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Abstract. This paper introduces and analyses a new algorithm for minimizing a convex function subject
to a finite number of convex inequality constraints. It is assumed that the Lagrangian of the problem is
strongly convex. The algorithm combines interior point methods for dealing with the inequality constraints
and quasi-Newton techniques for accelerating the convergence. Feasibility of the iterates is progressively
enforced thanks to shift variables and an exact penalty approach. Global and q-superlinear convergence is
obtained for a fixed penalty parameter; global convergence to the analytic center of the optimal set is ensured
when the barrier parameter tends to zero, provided strict complementarity holds.
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1. Introduction

This paper introduces and analyzes a new algorithm for solving a convex minimization
problem of the form {

min f(x),
c(x) ≥ 0,

(1.1)

where f : Rn → R and c : Rn → R
m are continuously differentiable functions on

the whole space Rn . We assume that f is convex and that each component c(i) of c,
for 1 ≤ i ≤ m, is concave. The feasible set of Problem (1.1) is then convex. The
algorithm combines interior point (IP) ideas for dealing with the inequality constraints
and quasi-Newton techniques for approximating second derivatives and providing fast
convergence. The motivation for introducing such an algorithm has been given in [2].

The main contributions of this paper are twofold. First, we improve the capabilities of
the primal-dual IP algorithm introduced in [2], by allowing the iterates to be infeasible.
This property is useful when it is difficult to find a strictly feasible starting point. In
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the proposed algorithm, feasibility and optimality are obtained simultaneously. The
iterates remain inside a region obtained by shifting the boundary of the feasible set and
their asymptotic feasibility is enforced by means of an exact penalty approach. This
one shifts back monotonically that boundary to its original position. By our second
contribution, we enlarge the class of problems that this algorithm can solve. The strong
convexity hypothesis that is necessary to settle the algorithm has been weakened. Instead
of assuming the strong convexity of one of the functions f , −c(1), . . . , −c(m), as in [2],
our analysis shows that it is sufficient to assume the strong convexity of the Lagrangian of
Problem (1.1). We believe that these contributions improve significantly the applicability
of the algorithm.

In our approach, Problem (1.1) is transformed, using shift variables s ∈ Rm , into an
equivalent form (see [9]): min f(x),

c(x)+ s ≥ 0,
s = 0.

(1.2)

The interest of this modification is that it is now easy to find an initial pair (x1, s1)

satisfying c(x1) + s1 > 0. Of course Problem (1.2) is as difficult to solve as (1.1), but
it is now possible to control the feasibility of the inequality constraints. In the chosen
approach, the inequality c(x)+ s > 0 is maintained throughout the iterations thanks to
the logarithmic barrier function, while the equality s = 0 is relaxed and asymptotically
enforced by exact penalization. Another key feature of this transformation is that the
convexity of the original problem is preserved in (1.2). This would not have been the
case if instead we had introduced slack variables s̃ ∈ Rm , as in the problem

min f(x),
c(x) = s̃,
s̃ ≥ 0.

(1.3)

With such a transformation, the positivity of the slacks would be maintained in the
algorithm and the constraint c(x) = s̃ would be progressively enforced (see [5] for
example). The drawback of (1.3) in the present context is that the equality constraint
cannot be viewed as a convex constraint, since the set that it defines may be nonconvex.
This is a source of difficulties, preventing the extension of the analysis carried out in [2].

Provided the constraints satisfy some qualification assumptions, the Karush-Kuhn-
Tucker (KKT) optimality conditions of Problem (1.1) can be written as follows (see [7,
14] for example): there exists a vector of multipliers λ ∈ Rm such that∇ f(x)− A(x)�λ = 0,

C(x)λ = 0,
(c(x), λ) ≥ 0,

(1.4)

where ∇ f(x) is the gradient of f at x (for the Euclidean scalar product), A(x) is the
m × n Jacobian matrix of c, and C(x) = diag(c(1)(x), . . . , c(m)(x)).

We consider a relaxed barrier problem associated with (1.2):{
min

(
ϕµ(x, s) := f(x)− µ

∑m
i=1 log

(
c(i)(x)+ s(i)

))
,

s = rµ,
(1.5)
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where ϕµ is the barrier function parameterized byµ > 0, the arguments of the logarithm
are implicitly assumed to be positive, and rµ ∈ Rm is a vector relaxing the equality
constraint of (1.2). There is nothing in rµ that is fundamental for the convergence of the
algorithm, and one could set rµ = 0 (this is what is done in Sects. 3 and 4, actually). For
its efficiency, however, it may be more appropriate to force the feasibility progressively
as µ goes to zero (of course it is required to have rµ → 0 when µ → 0). This topic is
further discussed in the introduction of Sect. 5.

Let us go back to the barrier problem (1.5). Its optimality conditions can be written
∇ f(x)− A(x)�λ = 0,
(C(x)+ S)λ = µe,
s = rµ,
(c(x)+ s, λ) > 0,

(1.6)

where S = diag(s(1), . . . , s(m)) and e = (1 · · · 1)� is the vector of all ones. Note that
by eliminating s in (1.6) and by setting rµ = 0, one recovers the system (1.4), in which
the complementarity conditions C(x)λ = 0 are perturbed into C(x)λ = µe, a frequently
used technique in primal-dual IP methods. We prefer keeping s in the system (1.6), in
particular in its second equation, since in the algorithm the iterate s needs to be nonzero
when the iterate x is infeasible, in order to ensure the positivity of c(x)+ s.

Our primal-dual IP algorithm computes approximate solutions of (1.6) for a se-
quence of parametersµ > 0 decreasing to zero. For a fixed value ofµ, it uses a sequence
of quasi-Newton iterations for solving the first three equations of (1.6), using the BFGS
update formula. These iterations are called inner iterations, while an outer iteration is
the collection of inner iterations corresponding to the same value of µ.

The global convergence of the quasi-Newton iterates is ensured by a backtracking
line-search on some merit function. A classical merit function associated with a con-
strained problem like (1.5) is the following exact penalty function:

	µ,σ (x, s) := ϕµ(x, s)+ σ‖s − rµ‖P ,

where σ > 0 is the penalty parameter and ‖ · ‖P is an arbitrary norm. Let ‖ · ‖D be the
dual norm associated with ‖ · ‖P :

‖v‖D := sup
‖u‖P ≤1

v�u.

It is well known (see [4, Chap. 12] for example) that, for convex problems, the penalty
function	µ,σ is exact (i.e., the solutions of (1.5) minimize 	µ,σ ), if

σ ≥ ‖λ‖D ,

for some optimal multiplier λ associated with the constraint of (1.5). A property
that plays an important role in our analysis is the convexity of 	µ,σ . Starting with
Problem (1.3) instead of Problem (1.2) would have led to the merit function f(x) −
µ
∑m

i=1 log s̃i + σ‖c(x)− s̃‖P , which is not necessarily convex. This is another way of
motivating the choice of transforming the original problem (1.1) by using shift variables
instead of slack variables.
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Since our algorithm generates primal-dual iterates, we have chosen, as in [2], to use
a primal-dual merit function by adding to 	µ,σ a centralization term Vµ:

ψµ,σ (x, s, λ) = 	µ,σ (x, s)+ τVµ(x, s, λ),

where τ is some positive constant and

Vµ(x, s, λ) := λ� (c(x)+ s)− µ

m∑
i=1

log
(
λ(i)

(
c(i)(x)+ s(i)

))
.

Since t �→ t −µ log t is minimized at t = µ, function Vµ has its minimal value at points
satisfying the second equation of (1.6).

The strategy that consists in forcing the decrease of ψµ,σ from (x, s, λ) along
a direction d = (dx, ds, dλ) can work well, provided d is a descent direction of ψµ,σ .
We shall show that this is actually the case if d is a (quasi-)Newton direction on the system
(1.6) and if σ is large enough: σ ≥ ‖λ + dλ‖D must hold. Satisfying this inequality
does not raise any difficulty, since it is sufficient to increase σ whenever necessary.
If σ is modified continually, however, the merit function changes from iteration to
iteration and it is difficult to prove convergence. In order to avoid the instability of the
penalty parameter, there are rules ensuring that either the sequence of generated σ’s is
unbounded or σ takes a fixed value after finitely many changes. Of course, only the latter
situation is desirable. We have not succeeded, however, in proving that this situation
necessarily occurs with our algorithm, despite the convexity of the problem and the
assumed qualification of the constraints (Slater’s condition). At this point, we quote
that Pshenichnyj [16, Theorem 2.4] has proven an interesting result on the stabilization
of the penalty parameter, but with an algorithm that may require a restart at the initial
point when σ is updated. We did not want to go along this line, which is not attractive
in practice, and have preferred to assume the boundedness of the sequence of σ’s. With
this assumption, we have been able to show that, for a fixed µ, the whole sequence
of inner iterates converges to the solution to the barrier problem (1.5). This favorable
situation can occur only if the Slater condition holds.

The paper is organized as follows. Section 2 provides notation and tools from convex
analysis that are used throughout the paper. The quasi-Newton-IP algorithm for solving
the barrier problem is presented in Sect. 3, while Sect. 4 focuses on the proof of its
superlinear convergence. The last section describes the overall algorithm and provides
conditions ensuring the convergence of the outer iterates towards the analytic center of
the optimal set.

2. Notation and tools from convex analysis

In this paper, we always assume that Rn is equipped with the Euclidean scalar product
and denote by ‖·‖ the associated �2 norm. Extending the algorithm to take into account an
arbitrary scalar product, which is important in practice, should not present any difficulty.

A function is of class C1 if it is continuously differentiable and of class C1,1 if in
addition its derivative is Lipschitz continuous.
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A function ξ : Rn → R is strongly convex with modulus κ > 0, if the func-
tion ξ(·) − κ

2 ‖ · ‖2 is convex. When ξ is differentiable, an equivalent property is
the strong monotonicity of its gradient, that is: for all (x, y) ∈ Rn × Rn one has
(∇ξ(x)− ∇ξ(y))� (x − y) ≥ κ‖x − y‖2 (for other equivalent definitions, see for ex-
ample [10, Chap. IV]).

Consider now a convex function f : Rn → R ∪ {+∞} that can take the value +∞.
The domain of f is defined by dom f := {x ∈ Rn : f(x) < ∞} and its epigraph is
epi f := {(x, α) ∈ Rn ×R : f(x) ≤ α}. The set of such convex functions that are proper
(dom f �= ∅) and closed (epi f is closed) is denoted by Conv(Rn). The asymptotic
derivative of a function f ∈ Conv(Rn) is the function f ′∞ ∈ Conv(Rn) defined for
d ∈ Rn by

f ′∞(d) := lim
t→+∞

f(x0 + t d)− f(x0)

t
= lim

t→+∞
f(x0 + t d)

t
,

where x0 is an arbitrary point in dom f (see for example [10, Sect. IV.3.2]). It follows
immediately from this definition that the asymptotic derivative is positively homoge-
neous and that f ′∞(0) = 0. The concept of asymptotic derivative is useful since it allows
us to verify a topological property of compactness by a simple calculation: the level sets
of a convex function f are compact if and only if f ′∞(d) > 0 for all nonzero d ∈ Rn

(see [10, Proposition IV.3.2.5]). A variant of this result is given in the following lemma
(see [17, Corollary 27.3.3]).

