
IS
S

N
 0

24
9-

63
99

 IS
R

N
 IN

R
IA

/R
R

--
43

46
--

F
R

+
E

N
G

ap por t
de r ech er ch e

THÈME 4

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A truncated SQP algorithm for solving nonconvex
equality constrained optimization problems

LaurentChauvier — AntonioFuduli — Jean CharlesGilbert
N° 4346

29 décembre 2001

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le ChesnayCedex (France)

Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30

A truncated SQP algorithm for solving nonconvex equalityconstrained optimization problemsLaurent Chauvier� , Antonio Fuduliy , Jean Charles GilbertzThème 4 � Simulation et optimisationde systèmes complexesProjet EstimeRapport de recherche n° 4346 � 29 décembre 2001 � 28 pages
Abstract: An algorithm for solving equality constrained optimization problems isproposed. It can deal with nonconvex functions and uses a truncated conjugate al-gorithm for detecting nonconvexity. The algorithm ensures convergence from remotestarting point by using line-search. Numerical experiments are reported, comparing theapproach with the one implemented in the trust region codes ETR and Knitro.Key-words: Equality constraint � exact penalty function � global convergence �line-search � Newton's method � nonconvex optimization � sequential quadratic pro-gramming � truncated conjugate gradient algorithm.

� Artelys, 215 rue Jean-Jacques Rousseau, 92136 Issy-les-Moulineaux Cedex (France) ; e-mail :Laurent.Chauvier@artelys.fry Dipartimento di Ingegneria dell'Innovazione, Universitá di Lecce, Via Monteroni, 73100 Lecce(Italy) ; e-mail : Antonio.Fuduli@unile.@ itz INRIA Rocquencourt, projet Estime, BP 105, 78153 Le Chesnay Cedex (France) ; e-mail : Jean-Charles.Gilbert@inria.fr.

Un algorithme PQS tronqué pour résoudre les problèmesd'optimisation non convexes sous contraintes d'égalitéRésumé : Nous proposons un algorithme pour résoudre les problèmes d'optimisa-tion sous contraintes d'égalité généraux. Il utilise le gradient conjugué tronqué pourprendre en compte la non-convexité éventuelle des fonctions dé�nissant le problème. Larecherche linéaire permet d'assurer la convergence des itérés, même en cas de démarrageen un point éloigné d'une solution. Des tests ont été réalisés sur banc d'essai (collectioncute) et sur des problèmes d'optique ophtalmique. Les résultats numériques comparentl'approche proposée à celle implémentée dans les codes à régions de con�ance ETR etKnitro.Mots-clés : Contraintes d'égalité � convergence globale � fonction de pénalisationexacte � gradient conjugué tronqué � méthode de Newton � optimisation non convexe� programmation quadratique successive � recherche linéaire.

A truncated SQP algorithm 31 IntroductionIn this paper, we consider with an algorithmic viewpoint the problem of minimizing anonlinear function on a nonlinear manifold de�ned by equality constraints. The problemis written as follows minimize f(x)subject to c(x) = 0; (1.1)where the objective f : Rn ! R and the constraints c : Rn ! Rm are smooth func-tions. Our approach accepts nonconvex functions, but requires f and c to be twicedi�erentiable. Hessian-vector products are indeed used to speed up the convergenceand to deal with the possible nonconvexity of the problem. In practice, these productscould be approximated by �nite di�erences of gradients, but we do not report here anyexperiment along this line.The algorithm uses line-search and can be viewed as a natural extension of thetruncated Newton method of Dembo and Steihaug [11] for solving unconstrained mini-mization problems. Despite its simplicity, we have not found any published descriptionof such an algorithm, although it is linked to the Steihaug technique for solving approxi-mately the quadratic subproblems in the trust region approach (see [28, 25, 10]). Severaldetails of the proposed algorithm di�er from those used in the trust region framework,because of the need to generate descent directions. The extension of this algorithm toproblems with inequality constraints with a nonlinear interior point approach is consid-ered in [8] and the forthcoming paper [14].The trust region (TR) approach is often presented as a robust technique to solve non-convex constrained optimization problems and numerical experiments have con�rmedthis viewpoint (see the impressive [10] for a state of the art on TRs). However, thisapproach still needs modi�cations to solve e�ciently large scale optimal control prob-lems (OCPs). According to us, their main current limitations may be due to the useof spherical trust regions. First, this makes preconditioning di�cult. Second, spher-ical trust regions have the propensity to force the use of a restoration operator thatis perpendicular to the space tangent to the constraint manifold (the restoration stepin [5, 26, 18] has this property when the trust region does not intersect the linearizedconstraint manifold). This aspect of the algorithm is time consuming in many largescale OCPs. On the other hand, the proposed line-search algorithm is probably lessrobust than those using trust region techniques (for example, the method cannot dealwith pointwise singular constraint Jacobians and it is not guaranteed that its limitpoints are at least stationary points of the norm of the constraints), but it encountersno particular di�culties with preconditioning and nonnormal restoration operators. Webelieve also that it can be very helpful for solving a large class of OCPs, because of itsability to take advantage of their structure, as we now explain.From the optimization viewpoint, a discretized OCP is a general nonlinear problemlike (1.1), with the following structure (inequality constraints are often present in theseproblems, but we shall not consider that general case here; see [1] for a recent overviewRR n° 4346

