a fictive strongly convex constraint can always be added.
An obvious example of fictive constraint is “x>x ≤ K.” If the constant K is large
enough, the constraint is inactive at the solution, so that the solution of the original
problem is not altered by this new constraint and the present theory applies.

Better control of the outer iterations. Last but not least, the global conver-
gence result of section 5 is independent of the update rule of the parameters εj and
µj . In practice, however, the choice of the decreasing values εj and µj is essential for
the efficiency of the algorithm and would deserve a detailed numerical study.

From a theoretical viewpoint, it would be highly desirable to have an update rule
that would allow the outer iterates of Algorithm A to converge q-superlinearly. Along
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the same lines, an interesting problem is to design an algorithm in which the barrier
parameter would be updated at every step, while having q-superlinear convergence of
the iterates. Such extensions would involve more difficult issues.

The global convergence result proved in this paper gives us some reasons to believe
that it is not unreasonable to tackle these open questions.

Acknowledgments. We would like to thank the referees for their valuable com-
ments. One of them has shown us a direct argument for the last part of the proof of
Proposition 3.2, which is the one we have finally chosen to give in the paper. The other
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