Lemma 2.1. If Problem (1.1) is feasible, then its solution set is nonempty and compact if
and only if there is no nonzero vector d ∈ Rn such that f ′∞(d) ≤ 0 and (−c(i))′∞(d) ≤ 0,
for all i = 1, . . . ,m.

The following chain rule for asymptotic derivatives is proven in [3, Proposition 2.1].
Let η ∈ Conv(R) be nondecreasing and such that η′∞(1) > 0, and let f ∈ Conv(Rn) be
such that (dom η) ∩ f(Rn) �= ∅. Consider the composite function

g(x) =
{
η
(

f(x)
)

if x ∈ dom f,
+∞ otherwise.

Then g ∈ Conv(Rn) and

g′∞(d) =
{
η′∞
(

f ′∞(d)
)

if d ∈ dom f ′∞,
+∞ otherwise.

(2.1)

The subdifferential ∂ f(x) of a convex function f : Rn → R at x ∈ Rn is the set of
vectors g ∈ Rn , called subgradients, such that: f ′(x; h) ≥ g�h, for all h ∈ Rn . Clearly,
x minimizes f if and only if 0 ∈ ∂ f(x). If ‖ · ‖P is a norm on Rm :

v ∈ ∂(‖ · ‖P )(u) ⇐⇒ ‖v‖D ≤ 1 and u�v = ‖u‖P , (2.2)

where the dual norm ‖ · ‖D was defined in the introduction.
Despite this paper essentially deals with convex issues, occasionally we shall have to

consider nonconvexfunctions, sayψ : Rn → R, having however directional derivatives.
If a point x minimizes ψ, there holds ψ′(x; h) ≥ 0 for all h ∈ Rn . If, in addition, ψ is
of the form ψ = φ + f , where φ is differentiable at x and f is convex, then the latter
property can equivalently be written −∇φ(x) ∈ ∂ f(x).
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3. Solving the barrier problem

This section presents step by step the ingredients composing the algorithm for solving
the barrier problem (1.5) for fixedµ: Algorithm Aµ. In Sect. 3.1, we introduce the basic
assumptions for the well-posedness of the algorithm and draw some consequences from
them, including existence and uniqueness of the barrier problem solution. Section 3.2
defines the direction along which the next iterate is searched. The next two sections
analyze the primal merit function	µ,σ , obtained by exact penalization of the constraint
of the barrier problem (Sect. 3.3), and the primal-dual merit functionψµ,σ , obtained by
adding a centralization term to 	µ,σ (Sect. 3.4). It is this latter function that is used in
the algorithm to ensure its robustness. Algorithm Aµ is finally presented in Sect. 3.5.

In this section and in Sect. 4, we set the relaxation vector rµ of the barrier problem
(1.5) to zero: {

min ϕµ(x, s),
s = 0.

(3.1)

We shall see in Sect. 5, that there is no limitation in doing so, because a simple change
of variables will allow us to recover the results of Sects. 3 and 4 for the case when rµ is
nonzero. The optimality conditions of the barrier problem becomes

∇ f(x)− A(x)�λ = 0,
(C(x)+ S)λ = µe,
s = 0,
(c(x)+ s, λ) > 0.

(3.2)

The Lagrangian associated with Problem (1.1) is the real-valued function � defined
for (x, λ) ∈ Rn × Rm by

�(x, λ) = f(x)− λ�c(x).

When f and c are twice differentiable, the gradient and Hessian of � with respect to x
are given by

∇x�(x, λ) = ∇ f(x)− A(x)�λ and ∇2
xx�(x, λ) = ∇2 f(x)−

m∑
i=1

λ(i)∇2c(i)(x).

The following formulæ will be often useful in the sequel (from now on, we drop
most of the dependencies in x and λ):

∇ϕµ(x, s) =
(∇ f − µA�(C+S)−1e

−µ(C+S)−1e

)
, (3.3)

∇2ϕµ(x, s) =
( ∇2

xxϕµ(x, s) µA�(C+S)−2

µ(C+S)−2 A µ(C+S)−2

)
, (3.4)

where
∇2

xxϕµ(x, s) = ∇2
xx�(x, µ(C+S)−1e)+ µA�(C+S)−2 A.
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3.1. The barrier problem

Our minimal assumptions refer to the convexity and smoothness of Problem (1.1).

Assumptions 3.1. The functions f and −c(i) (1 ≤ i ≤ m) are convex and differentiable
from Rn to R; and there exists λ̌ ∈ Rm , such that the Lagrangian �(·, λ̌) is strongly
convex with modulus κ̌ > 0.

The second part of these assumptions is weaker than Assumption 2.1-(i) in [2], which
requires the strong convexity of at least one of the functions f , −c(1), . . . , −c(m). For ex-
ample, the problem of two variables min {x2

(1) : 1 − x2
(2) ≥ 0} satisfies Assumptions 3.1,

but not Assumption 2.1-(i) in [2].
We now derive three consequences of Assumptions 3.1. Lemma 3.2 shows that

for any positive multiplier λ, �(·, λ) is strongly convex, with a modulus depending
continuously on λ. In turn, with some other mild assumptions, this implies that Problem
(1.1) has a compact set of solutions (Proposition 3.3) and that the barrier problem
(3.1) has a unique primal-dual solution (Proposition 3.4). For t ∈ R, we define t+ :=
max(0, t).

Lemma 3.2. Suppose that Assumptions 3.1 hold. Then, for any λ > 0, the Lagrangian
�(·, λ) is strongly convex with modulus

κ = κ̌ min
(
1, λ(1)/λ̌

+
(1), . . . , λ(m)/λ̌

+
(m)

)
> 0.

Proof. It suffices to show that �(·, λ)− 1
2κ‖ · ‖2 is convex. One has

�(x, λ)− 1

2
κ‖x‖2 =

(
1 − κ

κ̌

)
f(x)−

(
λ− κ

κ̌
λ̌
)�

c(x)+ κ

κ̌

(
�(x, λ̌)− 1

2
κ̌‖x‖2

)
.

The result then follows from the convexity of the functions f , −c(1), . . . , −c(m) and
�(·, λ̌)− 1

2 κ̌‖ · ‖2, and from the inequalities 1 ≥ κ
κ̌

≥ 0 and λ− κ
κ̌
λ̌ ≥ λ− κ

κ̌
λ̌+ ≥ 0.

��
Proposition 3.3. Suppose that Assumptions 3.1 hold. Then, there is no nonzero vector
d ∈ Rn such that f ′∞(d) < ∞ and (−c(i))′∞(d) < ∞, for all i = 1, . . . ,m. In
particular, if Problem (1.1) is feasible, then its solution set is nonempty and compact.

Proof. Lemma 3.2 implies that �(·, e) is strongly convex. In particular, for all d �= 0,
(�(·, e))′∞(d) = f ′∞(d) +∑m

i=1 (−c(i))′∞(d) = +∞. The first part of the proposition
follows. The second part is then a consequence of Lemma 2.1.

��
Proposition 3.4. Suppose that Assumptions 3.1 hold. Then the barrier function ϕµ is
strictly convex on the set {(x, s) ∈ Rn × Rm : c(x)+s > 0}. Moreover if Problem (1.1)
is strictly feasible, then the barrier problem (3.1) has a unique primal-dual solution.
This one is denoted by ẑµ := (x̂µ, ŝµ, λ̂µ) and we have ŝµ = 0 and λ̂µ = µC(x̂µ)−1e.
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Proof. Assumptions 3.1 imply that for all x �= x′ and α ∈ (0, 1), f(αx + (1−α)x′)
≤ α f(x) + (1−α) f(x′) and c(i)(αx + (1−α)x′) ≥ αc(i)(x) + (1−α)c(i)(x′), for all
i = 1, . . . ,m; and at least one inequality is strictly satisfied (otherwise we would have
�(αx + (1−α)x′, e) = α�(x, e)+ (1−α)�(x′, e), contradicting the strong convexity of
�(·, e)). Now consider two pairs (x, s) �= (x′, s′). If x �= x′, then the strict convexity
of ϕµ follows from the previous remark and the properties of the log function (strict
monotonicity and concavity). If x = x′, then s �= s′, c(x)+ s �= c(x′)+ s′, and the result
follows from the monotonicity and strict concavity of the logarithm.

To prove the second part of the proposition, note that the pair (x̂µ, ŝµ) is a solution to
the barrier problem (3.1) if and only if ŝµ = 0 and x̂µ is a solution to the unconstrained
problem min{φµ(x) : x ∈ Rn}, where φµ(·) := ϕµ(·, 0). To prove that this problem has
a solution, let us show that (φµ)′∞(d) > 0 for any nonzero d ∈ Rn (see Sect. 2). Let us
introduce the increasing function η ∈ Conv(R) defined by

η(t) =
{− log(−t) if t < 0,

+∞ otherwise.
(3.5)

By using the chain rule (2.1) we obtain

(φµ)
′∞(d) = f ′∞(d)+ µ

m∑
i=1

η′∞
(
(−c(i))

′∞(d)
)
,

with the convention that η′∞(+∞) = +∞. Since η′∞(t) = +∞ if t > 0 and is
zero otherwise, and since f ′∞(d) > −∞, (φµ)′∞(d) ≤ 0 only if f ′∞(d) ≤ 0 and
(−c(i))′∞(d) ≤ 0 for all i = 1, . . . ,m. This is not possible by Proposition 3.3. The
positivity of (φµ)′∞ implies the compactness of the level sets of φµ. Now, the fact that
φµ is finite for some point, implies the existence of a minimizer of this function.

The uniqueness of the solution (x̂µ, ŝµ) follows from the strict convexity of ϕµ.
Existence of the dual solution λ̂µ is a consequence of the linearity of the constraint
in (3.1) and its value is given by the second equation in (3.2).

��

3.2. The Newton step

The Newton step (dx, ds, dλ) ∈ Rn ×Rm × Rm on (3.2) is a solution to M 0 −A�
�A � C+S

0 I 0

dx

ds

dλ

 =
 −∇x�

µe − (C+S)λ
−s

 , (3.6)

in which M is the Hessian of the Lagrangian ∇2
xx�(x, λ) and � is the diagonal matrix

diag(λ(1), . . . , λ(m)). In the quasi-Newton algorithm that we consider, M is a positive
definite approximation to ∇2

xx�(x, λ), obtained by BFGS updates.
The third equation in (3.6) determines ds uniquely:

ds = −s. (3.7)
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This makes it possible to eliminate ds from the second equation:(
M −A�
A �−1(C+S)

)(
dx

dλ

)
=
( −∇x�

µ�−1e − c

)
. (3.8)

Proposition 3.5. Suppose that M is positive definite and that (c(x)+s, λ) > 0, then the
system (3.6) has a unique solution.

Proof. Writing

Q := M + A��(C+S)−1 A,

and eliminating dλ from (3.8) give

Qdx = −∇x�+ A�(C+S)−1(µe − Cλ). (3.9)

Since Q is positive definite, this equation determines dx , while dλ is given by the second
equation in (3.8) and ds by (3.7).

��

3.3. A primal merit function

An exact penalty function associated with (3.1) is the function	µ,σ defined by

	µ,σ (x, s) := ϕµ(x, s)+ σ‖s‖P , (3.10)

where σ > 0 is a penalty parameter and ‖ · ‖P is an arbitrary norm. The following
proposition focuses on the connections between the minimizer of this merit function
and the solution to the barrier problem (3.1).