4 L. Chauvier, A. Fuduli, J. Ch. Gilberton the use of mathematical programming techniques to solve OCPs). The variablesx = (x1; : : : ; xn) to optimize are partitioned in x = (y; u). The components of y 2 Rm(as many as equality constraints), called state variables, describe the state of the systemunder study, while the components of u 2 Rn�m , called control variables, are parametersthat can be used to modify and control the state of the system. Accordingly, the m�nJacobian matrix of the equality constraints A(x) := c0(x) is partitioned as followsA(x) = �B N� ;where B = B(x) = @c@y (x) and N = N(x) = @c@u(x). A key feature of OCPs is that it isreasonable to assume the nonsingularity of the matrix B. In this case, by the implicitfunction theorem, the state variable y can be expressed as a function of the controlvariable u and the equality constraint c(y; u) = 0, also called state equation, re�ectshow the state y varies when u is changed.Often, engineers have already an extensive experience in modelization when theycome to optimization. The system they study is described by some equation, F (y) = 0say, with F : Rm ! Rm . The question then arises to know how to optimize the system,with respect to some criterion, by modifying some parameters u. The model equationis then written c(y; u) = 0, the previous equation being recovered for some value u0of the control parameter: F (�) � c(�; u0). A typical example is shape optimization inhydrodynamics, in which the boundary of the domain of interest (described by shapeparameters) has to be designed to obtain optimal properties of the simulated �ow [21].Another example is the determination of optimal trajectories in the presence of obstacles(see [9, 8] for a problem where a deep tethered vehicle is controlled by a towing ship;this problem has been used as test-problem in the design of our algorithm).These applications have in common that the state of the system is computed bysolving the equation F (y) = 0 by (possibly damped) Newton's iterations. Speci�cresearch may have yielded e�cient techniques for solving the linear system B�r = �Fde�ning the Newton step �r. We think of exploiting the sparsity of the matrix B = F 0or using parallelism, for instance. The optimization algorithm that we propose tries touse as much as possible the fact that, for OCPs, the step �r is a good displacement forcomputing the state of the system. From this viewpoint, our optimization algorithmis a technique modifying the direction �r in order to reach optimality. This has alsothe advantage of allowing the algorithm to use adapted numerical techniques developedbefore the optimization has come into play.The paper is organized as follows. Section 2 presents the properties that are helpfulto design the algorithm. In section 3, we describe the algorithm and show its globalconvergence. Finally, section 4 relates some numerical experiments, comparing ourapproach with the TR codes ETR and Knitro.NotationWe denote by k � k the `2 or Euclidean norm.
INRIA