Proposition 3.6. Suppose that Assumptions 3.1 hold. Then	µ,σ is strictly convex on the
set {(x, s) ∈ Rn × Rm : c(x)+s > 0}, its level sets are compact and it has a unique min-
imizer, denoted by (x̂µ,σ , ŝµ,σ ). This one is characterized by the existence of λ̂µ,σ ∈ Rm

such that: 

∇x�(x̂µ,σ , λ̂µ,σ ) = 0,

(C(x̂µ,σ )+Ŝµ,σ )λ̂µ,σ = µe,

λ̂µ,σ ∈ σ∂(‖ · ‖P )(ŝµ,σ ),

(c(x̂µ,σ )+ ŝµ,σ , λ̂µ,σ ) > 0.

(3.11)

The vector λ̂µ,σ is uniquely determined and we note ẑµ,σ := (x̂µ,σ , ŝµ,σ , λ̂µ,σ ). Fur-
thermore, if σ > ‖λ̂µ,σ‖D , then ẑµ,σ = ẑµ or equivalently σ ≥ ‖λ̂µ‖D ; in particular
Problem (1.1) has a strictly feasible point.
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Proof. The strict convexity of 	µ,σ follows from that of ϕµ (Proposition 3.4). As
in the proof of Proposition 3.4, we show that the level sets of 	µ,σ are compact by
proving that its asymptotic derivatives (	µ,σ )

′∞(dx, ds) are positive for any nonzero
(dx, ds) ∈ Rn × Rm . Using the function η defined in (3.5), one has (see (2.1)):

(	µ,σ)
′∞(dx, ds) = f ′∞(dx)+ µ

m∑
i=1

η′∞
(
(−c(i))

′∞(dx)− ds
(i)

)+ σ‖ds‖P ,

with the convention that η′∞(+∞) = +∞. Since η′∞(t) = +∞ if t > 0 and is zero
otherwise, and since f ′∞(dx) > −∞, the asymptotic derivative (	µ,σ )

′∞(dx, ds) is
nonpositive only if f ′∞(dx) ≤ −σ‖ds‖P and (−c(i))′∞(dx) ≤ ds

(i), for all i = 1, . . . ,m.
According to Proposition 3.3, this is not possible when dx �= 0. This is not possible
when dx = 0 either, since these inequalities would imply that (dx, ds) = 0.

The compactness of the level sets of 	µ,σ and the fact that 	µ,σ is finite for some
(x, s) satisfying c(x) + s > 0 imply the existence of a minimizer of that function.
Uniqueness follows from the strict convexity of 	µ,σ .

The solution pair (x̂µ,σ , ŝµ,σ ) is characterized by the optimality condition 0 ∈
∂	µ,σ (x̂µ,σ , ŝµ,σ ), which can also be written:

∇xϕµ(x̂µ,σ , ŝµ,σ ) = 0 and − ∇sϕµ(x̂µ,σ , ŝµ,σ ) ∈ σ∂(‖ · ‖P )(ŝµ,σ ).

Using (3.3), we obtain (3.11). The vector λ̂µ,σ is uniquely determined by the second
condition in (3.11).

Suppose now that σ > ‖λ̂µ,σ‖D . According to (2.2), the third condition in (3.11)
can also be written:

‖λ̂µ,σ‖D ≤ σ and λ̂�
µ,σ ŝµ,σ = σ‖ŝµ,σ‖P . (3.12)

The generalized Cauchy-Schwarz inequality then providesσ‖ŝµ,σ‖P ≤‖λ̂µ,σ‖D‖ŝµ,σ‖P ,
so that ŝµ,σ = 0. Hence Problem (1.1) has a strictly feasible point x̂µ,σ and ẑµ,σ
satisfies (3.2). Since the latter system characterizes the unique solution to the barrier
problem (3.1), ẑµ,σ = ẑµ. Note that, when ẑµ,σ = ẑµ, λ̂µ,σ = λ̂µ and the first
inequality in (3.12) implies that σ ≥ ‖λ̂µ‖D ; conversely, if σ ≥ ‖λ̂µ‖D , by definition
of ẑµ (Proposition 3.4), one has ∇x�(x̂µ, λ̂µ) = 0, (C(x̂µ)+Ŝµ)λ̂µ = µe, ‖λ̂µ‖D ≤ σ ,
and λ̂�

µŝµ = σ‖ŝµ‖P (= 0), so that ẑµ satisfies (3.11) and ẑµ,σ = ẑµ.
��

In the following proposition we give a condition on σ such that (dx, ds) is a descent
direction of the merit function 	µ,σ .

Proposition 3.7. Suppose that (x, s) satisfies c(x) + s > 0 and that M is symmetric
positive definite. Let (dx, ds, dλ) be the unique solution of (3.6). Then

	′
µ,σ (x, s; dx, ds) = −(dx)�Mdx − ∥∥�1/2(C+S)−1/2(Adx + ds)

∥∥2

+ (λ+dλ)�s − σ‖s‖P . (3.13)
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Moreover, if

σ ≥ ‖λ+dλ‖D , (3.14)

then (dx, ds) is a descent direction of 	µ,σ at a point (x, s) �= (x̂µ, ŝµ), meaning that
	′
µ,σ (x, s; dx, ds) < 0.

Proof. Using (3.3) and (3.7), the directional derivative of 	µ,σ can be written

	′
µ,σ (x, s; dx, ds)

= (∇ f − µA�(C+S)−1e
)�

dx − (
µ(C+S)−1e

)�
ds − σ‖s‖P . (3.15)

From the first equation in (3.6):

∇ f = −Mdx + A�(λ+dλ). (3.16)

On the other hand, by multiplying the second equation in (3.6) by (C+S)−1, we obtain

µ(C+S)−1e = (λ+dλ)+�(C+S)−1(Adx + ds). (3.17)

With (3.16), (3.17), ds = −s, and using the generalized Cauchy-Schwarz inequality,
(3.15) becomes

	′
µ,σ (x, s; dx, ds)

= −(Mdx + A��(C+S)−1(Adx + ds)
)�

dx

−((λ+dλ)+�(C+S)−1(Adx + ds)
)�

ds − σ‖s‖P

= −(dx)�Mdx + (λ+dλ)�s − ∥∥�1/2(C+S)−1/2(Adx + ds)
∥∥2 − σ‖s‖P

≤ −(dx)�Mdx − ∥∥�1/2(C+S)−1/2(Adx + ds)
∥∥2 + (‖λ+dλ‖D − σ

)‖s‖P .

Formula (3.13) follows from this calculation.
When M is positive definite, the last inequality and (3.14) imply that the directional

derivative of 	µ,σ is nonpositive. If 	′
µ,σ (x, s; dx, ds) vanishes, then dx = 0 (by the

positive definiteness of M) and ds = 0 (since (c + s, λ) > 0). Since (dx, ds, dλ) is the
solution to the system (3.6), we deduce that (x, s, λ+ dλ) is a solution of (3.2). Now it
follows from Proposition 3.4 that (x, s) = (x̂µ, ŝµ).

��

3.4. A primal-dual merit function

The merit function actually used in the algorithm is the function ψµ,σ obtained by
adding to the primal merit function 	µ,σ a centralization term:

ψµ,σ (x, s, λ) = 	µ,σ (x, s)+ τVµ(x, s, λ), (3.18)
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where τ > 0 is some positive constant and

Vµ(x, s, λ) := λ� (c(x)+ s)− µ

m∑
i=1

log
(
λ(i)

(
c(i)(x)+ s(i)

))
.

This term was already considered in [11,12,1,8,2]. Its role here is to scale the displace-
ment in λ.

To simplify the notation, we denote by z the triple (x, s, λ) and by Z the domain of
ψµ,σ :

Z := {
z = (x, s, λ) ∈ Rn × Rm × Rm : (c(x)+s, λ) > 0

}
.

We shall use the following derivatives:

∇Vµ(z) =
A� (λ− µ(C+S)−1e

)
λ− µ(C+S)−1e
c + s − µ�−1e

 (3.19)

and

∇2Vµ(z) =


∇2

xxVµ(z) µA�(C+S)−2 A�

µ(C+S)−2 A µ(C+S)−2 I

A I µ�−2

 , (3.20)

where

∇2
xxVµ(z) =

m∑
i=1

(
λ(i) − µ

c(i)+s(i)

)
∇2c(i) + µA�(C+S)−2 A.

The directional derivative of Vµ along a direction d = (dx, ds, dλ) satisfying the second
equation of (3.6) (i.e., the linearized perturbed complementarity conditions) shows that
such a d is a descent direction of Vµ:

∇Vµ(z)�d

= (
λ− µ(C+S)−1e

)�
Adx + (

λ− µ(C+S)−1e
)�

ds + (
c + s − µ�−1e

)�
dλ

= (
λ− µ(C+S)−1e

)�(
Adx + ds +�−1(C+S)dλ

)
= (

λ− µ(C+S)−1e
)�
�−1(µe − (C+S)λ

)
= −(µe − (C+S)λ

)�
�−1(C+S)−1(µe − (C+S)λ

)
= −∥∥�−1/2(C+S)−1/2(µe − (C+S)λ

)∥∥2
. (3.21)

The merit function ψµ,σ is not necessarily convex (see [2] for an example), but this
will not raise any difficulty, since it has a unique minimizer.

Proposition 3.8. Suppose that Assumptions 3.1 hold. Then, ψµ,σ has for unique mini-
mizer the triple ẑµ,σ = (x̂µ,σ , ŝµ,σ , λ̂µ,σ ) given by Proposition 3.6.
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Proof. Since (x̂µ,σ , ŝµ,σ ) is a minimizer of 	µ,σ :

	µ,σ (x̂µ,σ , ŝµ,σ ) ≤ 	µ,σ (x, s), for any (x, s) such that c(x)+s > 0.

On the other hand, since t �→ t−µ log t is minimized at t = µ and since (by the
perturbed complementarity)µ = (c(x̂µ,σ)+ ŝµ,σ )(i)(λ̂µ,σ )(i) for all index i, we have

τVµ(ẑµ,σ ) ≤ τVµ(z), for any z ∈ Z .

Adding up the preceding two inequalities gives ψµ,σ (ẑµ,σ ) ≤ ψµ,σ (z) for all z ∈ Z .
Hence ẑµ,σ minimizes ψµ,σ .

We still have to show that ẑµ,σ is the unique minimizer of ψµ,σ . If z = (x, s, λ)
minimizes the nondifferentiable functionψµ,σ ,ψ′

µ,σ (z; d) ≥ 0 for all d or, equivalently,
∇(x,λ)ψµ,σ (z) = 0 and −∇s

(
ϕµ(x, s)+ τVµ(z)

) ∈ σ∂(‖ · ‖P )(s). By (3.3) and (3.19),
this can be written: 

∇ f − (1+τ)µA�(C+S)−1e + τA�λ = 0,
−(1+τ)µ(C+S)−1e + τλ+ ν = 0,
c + s − µ�−1e = 0,

for some ν ∈ σ∂(‖ ·‖P )(s). By the third equation above, λ = µ(C+S)−1e, so that λ = ν

by the second equation. Then the previous system becomes
∇x�(x, λ) = 0,
(C+S)λ = µe,
λ ∈ σ∂(‖ · ‖P )(s).

By Proposition 3.6, z = ẑµ,σ .
��

We have seen with Proposition 3.7, that the quasi-Newton direction d solving (3.6)
is a descent direction of 	µ,σ . According to the calculation (3.21), it is not surprising
that d is also a descent direction of ψµ,σ .

Proposition 3.9. Suppose that z ∈ Z and that M is symmetric positive definite. Let
d = (dx, ds, dλ) be the unique solution of (3.6). Then

ψ′
µ,σ (z; d) = −(dx)�Mdx − ∥∥�1/2(C+S)−1/2(Adx + ds)

∥∥2 + (λ+dλ)�s − σ‖s‖P

−τ∥∥�−1/2(C+S)−1/2 (µe − (C+S)λ)
∥∥2
,

so that, if σ ≥ ‖λ+dλ‖D and z �= ẑµ, d is a descent direction of ψµ,σ at z, meaning
that ψ′

µ,σ (z; d) < 0.

Proof. We have ψ′
µ,σ (z; d) = 	′

µ,σ (x, s; dx, ds) + τ∇Vµ(z)�d. The formula for
ψ′
µ,σ (z; d) thus follows from (3.13) and (3.21). Suppose now that σ ≥ ‖λ+dλ‖D ,

then from the generalized Cauchy-Schwarz inequality

ψ′
µ,σ (z; d) ≤ −(dx)�Mdx − ∥∥�1/2(C+S)−1/2(Adx + ds)

∥∥2

− τ
∥∥�−1/2(C+S)−1/2(µe − (C+S)λ

)∥∥2
,
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which is nonpositive. If ψ′
µ,σ (z; d) vanishes, one deduces that dx = 0 (since M is

positive definite) and next that ds = 0 and (C+S)λ−µe = 0 (since (c(x)+ s, λ) > 0).
Now, using the second equation of (3.6), we obtain that d = 0. Since then, the right
hand side of (3.6) vanishes, (3.2) holds and z = ẑµ by Proposition 3.4. We have thus
proven that ψ′

µ,σ (z; d) < 0 if in addition z �= ẑµ.
��

3.5. Algorithm Aµ

We can now state one iteration of the algorithm used to solve the perturbed KKT system
(3.2), with fixed µ > 0. The constants ω ∈ ]0, 1

2 [ (Armijo’s slope), 0 < ξ ≤ ξ ′ < 1
(backtracking reduction coefficients), τ > 0 (centralization factor), and σ̄ > 0 (penalty
factor threshold) are given independently of the iteration index. At the beginning of the
iteration, the current iterate z = (x, s, λ) ∈ Z is supposed available, as well as a positive
scalar σold (the penalty factor used in the preceding iteration) and a positive definite
matrix M approximating the Hessian of the Lagrangian ∇2

xx�(x, λ).

ALGORITHM Aµ for solving (3.2) (one iteration, from (z,M) to (z+,M+))

1. Compute d := (dx, ds, dλ), the unique solution to the linear system (3.6). If
d = 0, stop (z solves the system (3.2)).

2. Update σ using the following rule : if σold ≥ ‖λ+dλ‖D + σ̄ , then σ := σold,
else σ := max(1.1 σold, ‖λ+dλ‖D + σ̄).

3. Compute a stepsize α > 0 by backtracking:

3.0. Set α = 1.
3.1. While z + αd �∈ Z , choose a new stepsize α in [ξα, ξ ′α].
3.2. While the sufficient decrease condition (or Armijo condition)

ψµ,σ (z + αd) ≤ ψµ,σ (z)+ ωαψ′
µ,σ (z; d) (3.22)

is not satisfied, choose a new stepsize α in [ξα, ξ ′α].
3.3. Set z+ := z + αd.

4. Update M by the BFGS formula

M+ := M − Mδδ�M

δ�Mδ
+ γγ�

γ�δ
, (3.23)

where γ and δ are given by

δ := x+ − x and γ := ∇x�(x+, λ+)− ∇x�(x, λ+). (3.24)

At this stage of the presentation, the meaning of the steps forming Algorithm Aµ should
be quite clear. In Step 2, the penalty parameter σold is updated into σ in order to ensure
that the direction d computed in Step 1 be a descent direction ofψµ,σ (use Proposition 3.9
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and observe that at this stage, z �= ẑµ). Then, the backtracking line-search in Step 3 is
guaranteed to find a stepsize α > 0 ensuring z + αd ∈ Z and satisfying the Armijo
condition (3.22). In Step 4, the matrix M is updated into M+ by the BFGS formula to
be a better approximation of the Hessian of the Lagrangian. As usual, γ ∈ Rn is the
change in the gradient with respect to x of the Lagrangian, with a multiplier fixed at its
new value λ+ > 0. The matrix M+ is positive definite, since γ�δ > 0 by the strong
convexity of the Lagrangian (Lemma 3.2).

4. Analysis of Algorithm Aµ

In this section we prove that if µ is fixed and if the sequence of penalty parameters
remains bounded, then the sequence of iterates converges q-superlinearly to a point on
the central path. Hence, in all this section, we assume:

Assumption 4.1. The sequence {σk} generated by Algorithm Aµ is bounded.

By Step 2 of Algorithm Aµ, each time σk is updated, it is at least multiplied by a factor
greater than 1. Therefore, Assumption 4.1 implies that the sequence {σk} is stationary
for k large enough:

σk = σ for k large.

With Algorithm Aµ, the boundedness of {σk} is equivalent to that of {λk +dλk }. A limited
number of experiments with Algorithm Aµ has shown that the latter sequence is actually
bounded when Problem (1.1) has a strictly feasible point (Slater’s condition). Of course,
if Algorithm Aµ converges to the solution to the barrier problem (3.1), c(x̂µ) > 0 and
Slater’s condition holds, but we do not know whether this is a sufficient condition for
stabilizing the penalty factors.

The proof of convergence is organized in three stages. First, we show the global
convergence of the sequence {zk} to ẑµ, the unique primal-dual solution to the barrier
problem (3.1) (Sect. 4.1). With the update rule of σ , σ > ‖λ̂µ‖D and ẑµ,σ = ẑµ. It
is then possible to use the behavior of ψµ,σ around ẑµ,σ = ẑµ to show the r-linear
convergence of {zk} (Sect. 4.2). This result is then used to show that the updated matrix
Mk provides a good value Mkdx

k along the search direction dx
k . This allows us to prove

that the unit stepsize is accepted by the line-search after finitely many iterations. The
q-superlinear convergence of {zk} then follows easily (Sect. 4.3).

4.1. Convergence

We denote by z1 = (x1, s1, λ1) ∈ Z the first iterate obtained with a penalty parameter
set to σ and by

LPD
1,σ := {z ∈ Z : ψµ,σ (z) ≤ ψµ,σ (z1)}

the level set of ψµ,σ determined by z1. We denote by

ψ̃µ(z) = ϕµ(x, s)+ τVµ(z) (4.1)

the differentiable part of ψµ,σ .



408 Paul Armand et al.

The following lemma gives the contribution of the line-search to the convergence of
the sequence generated by Algorithm Aµ. Such a result is standard when the objective
function is differentiable and finite-valued. It dates back at least to Zoutendijk [18] (for
a proof, see [6]). Since ψµ,σ is nondifferentiable and takes infinite values, we prefer
giving a specific proof, which in fact is very close to the original one.

Lemma 4.2. Suppose that ψ̃µ is C1,1 on an open convex neighborhoodN of the level
set LPD

1,σ , and denote by L the Lipschitz modulus of ψ̃′
µ. Then for any descent direction

d of ψµ,σ satisfying ds = −s and for α determined by the line-search in Step 3 of
algorithm Aµ, one of the following inequalities holds:

ψµ,σ (z + αd) ≤ ψµ,σ (z)− K0|ψ′
µ,σ (z; d)|,

ψµ,σ (z + αd) ≤ ψµ,σ (z)− K0
|ψ′

µ,σ (z; d)|2
‖d‖2 ,

where K0 is the constant min
(
ω,

2ξω(1−ω)
L

)
.

Proof. If the line-search is satisfied with α = 1, the first inequality holds with K0 = ω.
Suppose now that α < 1, which means that some stepsize ᾱ satisfying ξᾱ ≤ α ≤ ξ ′ᾱ
is not accepted by the line-search. This rejection of ᾱ may have two reasons. Either
z + ᾱd �∈ Z or z + ᾱd ∈ Z but ψµ,σ (z + ᾱd) > ψµ,σ (z)+ ωᾱ ψ′

µ,σ (z; d). In the first
case, there exists α̃ ∈ ]α, ᾱ[ such that z + α̃d ∈ N \ LPD

1,σ (N must be included in Z).
Then

ψµ,σ (z + α̃d) > ψµ,σ (z1) ≥ ψµ,σ (z) > ψµ,σ (z)+ ωα̃ψ′
µ,σ (z; d).

If we set α̃ := ᾱ in the second case, in either case, we have α ≥ ξᾱ ≥ ξα̃ and

ψµ,σ (z + α̃d) > ψµ,σ (z)+ ωα̃ ψ′
µ,σ (z; d). (4.2)

Using a Taylor expansion of ψ̃µ, the Cauchy-Schwarz inequality, the Lipschitz continuity

of ∇ψ̃µ and α̃ ≤ 1:

ψµ,σ (z + α̃d)− ψµ,σ (z)

= ψ̃µ(z + α̃d)− ψ̃µ(z)+ σ(‖s + α̃ ds‖P − ‖s‖P )

= α̃∇ψ̃µ(z)�d +
∫ 1

0

(∇ψ̃µ(z + tα̃d)− ∇ψ̃µ(z)
)�
(α̃d) dt

+ σ(‖s − α̃s‖P − ‖s‖P )

≤ α̃∇ψ̃µ(z)�d +
∫ 1

0
Ltα̃2‖d‖2dt − σα̃‖s‖P

= α̃ψ′
µ,σ (z; d)+ 1

2
Lα̃2‖d‖2.

Then (4.2) yields a lower bound on α̃:

α̃ >
2(1 − ω)

L

|ψ′
µ,σ (z; d)|
‖d‖2 .
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Now, the sufficient decrease condition (3.22) is satisfied with α:

ψµ,σ (z + αd) ≤ ψµ,σ (z)− ωα |ψ′
µ,σ (z; d)|

≤ ψµ,σ (z)− ωξα̃ |ψ′
µ,σ (z; d)|

≤ ψµ,σ (z)− 2ξω(1 − ω)

L

|ψ′
µ,σ (z; d)|2

‖d‖2 ,

so that the second inequality holds with K0 = 2ξω(1−ω)
L .

��
A consequence of the following lemma is that, because the iterates (x, s, λ) remain

in the level set LPD
1,σ , the sequence {(c(x)+ s, λ)} is bounded and bounded away from

zero. This property plays an important role to control the contribution of the IP aspect
of the algorithm.

Lemma 4.3. Suppose that Assumptions 3.1 and 4.1 hold. Then, the level set LPD
1,σ is

compact and there exist positive constants K1 and K2 such that

K1 ≤ (c(x)+ s, λ) ≤ K2, for all z ∈ LPD
1,σ .

Proof. Since Vµ(z) is bounded below by mµ(1 − logµ), there is a constant K ′
1 such

that 	µ,σ (x, s) ≤ K ′
1 for all z ∈ LPD

1,σ . By Assumptions 3.1 and Proposition 3.6, the
level set L′ := {(x, s) : c(x) + s > 0, 	µ,σ (x, s) ≤ K ′

1} is compact. By continuity of
(x, s) �→ c(x)+ s, {c(x)+ s : (x, s) ∈ L′} is compact, so that c(x)+ s is bounded for
(x, s) ∈ L′, hence for z ∈ LPD

1,σ . It is now also clear that c(x)+ s is bounded away from
zero for z ∈ LPD

1,σ , because ϕµ(x, s) ≤ K ′
1 and f(x) is bounded below.

By the compactness ofL′,	µ,σ is bounded below onL′, henceVµ is bounded above
on LPD

1,σ . Now, from the form of the function t �→ t −µ log t, one deduces that, for some
positive constants K ′

2 and K ′
3: K ′

2 ≤ λ(i)(c(i)(x)+ s(i)) ≤ K ′
3, for all z ∈ LPD

1,σ and all
index i. Therefore, the λ-components of the z’s in LPD

1,σ are bounded and bounded away
from zero.

We have shown that LPD
1,σ is included in a bounded set. Hence, it is compact by

continuity of ψµ,σ .
��

The search direction dk of Algorithm Aµ is determined by the system (3.6). This
one highlights the two aspects of the method: the IP approach is represented by the
matrices �k and C(xk)+Sk, while the quasi-Newton technique manifests itself through
the matrix Mk . One can view Lemma 4.3 as a way of controlling the contribution of the
IP approach; while the next lemma allows us to master what is supplied by the BFGS
updates. Lemma 4.4 claims indeed that, at least for a proportion of the iterations, there
are bounds on various effects of the matrices Mk on the displacement δk (see Byrd and
Nocedal [6] for a proof). We denote by θk the angle between Mkδk and δk:

cos θk := δ�k Mkδk

‖Mkδk‖ ‖δk‖ ,

and by $·% the ceiling operator: $x% = i, when i − 1 < x ≤ i and i ∈ N.
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Lemma 4.4. Let {Mk} be positive definite matrices generated by the BFGS formula
using pairs of vectors {(γk, δk)}k≥1, satisfying for all k ≥ 1

γ�
k δk ≥ a1‖δk‖2 and γ�

k δk ≥ a2‖γk‖2, (4.3)

where a1 > 0 and a2 > 0 are independent of k. Then, for any r ∈ ]0, 1[, there exist
positive constants b1, b2, and b3, such that for any index k ≥ 1,

b1 ≤ cos θ j and b2 ≤ ‖M jδ j‖
‖δ j‖ ≤ b3, (4.4)

for at least $rk% indices j in {1, . . . , k}.
The next lemma shows that the assumptions (4.3)made on γk and δk are satisfied in

our context.

Lemma 4.5. Suppose that Assumptions 3.1 and 4.1 hold, and that f and c are of class
C1,1. There exist constants a1 > 0 and a2 > 0 such that for all k ≥ 1

γ�
k δk ≥ a1‖δk‖2 and γ�

k δk ≥ a2‖γk‖2.

Proof. Let us first observe that, because ψµ,σ decreases at each iteration, the iterates
generated by Algorithm Aµ stay in the level set LPD

1,σ and Lemma 4.3 can be applied.
According to Lemma 3.2 and the fact that λ is bounded away from zero (Lemma 4.3),
the Lagrangian is strongly convex on LPD

1,σ , with a modulus κ > 0. Therefore

γ�
k δk = (∇x�(xk+1, λk+1)− ∇x�(xk, λk+1))

� (xk+1 − xk) ≥ κ‖δk‖2

and the first inequality holds with a1 = κ. The second one can be deduced from first
inequality and ‖γk‖ ≤ K ′‖δk‖, which follows from the Lipschitz continuity of ∇ f and
∇c, and the boundedness of λ given by Lemma 4.3.

��
We are now in position to prove that the sequence {zk} converges to ẑµ. Since ẑµ

is strictly feasible, necessarily, this event can occur only if Problem (1.1) has a strictly
feasible point.

Theorem 4.6. Suppose that Assumptions 3.1 and 4.1 hold, that f and c are of class
C1,1, and that Algorithm Aµ does not stop in Step 1. Then, Algorithm Aµ generates
a sequence {zk} converging to ẑµ and we have σ ≥ ‖λ̂µ‖D .

Proof. We denote by K ′
1, K ′

2, . . . positive constants (independent of the iteration index).
Given an iteration index j , we use the notation

c j := c(x j), A j = A(x j), C j := diag(c(1)(x j), . . . , c(m)(x j)),

and Sj := diag((s j )(1), . . . , (s j )(m)).

The bounds on (c(x)+s, λ) given by Lemma 4.3 and the fact that f and c are of class
C1,1 imply that ψ̃µ given by (4.1) is of class C1,1 on some open convex neighborhood
of the level set LPD

1,σ . For example, one can take the neighborhood{
g−1

(]
K1

2
,+∞

[m)
×
]

K1

2
, 2K2

[m}
∩O,
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where g : (x, s) �→ c(x)+ s andO is an open bounded convex set containing LPD
1,σ (this

set O is used to have c′ bounded on the given neighborhood).
Therefore, by the line-search and Lemma 4.2, there is a positive constant K ′

1 such
that either

ψµ,σ (zk+1) ≤ ψµ,σ (zk)− K ′
1|ψ′

µ,σ (zk; dk)| (4.5)

or

ψµ,σ (zk+1) ≤ ψµ,σ (zk)− K ′
1

|ψ′
µ,σ (zk; dk)|2

‖dk‖2 . (4.6)

Let us now apply Lemma 4.4: fix r ∈ ]0, 1[ and denote by J the set of indices
j for which (4.4) holds. Since Algorithm Aµ ensures σ ≥ ‖λ j + dλj ‖D + σ̄ , using
Proposition 3.9 and the bounds from Lemma 4.3, one has for j ∈ J :

|ψ′
µ,σ (z j; d j)| ≥ (

dx
j

)�
M j d

x
j + ∥∥�1/2

j (C j+Sj)
−1/2(A jd

x
j + ds

j

)∥∥2

+ τ
∥∥�−1/2

j (C j+Sj )
−1/2((C j+Sj)λ j − µe)

∥∥2 + σ̄‖s j‖P

≥ b1

b3

∥∥M j d
x
j

∥∥2 + K1K−1
2

∥∥A jd
x
j + ds

j

∥∥2

+ τK−2
2

∥∥(C j+Sj )λ j − µe
∥∥2 + σ̄‖s j‖P

≥ K ′
2

(∥∥M j d
x
j

∥∥2 + ∥∥A jd
x
j + ds

j

∥∥2 + ‖(C j+Sj )λ j − µe‖2 + ‖s j‖P

)
.

On the other hand, by (3.6) and the fact that {s j} is bounded:

‖d j‖2 = ∥∥dx
j

∥∥2 + ∥∥ds
j

∥∥2 + ∥∥dλj
∥∥2

= ∥∥dx
j

∥∥2 + ‖s j‖2 + ∥∥(C j+Sj )
−1(µe − (C j+Sj )λ j −� j

(
A jd

x
j + ds

j

))∥∥2

≤ 1

b2
2

∥∥M j d
x
j

∥∥2 + ‖s j‖2

+ 2K−2
1 ‖(C j+Sj )λ j − µe‖2 + 2K−2

1 K2
2

∥∥A jd
x
j + ds

j

∥∥2

≤ K ′
3

(∥∥M j d
x
j

∥∥2 + ‖(C j+Sj )λ j − µe‖2 + ∥∥A jd
x
j + ds

j

∥∥2 + ‖s j‖P

)
.

Combining these last two estimates with (4.5) or (4.6) gives for some positive constant
K ′

4 and for any j ∈ J :

ψµ,σ (z j+1)− ψµ,σ (z j)

≤ −K ′
4

(∥∥M j d
x
j

∥∥2 + ‖(C j+Sj)λ j − µe‖2 + ∥∥A jd
x
j + ds

j

∥∥2 + ‖s j‖P

)
. (4.7)

Now, since the sequence {ψµ,σ (zk)} is decreasing (by the line-search) and bounded
below (by ψµ,σ (ẑµ,σ )), it converges and we deduce from the preceding inequality that
M j dx

j , (C j+Sj)λ j −µe, A jdx
j + ds

j and s j tend to zero when j → ∞ in J . According

to the linear system (3.6), this implies that ∇x�(x j, λ j + dλj ) and (C j+Sj )dλj tend to

zero. Therefore, dλj → 0 (C j+Sj is bounded away from zero) and A(x j)
�dλj → 0 (x j is
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in the compact LPD
1,σ ). Finally ∇x�(x j , λ j ), (C j+Sj )λ j − µe, and s j tend to zero. This

means that any limit point z of {z j} j∈J satisfies (3.2), i.e., z = ẑµ. Since {z j} remains
in the compact LPD

1,σ (Lemma 4.3), the whole sequence {z j} j∈J converges to ẑµ.

Using the update rule of σ in Algorithm Aµ, we have σ ≥ ‖λ̂µ‖D and, thanks to
Proposition 3.6, ẑµ = ẑµ,σ . Therefore {ψµ,σ (zk)} converges to ψµ,σ (ẑµ,σ ). In addition,
{zk} remains in the compactLPD

1,σ andψµ,σ has a unique minimizer ẑµ,σ (Proposition 3.8).
As a result, the whole sequence {zk} converges to ẑµ.

��

4.2. R-linear convergence

Knowing that the sequence {zk} converges to the unique solution ẑµ of the barrier
problem (3.1) and that ẑµ = ẑµ,σ , we can now study its speed of convergence. The
analysis of the q-superlinear convergence in Sect. 4.3 requires that we first show∑

k≥1

‖zk − ẑµ‖ < ∞.

The convergence of this series results directly from the r-linear convergence of {zk}:
lim sup

k→∞
‖zk − ẑµ‖1/k < 1,

which is proven in this section (Theorem 4.10). This one results from the strong convexity
of ψµ,σ near ẑµ,σ (see Lemmas 4.7 and 4.9; it is therefore important to have ẑµ = ẑµ,σ
to take advantage of this convexity property) and from the contribution of the BFGS
and IP techniques summarized in Lemmas 4.3 and 4.4.

Lemma 4.7. Suppose that Assumptions 3.1 hold. Then, the functions ψ̃µ and ψµ,σ
are strongly convex in the neighborhood of any point z = (x, s, λ) ∈ Z satisfying the
centrality condition (C(x)+ S)λ = µe.

Proof. Let z ∈ Z be a point satisfying (C(x)+ S)λ = µe. Using (3.4), (3.20), and the
fact that (C(x)+ S)λ = µe, the Hessian of ψ̃µ at z can be written

∇2ψ̃µ(x, s, λ)

=
∇2

xx�(x, λ)+ (1+τ)µA�(C+S)−2 A (1+τ)µA�(C+S)−2 τA�
(1+τ)µ(C+S)−2 A (1+τ)µ(C+S)−2 τI

τA τI τµ−1(C+S)2

 .
To establish that ψ̃µ is strongly convex in the neighborhoodof z, it is enough to show that
the matrix above is positive definite. Multiplying this matrix on both sides by a vector
(u, v,w) ∈ Rn × Rm ×Rm gives

u�∇2
xx�(x, λ)u + µ‖(C+S)−1(Au + v)‖2

+τ‖µ1/2(C+S)−1(A u + v)+ µ−1/2(C+S)w‖2,
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which is nonnegative. If it vanishes, one deduces that u = 0 (since ∇2
xx�(x, λ) is positive

definite for fixed λ > 0, a consequence of Assumptions 3.1 and Lemma 3.2), and next
that v = w = 0 (since c(x)+ s > 0). Hence ∇2ψ̃µ(z) is positive definite.

To extend this property to ψµ,σ , it suffices to observe that ψµ,σ is the sum of ψ̃µ
and the convex function (x, s, λ) �→ σ‖s‖P .

��
Lemma 4.8. Let a, α, and β be nonnegative numbers, such that a ≤ α a1/2 + β. Then
a ≤ α2 + 2β.

Proof. Use α a1/2 ≤ α2/2 + a/2 in a ≤ α a1/2 + β and multiply both sides of the
resulting inequality by 2.

��
Lemma 4.9. Suppose that Assumptions 3.1 and 4.1 hold. Then there exist a constant
a > 0 and an open neighborhoodN ⊂ Z of ẑµ,σ , such that for all z ∈ N

a‖z − ẑµ,σ‖2 ≤ ψµ,σ (z)− ψµ,σ (ẑµ,σ )

≤ 1

a

(‖∇x�(x, λ)‖2 + ‖(C+S)λ− µe‖2 + ‖s − ŝµ,σ‖P

)
. (4.8)

Proof. For the inequality on the left in (4.8), we first use the strong convexity of ψµ,σ
in the neighborhood of ẑµ,σ (Lemma 4.7): for some neighborhood N ⊂ Z of ẑµ,σ ,
there exists a positive constant a′ such that, for all z ∈ N , ψµ,σ (z) ≥ ψµ,σ (ẑµ,σ ) +
ψ′
µ,σ (ẑµ,σ ; z − ẑµ,σ ) + a′‖z − ẑµ,σ‖2. Since ψµ,σ is minimized at ẑµ,σ , one gets

ψ′
µ,σ (ẑµ,σ ; z − ẑµ,σ ) ≥ 0. Thus the inequality on the left in (4.8) holds on N with

a = a′.
For the inequality on the right, we first use the convexity of ψ̃µ (see (4.1)) near ẑµ,σ

(Lemma 4.7), (3.3) and (3.19) to write

ψµ,σ (z)− ψµ,σ (ẑµ,σ ) = ψ̃µ(z)− ψ̃µ(ẑµ,σ )+ σ(‖s‖P − ‖ŝµ,σ‖P )

≤ ∇ψ̃µ(z)�(z − ẑµ,σ )+ σ‖s − ŝµ,σ‖P

= g�(z − ẑµ,σ )− λ�(s − ŝµ,σ )+ σ‖s − ŝµ,σ‖P ,

where

g =
∇x�(x, λ)+ (1+τ)A�(C+S)−1 ((C+S)λ− µe)

(1+τ)(C+S)−1 ((C+S)λ− µe)
τ�−1 ((C+S)λ− µe)

 .
For λ in a neighborhood of λ̂µ,σ , there exists a′′ > 0 such that

ψµ,σ (z)− ψµ,σ (ẑµ,σ ) ≤ g�(z − ẑµ,σ )+ a′′‖s − ŝµ,σ‖P .

With the Cauchy-Schwarz inequality and the inequality on the left of (4.8):

ψµ,σ (z)− ψµ,σ (ẑµ,σ ) ≤ ‖g‖
(
ψµ,σ (z)− ψµ,σ (ẑµ,σ )

a′

)1/2

+ a′′‖s − ŝµ,σ‖P .
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Now Lemma 4.8 yields

ψµ,σ (z)− ψµ,σ (ẑµ,σ ) ≤ 1

a′ ‖g‖2 + 2a′′‖s − ŝµ,σ‖P .

The inequality on the right in (4.8) now follows by using the bounds obtained in
Lemma 4.3.

��
Theorem 4.10. Suppose that Assumptions 3.1 and 4.1 hold, that f and c are C1,1

functions, and that Algorithm Aµ does not stop in Step 1. Then, Algorithm Aµ generates
a sequence {zk} convergingr-linearly to ẑµ, meaning that lim supk→∞ ‖zk− ẑµ‖1/k < 1.
In particular ∑

k≥1

‖zk − ẑµ‖ < ∞.

Proof. We know from Theorem 4.6, that Algorithm Aµ generates a sequence {zk}
converging to ẑµ. In addition σ ≥ ‖λ̂µ‖D , so that ẑµ = ẑµ,σ (Proposition 3.6).

Now, let us fix r ∈ ]0, 1[ and denote by J the set of indices j for which (4.4) holds.
Since d solves the linear system (3.6), one has for j ∈ J

‖∇x�(x j , λ j )‖2

= ∥∥M j d
x
j − A�

j dλj
∥∥2

≤ 2
∥∥M j d

x
j

∥∥2 + 2
∥∥∥A�

j (C j+Sj )
−1(µe − (C j+Sj )λ j −� j

(
A jd

x
j + ds

j

))∥∥∥2
,

and, with the bounds from Lemma 4.3, we have for some positive constant K ′
1:

‖∇x�(x j , λ j )‖2 + ‖(C j+Sj )λ j − µe‖2 + ‖s j‖P

≤ K ′
1

(∥∥M j d
x
j

∥∥2 + ‖(C j+Sj )λ j − µe‖2 + ∥∥A jd
x
j + ds

j

∥∥2 + ‖s j‖P

)
.

We have shown during the proof of Theorem 4.6, see (4.7), that there exists a positive
constant K ′

2 such that for any j ∈ J :

ψµ,σ (z j+1)− ψµ,σ (z j)

≤ −K ′
2

(∥∥M j d
x
j

∥∥2 + ‖(C j+Sj)λ j − µe‖2 + ∥∥A jd
x
j + ds

j

∥∥2 + ‖s j‖P

)
.

Combining these inequalities gives for the constant K ′
3 = K ′

2/K ′
1 and for any j ∈ J :

ψµ,σ (z j+1) ≤ ψµ,σ (z j )− K ′
3

(‖∇x�(x j , λ j )‖2 + ‖(C j+Sj )λ j − µe‖2 + ‖s j‖P

)
.

From the convergenceof the sequence {z j} to ẑµ and Lemma 4.9 (note that here ŝµ,σ = 0
since ẑµ,σ = ẑµ), there exists an index j0 ∈ J , such that for j ∈ J and j ≥ j0, z j is in
the neighborhoodN given by Lemma 4.9 and

ψµ,σ (z j+1)− ψµ,σ (ẑµ)

≤ ψµ,σ (z j)− ψµ,σ (ẑµ)− K ′
3

(‖∇x�(x j, λ j )‖2 + ‖(C j+Sj )λ j − µe‖2 + ‖s j‖P

)
≤ τ

1
r (ψµ,σ (z j )− ψµ,σ (ẑµ)),
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where the constant τ := (1 − K ′
3a)r is necessarily in [0, 1[. On the other hand, by the

line-search, ψµ,σ (zk+1)− ψµ,σ (ẑµ) ≤ ψµ,σ (zk)− ψµ,σ (ẑµ), for all k ≥ 1. According
to Lemma 4.4, |[1, k] ∩ J| ≥ $rk%, so that for k ≥ j0: |[ j0, k] ∩ J| ≥ $rk% − j0 + 1 ≥
rk − j0 + 1. Let k0 := $ j0/r%, so that |[ j0, k] ∩ J| > 0 for all k ≥ k0. By the last
inequality, one has for k ≥ k0:

ψµ,σ (zk+1)− ψµ,σ (ẑµ) ≤ K ′
4τ

k,

where K ′
4 is the positive constant (ψµ,σ (z j0) − ψµ,σ (ẑµ))/τ( j0−1)/r . Now, using the

inequality on the left in (4.8), one has for all k ≥ k0:

‖zk+1 − ẑµ‖ ≤ 1√
a
(ψµ,σ (zk+1)− ψµ,σ (ẑµ))

1
2 ≤

(
K ′

4

a

) 1
2

τ
k
2 ,

from which the r-linear convergence of {zk} follows.
��

4.3. Q-superlinear convergence

Using shift variables s has a worth noting consequence. These ones are updated by
the formula sk+1 = sk + αkds

k = (1 − αk)sk. Therefore, if the unit stepsize αk = 1
is ever accepted by the line-search, the shift variables are set to zero, and this value is
maintained at all the subsequent iterations. If this event occurs, the algorithm becomes
identical to the feasible algorithm in [2], which has been proven to be q-superlinear
convergent (see Theorem 4.4 in [2]). As a result, to prove the q-superlinear convergence
of algorithm Aµ, it is sufficient to show that αk = 1 for some index k.

In Proposition 4.11 below we show that the unit stepsize is indeed accepted by the
Armijo condition (3.22), if the matrices Mk satisfy the estimate(

dx
k

)�(
Mk − M̂µ

)
dx

k ≥ o
(∥∥dx

k

∥∥2)
, (4.9)

where we used the notation M̂µ := ∇2
xx�(x̂µ, λ̂µ). This one is itself a consequence of

the stronger estimate (
Mk − M̂µ

)
dx

k = o
(∥∥dx

k

∥∥). (4.10)

Although Assumptions 3.1 are weaker than Assumptions 2.1 in [2], since γ�
k δk > 0 still

holds, we can show that (4.10) holds using the same arguments as those in the proof of
Theorem 4.4 in [2].

Proposition 4.11. Suppose that Assumptions 3.1 hold and that f and c are twice
continuously differentiable near x̂µ. Suppose also that the sequence {zk} generated by
Algorithm Aµ converges to ẑµ and that the positive definite matrices Mk satisfy the
estimate (4.9) when k → ∞. Then the sufficient decrease condition (3.22) is satisfied
with αk = 1 for k sufficiently large.
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Proof. Observe first that the positive definiteness of M̂µ and (4.9) imply that(
dx

k

)�
Mkdx

k ≥ K ′
1

∥∥dx
k

∥∥2
, (4.11)

for some positive constant K ′
1 and sufficiently large k. Observe also that dk → 0 (for

dx
k → 0, use (3.9), (4.11), ∇x�(xk, λk) → 0, and C(xk)λk → µe). Therefore, for k

large enough, zk and zk + dk are near ẑµ and one can expand ψµ,σ (zk + dk) about zk.
Decomposingψµ,σ (zk) = ψ̃µ(zk)+ σ‖sk‖P , we have for k large enough:

ψµ,σ (zk + dk)− ψµ,σ (zk)− ωψ′
µ,σ (zk; dk)

= ψ̃µ(zk + dk)− ψ̃µ(zk)− ω∇ψ̃µ(zk)
�dk − (1 − ω)σ‖sk‖P

= (1 − ω)∇ψ̃µ(zk)
�dk + 1

2
d�

k ∇2ψ̃µ(zk)dk − (1 − ω)σ‖sk‖P + o(‖dk‖2)

=
(

1

2
− ω

)
∇ψ̃µ(zk)

�dk + 1

2

(
∇ψ̃µ(zk)

�dk + d�
k ∇2ψ̃µ(zk)dk

)
− (1 − ω)σ‖sk‖P + o(‖dk‖2). (4.12)

We want to show that the latter expression is nonpositive when k is large.
For this, we start by evaluating the terms ∇ψ̃µ(zk)

�dk and d�
k ∇2ψ̃µ(zk)dk. From

(3.13), (3.21), and (3.6):

∇ψ̃µ(zk)
�dk

= −(dx
k

)�
Mkdx

k −
∥∥∥�1/2

k (Ck+Sk)
−1/2(Akdx

k + ds
k

)∥∥∥2 + (
λk+dλk

)�
sk

− τ

∥∥∥�1/2
k (Ck+Sk)

−1/2
(

Akdx
k + ds

k +�−1
k (Ck+Sk)d

λ
k

)∥∥∥2

= Dk + (
λk+dλk

)�
sk, (4.13)

where

Dk := −(dx
k

)�
Mkdx

k − (1+τ)
∥∥∥�1/2

k (Ck+Sk)
−1/2(Akdx

k + ds
k

)∥∥∥2

− τ

∥∥∥�−1/2
k (Ck+Sk)

1/2dλk

∥∥∥2 − 2τ
(

Akdx
k + ds

k

)�
dλk .

On the other hand, from (3.4) and (3.20) and a calculation very similar to the one done
in Lemma 4.7, one has

d�
k ∇2ψ̃µ(zk)dk

= (
dx

k

)�∇2
xx�(xk, λ̃k)d

x
k + (1+τ)µ∥∥(Ck+Sk)

−1(Akdx
k + ds

k

)∥∥2

+ 2τ
(

Akdx
k + ds

k

)�
dλk + τµ

∥∥�−1
k dλk

∥∥2
, (4.14)

where λ̃k = (1+τ)µ(Ck+Sk)
−1e− τλk. Injecting (4.13) and (4.14) in (4.12), and using

(4.9), zk → ẑµ, and σ ≥ ‖λk + dλk ‖D , give
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ψµ,σ (zk + dk)− ψµ,σ (zk)− ωψ′
µ,σ (zk; dk)

=
(

1

2
− ω

)
Dk − 1

2

(
dx

k

)�(
Mk − ∇2

xx�(xk, λ̃k)
)
dx

k

+ 1

2
(1+τ)(Akdx

k + ds
k

)�(
µ(Ck+Sk)

−2 − (Ck+Sk)
−1�k

)(
Akdx

k + ds
k

)
+ τ

2

(
dλk
)�(

µ�−2
k − (Ck+Sk)�

−1
k

)
dλk

+ (1 − ω)
(
λk + dλk

)�
sk − (1 − ω)σ‖sk‖P + o(‖dk‖2)

≤
(

1

2
− ω

)
Dk + (1 − ω)

(∥∥λk + dλk
∥∥

D
− σ

)‖sk‖P + o(‖dk‖2)

≤
(

1

2
− ω

)
Dk + o(‖dk‖2).

To conclude, we still have to show that the negative terms in Dk can absorb the term
in o(‖dk‖2). For this, we use the Cauchy-Schwarz inequality on the last term in Dk to
obtain

2τ
∣∣∣(Akdx

k + ds
k

)�
dλk

∣∣∣
≤ 2τ

∥∥∥(Ck+Sk)
−1/2�

1/2
k

(
Akdx

k + ds
k

)∥∥∥ ∥∥∥(Ck+Sk)
1/2�

−1/2
k dλk

∥∥∥
≤ 1+2τ

2

∥∥∥(Ck+Sk)
−1/2�

1/2
k

(
Akdx

k + ds
k

)∥∥∥2 + 2τ2

1+2τ

∥∥∥(Ck+Sk)
1/2�

−1/2
k dλk

∥∥∥2
.

Then, using (4.11), one has

Dk ≤ −(dx
k )

�Mkdx
k − 1

2

∥∥∥�1/2
k (Ck+Sk)

−1/2(Akdx
k + ds

k

)∥∥∥2

− τ

1+2τ

∥∥∥�−1/2
k (Ck+Sk)

1/2dλk

∥∥∥2

≤ −K ′
1

∥∥dx
k

∥∥2 − K ′
2

∥∥Akdx
k + ds

k

∥∥2 − K ′
3

∥∥dλk
∥∥2
,

for some positive constants K ′
2 and K ′

3. For any ε > 0:∥∥Akdx
k + ds

k

∥∥2 = ∥∥Akdx
k

∥∥2 + 2
(
Akdx

k

)�
ds

k + ∥∥ds
k

∥∥2

≥ ∥∥Akdx
k

∥∥2 − (1+ε)∥∥Akdx
k

∥∥2 − 1

1+ε
∥∥ds

k

∥∥2 + ∥∥ds
k

∥∥2

≥ −ε‖Ak‖2
∥∥dx

k

∥∥2 + ε

1+ε
∥∥ds

k

∥∥2
.

Set now ε := K ′
1/(2K ′

2‖Ak‖2) to conclude that

Dk ≤ − K ′
1

2
‖dx

k ‖2 − εK ′
2

1+ε ‖ds
k‖2 − K ′

3‖dλk ‖2.

This negative upper bound of Dk can absorb the term o(‖dk‖2).
��
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A function φ, twice differentiable in a neighborhood of a point x ∈ Rn , is said to
have a locally radially Lipschitzian Hessian at x, if there exists a positive constant L
such that for x′ near x, one has

‖∇2φ(x)− ∇2φ(x′)‖ ≤ L‖x − x′‖.

Theorem 4.12. Suppose that Assumptions 3.1 and 4.1 hold, that f and c are C1,1

functions, twice continuously differentiable near x̂µ with locally radially Lipschitzian
Hessians at x̂µ, and that Algorithm Aµ does not stop in Step 1. Then the sequence
{zk} = {(xk, sk, λk)} generated by this algorithm converges to ẑµ = (x̂µ, ŝµ, λ̂µ) with a
q-superlinear speed of convergence and, for k sufficiently large, the unit stepsize αk = 1
is accepted by the line-search.

Proof. According to the observation made at the beginning of this section and the
previous proposition, we only have to show that the estimate (4.10) holds to guarantee
the q-superlinear convergence of zk → ẑµ. This can be done exactly as in the proof of
Theorem 4.4 in [2], using a standard result from the BFGS theory (see [15, Theorem 3]
and [6]).

��
A consequence of this result is that the q-superlinear convergence of {zk} does not

depend on the value of the positive factor τ multiplying the centralization term Vµ in
the merit function.

5. The overall primal-dual algorithm

We have already mentioned at the beginning of Sect. 4.3 that, as soon as the unit stepsize
α = 1 is accepted by the line-search, all the iterates become strictly feasible. This is
because the shift variables are updated by the rule: s+ = s + αds = (1 − α)s. This is
not necessarily an advantage. For some problems, it is difficult to find a point satisfying
the constraints, so that the property above becomes a drawback: for many iterations the
unit stepsize could not be accepted. This may well slow down the speed of convergence
of Algorithm Aµ.

To prevent this effect from occurring, one can relax the constraint s = 0 of Prob-
lem (1.2), substituting it into s = rµ, as in the barrier problem (1.5). The function
r : µ ∈ [0,+∞[ �→ rµ ∈ Rm is supposed to be continuous at µ = 0 and to satisfy
r0 = 0. To overcome the difficulty mentioned in the previous paragraph, it is natural
to take rµ ≥ 0, although this is not required by the analysis below. An example of
relaxation vector is rµ = (µ/µ1)s1. In this approach, feasibility in Problem 1.1 is only
obtained asymptotically.

Let us mention that the results of Sects. 3 and 4 are still valid when rµ �= 0, since
µ is fixed in these sections and the constraint s = 0 can be recovered in Problem (1.5)
thanks to the substitutions

c(x)� c(x)− rµ and s� s + rµ.
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We can now describe the overall algorithm. We index the outer iterations with
superscripts j ∈ N\{0} and note r j = rµ j . At the beginning of the jth outer iteration an

approximation z j
1 := (x j

1, s j
1, λ

j
1) ∈ Z of the solution ẑ of (1.6) is supposed available,

as well as a positive definite matrix M j
1 approximating the Hessian of the Lagrangian.

Values for the penalty parameters µ j > 0, for the relaxation vector r j ∈ Rm , and for
a precision threshold ε j := (ε

j
l , ε

j
c , ε

j
s ) > 0 are also known.

ALGORITHM A for solving Problem (1.1) (one outer iteration)

1. Starting from z j
1, use Algorithm Aµ until z j := (x j , s j , λ j ) satisfies

‖∇ f(x j )− A(x j)�λ j‖ ≤ ε
j
l ,

‖(C(x j )+S j )λ j − µ j e‖ ≤ ε
j
c ,

‖s j − r j‖P ≤ ε
j
s .

(5.1)

2. Set the new penalty parameters µ j+1 > 0 and σ j+1 > 0, the precision
thresholds ε j+1 := (ε

j+1
l , ε

j+1
c , ε

j+1
s ) > 0, and the new relaxation vector

r j+1, such that {µ j}, {ε j}, and {r j} converge to zero when j → ∞. Choose
a new starting iterate z j+1

1 ∈ Z for the next outer iteration, as well as a positive

definite matrix M j+1
1 .

The following lemma gives an over-estimate of the function value at an outer
iteration.

Lemma 5.1. Suppose that Assumptions 3.1 hold. If (x j , s j , λ j ) satisfies (5.1), then for
any x ∈ Rn, one has

f(x j )− f(x) ≤ −(λ j )�
(
c(x)+ s j)+ m

1
2 ε

j
c + mµ j + ε

j
l ‖x j − x‖. (5.2)

Proof. Using the convexity of the Lagrangian: �(x j , λ j ) + ∇x�(x j , λ j )�(x − x j) ≤
�(x, λ j), for any x ∈ Rn . Therefore, the first criterion in (5.1) yields

f(x j )− f(x) ≤ −(λ j)�c(x)+ (λ j )�c(x j)+ ε
j
l ‖x j − x‖

≤ −(λ j)�(c(x)+ s j )+ (λ j)�(c(x j)+ s j )+ ε
j
l ‖x j − x‖.

Now with the second criterion in (5.1):

(λ j )�(c(x j)+ s j ) = e�((C(x j )+ S j )λ j − µ j e)+ mµ j ≤ m
1
2 ε

j
c + mµ j .

The result follows from these last two inequalities.
��
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Theorem 5.2. Suppose that Assumptions 3.1 hold and that f and c are C1,1 functions.
Suppose also that Algorithm A generates a sequence {z j}, which means that the stopping
criteria (5.1) can be satisfied at every outer iteration. Then, depending on the problem
data, the following situations occur:

(i) The limit points z̄ := (x̄, s̄, λ̄) of {z j}, if any, are such that s̄ = 0 (in fact all the
sequence {s j } → 0) and (x̄, λ̄) is a primal-dual solution to Problem (1.1).

(ii) If Problem (1.1) has no feasible point, ‖x j‖ → ∞ and ‖λ j‖ → ∞.
(iii) If Problem (1.1) has a feasible point and Algorithm A takes r j ≥ 0 and s j

1 ≥ 0,
the sequence {x j} is bounded and its limit points are feasible.

(iv) If Problem (1.1) has a strictly feasible point (Slater’s condition), the sequence {z j}
is bounded, so that {z j} has indeed a limit point that satisfies the properties given
in point (i).

Proof. Let z̄ be a limit point of {z j }. Taking the limit in (5.1) shows that s̄ = 0 and that
(x̄, λ̄) satisfies the KKT conditions (1.4). Therefore, (x̄, λ̄) is a primal-dual solution to
the convex problem (1.1). Point (i) is proven.

Before proceeding with the other points, let us show the following intermediate
result, which will be used three times. Suppose that, for some subsequence of indices J ,
‖x j‖ → ∞ when j → ∞ in J . Then ‖λ j‖ → ∞ when j → ∞ in J and, for any point
x̌ ∈ Rn :

(∃ i ∈ {1, . . . ,m}) (∃ subsequence J ′ ⊂ J
) (∀ j ∈ J ′) c(i)(x̌)+ s j

(i) < 0. (5.3)

Indeed, define t j := ‖x j − x̌‖, which is nonzero for j large in J . One has t j → ∞ when
j → ∞ in J , and d j := (x j − x̌)/t j → d �= 0 for some subsequence J0 ⊂ J . Since
−c(x j) < s j and {s j } tends to zero, we have (−c(i))′∞(d) ≤ 0, for all i = 1, . . . ,m.
It follows from Proposition 3.3 that f ′∞(d) = +∞. On the other hand, dividing both
sides of inequality (5.2) with x = x̌ by t j provides

f(x j )− f(x̌)

t j
≤ − (λ j)�(c(x̌)+ s j )

t j
+ m

1
2 ε

j
c + mµ j

t j
+ ε

j
l .

The left hand side tends to f ′∞(d) = +∞ when j → ∞ in J0, while the last two terms
in the right hand side tends to zero. Therefore ‖λ j‖ → ∞ when j → ∞ in J0 (even
more rapidly than t j ) and, since λ j > 0, (5.3) must hold. By applying the result just
proven to any subsequence of J , we see that {λ j } j∈J cannot have a limit point, so that
‖λ j‖ → ∞ for j → ∞ in all J .

Consider now point (ii), assuming that Problem (1.1) is not feasible. Then, the
sequence {x j} cannot have a limit point x̄, otherwise the limit in c(x j) + s j > 0 for
an appropriate subsequence would imply that x̄ is feasible for Problem (1.1). Then
‖x j‖ → ∞. Also ‖λ j‖ → ∞ by the intermediate result proven above.

Consider now point (iii) and let x̌ be feasible for Problem (1.1). The nonnegativity
of r j and s j

1 imply that s j ≥ 0. Indeed, during the jth outer iteration, the shift variables
are updated by s+ := s − α(s − r j) = (1 − α)s + αr j ; hence s+ is nonnegative by
induction and so is s j . Then (5.3) cannot hold (because c(i)(x̌) ≥ 0 and s j

(i) ≥ 0).
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Hence {x j} is bounded by the intermediate result. On the other hand c(x j)+ s j > 0 and
s j → 0, so that the limit point of {x j} are feasible.

Consider finally point (iv), assuming that Problem (1.1)has a strictly feasible point x̌.
Since c(x̌)+s j > 0 for large j , (5.3) cannot hold, which implies the boundedness of {x j}.
We still have to show that {λ j } is bounded. We proceed by contradiction, assuming that
‖λ j‖ → ∞ for j → ∞ in some subsequence J . Then, for some subsequence J ′ ⊂ J ,
the bounded sequence {(x j , λ j/‖λ j‖)} j∈J ′ converges to (x̄, λ̄), say. Dividing the first
two inequalities in (5.1) by ‖λ j‖ and taking limits when j → ∞, j ∈ J ′, we deduce
that λ̄ ≥ 0, A(x̄)�λ̄ = 0 and (λ̄)�c(x̄) = 0. Using the concavity of the components of c
and the strict feasibility of x̌, one has

c(x̄)+ A(x̄)(x̌ − x̄) ≥ c(x̌) > 0.

Multiplying by λ̄, we deduce that (λ̄)�c(x̌) = 0, and thus λ̄ = 0, which is in contradiction
with ‖λ̄‖ = 1.

��
We now exhibit conditions ensuring that the whole sequence of outer iterates {z j}

converges to the analytic center of the primal-dual optimal set. To get that property, we
assume that the Slater condition is satisfied.

Assumption 5.3 (Slater). There exists x ∈ Rn such that c(x) > 0.

Let us first recall the definition of analytic center of the optimal sets which, under
Assumptions 3.1 and 5.3, is uniquely defined. We denote by opt(P) and opt(D) the sets
of primal and dual solutions to Problem (1.1). The analytic center of opt(P) is defined as
follows. If opt(P) is reduced to a single point, its analytic center is precisely that point.
Otherwise, opt(P) is a convex set with more than one point and the following index set

B := {i : ∃x̂ ∈ opt(P) such that c(i)(x̂) > 0}
is nonempty (otherwise, for any λ > 0, the Lagrangian �(·, λ) would be constant on
a nontrivial segment of optimal points, which is in contradiction with Lemma 3.2). By
concavity of the components of c, {x̂ ∈ opt(P) : cB(x̂) > 0} is nonempty. The analytic
center of opt(P) is then defined as the unique solution to the following problem:

max
x̂∈opt(P)
cB(x̂)>0

(∑
i∈B

log c(i)(x̂)

)
. (5.4)

The fact that this problem is well defined and has a unique solution is highlighted in
Lemma 5.4 below. Similarly, if opt(D) is reduced to a single point, its analytic center is
that point. In case of multiple dual solutions, the index set

N := {
i : ∃λ̂ ∈ opt(D) such that λ̂(i) > 0

}
is nonempty (otherwise opt(D) would be reduced to {0}). The analytic center of opt(D)
is then defined as the unique solution to the following problem:

max
λ̂∈opt(D)
λ̂N>0

(∑
i∈N

log λ̂(i)

)
. (5.5)
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Lemma 5.4. Suppose that Assumptions 3.1 and 5.3 hold. If opt(P) (resp. opt(D)) is not
reduced to a singleton, then Problem (5.4) (resp. (5.5)) has a unique solution.

Proof. The proof of this lemma is very similar to the one of Lemma 5.2 in [2], although
Assumptions 3.1 and 5.3 are weaker than Assumptions 2.1 in [2].

Consider first Problem (5.4) and suppose that opt(P) is not a singleton. We have
seen that the feasible set in (5.4) is nonempty. Let x̂0 be a point satisfying the constraints
in (5.4). Then the set{

x̂ : x̂ ∈ opt(P), cB(x̂) > 0, and
∑
i∈B

log ci(x̂) ≥
∑
i∈B

log ci(x̂0)

}
is nonempty, bounded (Proposition 3.3) and closed. Therefore, Problem (5.4) has a so-
lution. To prove its uniqueness, suppose that x̂1 and x̂2 are two distinct solutions to
Problem (5.4). Then, any point in the nontrivial segment [x̂1, x̂2] is also optimal for
this problem, so that, by the strict concavity of the log, cB has a constant value over
the segment. On the other hand, f is also constant on the segment (which is contained
in opt(P)), as well as c(i) for i /∈ B (which vanishes on the segment). It follows that
the Lagrangian has a constant value over a nontrivial segment, a contradiction with its
assumed strong convexity.

Using similar arguments (including the fact that Assumption 5.3 implies the bound-
edness of opt(D) and the fact that the objective function in (5.5) is strictly concave),
one can show that Problem (5.5) has a unique solution.

��
By complementarity (i.e., C(x̂)λ̂ = 0) and convexity of problem (1.1), the index

sets B and N do not intersect, but there may be indices that are neither in B nor in N. It is
said that Problem (1.1) has the strict complementarity property if B ∪ N = {1, . . . ,m}.
Theorem 5.5. Suppose that Assumptions 3.1 and 5.3 hold and that f and c are C1,1

functions. Suppose also that Problem (1.1) has the strict complementarity property and
that the sequences {r j } and {ε j} in Algorithm A satisfy the estimate

r j = o(µ j) and ε j = o(µ j).

Suppose finally that Algorithm A generates a sequence {z j}, which means that the
stopping criteria (5.1) can be satisfied at every outer iteration. Then the sequence {z j}
converges to the point ẑ0 := (x̂0, 0, λ̂0), where x̂0 is the analytic center of the primal
optimal set and λ̂0 is the analytic center of the dual optimal set.

Proof. Let (x̂, λ̂) be an arbitrary primal-dual solution of (1.1). Then x̂ minimizes �(·, λ̂)
and λ̂�c(x̂) = 0, so that

f(x̂) = �(x̂, λ̂) ≤ �(x j , λ̂) = f(x j)− λ̂�c(x j )

and with the upper bound of f(x j ) given by inequality (5.2), we obtain

0 ≤ −λ̂�c(x j)− (λ j )�(c(x̂)+ s j )+ m
1
2 ε

j
c + mµ j + ε

j
l ‖x j − x̂‖

≤ −λ̂�w j − (λ j )�c(x̂)+ (λ̂− λ j )�s j + m
1
2 ε

j
c + mµ j + ε

j
l ‖x j − x̂‖,
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wherew j := c(x j)+ s j . According to Theorem 5.2, {x j} and {λ j} are bounded, and by
definition of B and N: c(i)(x̂) = 0 for i �∈ B, and λ̂(i) = 0 for i �∈ N. Hence

λ̂�
Nw

j
N + (

λ
j
B

)�
cB(x̂) ≤ mµ j + O(‖ε j‖)+ O(‖s j ‖).

Now, using s j = O(‖ε j‖)+ O(‖r j‖) from the third criterion in (5.1), and the assump-
tions r j = o(µ j) and ε j = o(µ j), we obtain finally

λ̂�
Nw

j
N + (

λ
j
B

)�
cB(x̂) ≤ mµ j + o(µ j). (5.6)

We pursue by adapting an idea used by McLinden [13] to give properties of the limit
points of the path µ �→ (x̂µ, λ̂µ). Let us define  j := � jw j − µ j e. One has for all
indices i:

w
j
(i) = µ j +  

j
(i)

λ
j
(i)

and λ
j
(i) = µ j +  

j
(i)

w
j
(i)

.

Substituting this in (5.6) and dividing by µ j give

∑
i∈N

λ̂(i)

λ
j
(i)

µ j +  
j
(i)

µ j +
∑
i∈B

c(i)(x̂)

w
j
(i)

µ j +  
j
(i)

µ j ≤ m + o(µ j)

µ j .

By assumptions, ε j = o(µ j), so that the second inequality in (5.1) implies that  j
(i) =

o(µ j). Let (x̂0, λ̂0) be a limit point of {(x j , λ j )}. Taking the limit in the preceding
estimate yields ∑

i∈N

λ̂(i)

(λ̂0)(i)
+
∑
i∈B

c(i)(x̂)

c(i)(x̂0)
≤ m.

Necessarily cB(x̂0) > 0 and (λ̂0)N > 0. Observe now that, by strict complementarity,
there are exactly m terms on the left-hand side of the preceding inequality. Hence, by
the arithmetic-geometric mean inequality(∏

i∈N

λ̂(i)

(λ̂0)(i)

)(∏
i∈B

c(i)(x̂)

c(i)(x̂0)

)
≤ 1

or (∏
i∈N

λ̂(i)

)(∏
i∈B

c(i)(x̂)

)
≤
(∏

i∈N

(λ̂0)(i)

)(∏
i∈B

c(i)(x̂0)

)
.

One can take λ̂N = (λ̂0)N > 0 or cB(x̂) = cB(x̂0) > 0 in this inequality, so that∏
i∈B

c(i)(x̂) ≤
∏
i∈B

c(i)(x̂0) and
∏
i∈N

λ̂(i) ≤
∏
i∈N

(λ̂0)(i).

This shows that x̂0 is a solution of (5.4) and that λ̂0 is a solution of (5.5). Since the
problems in (5.4) and (5.5) have a unique solution, all the sequence {x j} converges to
x̂0 and all the sequence {λ j} converges to λ̂0.

��
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