A truncated SQP algorithm 52 The search directionLet us denote by A(x) the m� n Jacobian matrix of c at x. It will always be assumedto have full row rank. Then, for any solution x� of (1.1) there exists a unique Lagrangemultiplier �� 2 Rm such that (see for example [13]):� rf(x�) +A(x�)>�� = 0c(x�) = 0: (2.2)The �rst equation is the gradient (associated with the Euclidean scalar product) withrespect to x of the Lagrangian function(x; �) 2 Rn � Rm 7! `(x; �) := f(x) + �>c(x) 2 R:Its Hessian with respect to x is denoted byL(x; �) := r2xx`(x; �):A point x� satisfying (2.2) for some �� is called a stationary point. At a solution(x�; ��) of (1.1), L� := L(x�; ��) is positive semi-de�nite on N(A�), the null space ofA� := A(x�). We say that (x�; ��) is a strong solution if L� is positive de�nite onN(A�): d>L�d > 0 for all nonzero d 2 N(A�). A stationary point x�, with associatedmultiplier ��, is said to be regular if A� is surjective and if any d 2 N(A�) such thatL�d 2 N(A�)? vanishes. When the constraint Jacobian is surjective, a strong solutionis an example of regular stationary point (see [4]).The standard version of the SQP algorithm for solving (1.1) is a Newton-like methodfor �nding a solution of (2.2) (see for example [13, 2, 27, 25, 4]). An iteration startingat (x; �) �rst solves the following linear system for (d; �QP):� M A(x)>A(x) 0 �� d�QP� = ��rf(x)c(x) � (2.3)where M is a symmetric matrix, which can be inde�nite. In Newton's method M is theHessian of the Lagrangian L(x; �) and in quasi-Newton methods M is updated at eachiteration to approximate L(x; �). In these cases, M depends directly or indirectly on �.Next, (x; �) is updated by x+ = x+ d and �+ = �QP:The pair (d; �QP) is also a primal-dual stationary point of the quadratic problemmin rf(x)>d+ 12d>Mds.t. A(x)d+ c(x) = 0: (2.4)It is known that, if the �rst iterate (x0; �0) is close enough to a regular stationary pair(x�; ��) of (1.1), the SQP algorithm with M = L(x; �) is well de�ned (i.e., (2.3) has aunique solution) and generates a sequence f(xk; �k)gk�0 of primal-dual pairs convergingquadratically to (x�; ��).RR n° 4346

6 L. Chauvier, A. Fuduli, J. Ch. Gilbert2.1 System reductionTo compute a solution of the linear system (2.3), one can proceed as follows. The dualsolution �QP being determined by the value of d and the �rst equation of (2.3) (rememberthat we assume that A(x) is surjective), the main task consists in determining d.Any direction d satisfying the linearized constraints can be written d = r+ t, wherer is a particular solution of A(x)r = �c(x)and t is a displacement in N(A), the null space of A(x). The displacement r is calledthe restoration step and t is called the tangent step since it is tangent to the manifoldc�1(c(x)). There are several meaningful ways of decomposing d in a restoration stepand tangent step.As we said in the introduction, in OCPs, x is partitioned in (y; u) and the Jacobianmatrix A(x) is similarly partitioned inA(x) = �B(x) N(x)� = �@c@y (y; u) @c@u(y; u)� ;with B(x) nonsingular. The vector r can then be computed byr = ��B(x)�10 � c(x): (2.5)Clearly, the �rst m components of r, �B(x)�1c(x), is the Newton step to solve thestate equation c(�; u) = 0 with �xed control parameters u. In OCPs, computing r asabove is often the most straightforward and natural approach. For example, when theconstraint comes from the discretization of a di�erential equation, B is a sparse lowerblock triangular matrix. It is therefore very attractive to compute r in that way andto have an optimization algorithm where this step is allowed. On the other hand, thecolumns of ��B(x)�1N(x)I � (2.6)form a basis of N(A(x)), so that the tangent step can be taken in the range space ofthis matrix.More generally, since A(x) is assumed to have full row rank, it has a right inverse:this is an injective matrix A�(x) 2 Rn�m such thatA(x)A�(x) = Im: (2.7)The matrix factor of �c(x) in (2.5) is an example of right inverse of A(x), which isadapted to OCPs. The restoration step can then be computed by r = �A�(x)c(x).The algorithm does not require that the matrix A�(x), nor its transpose, be explicitlyformed. Only products of these matrices with various vectors are needed. Let alsoINRIA

A truncated SQP algorithm 7Z�(x) be an n � (n �m) matrix whose columns form a basis of N(A(x)), i.e., Z�(x)is injective and A(x)Z�(x) = Om�(n�m): (2.8)The reduced gradient associated with the �basis� Z�(x) is the vector of Rn�m de�ned byg(x) := Z�(x)>rf(x): (2.9)In OCPs, the matrix (2.6) is a natural basis and the reduced gradient is often computedby �rst solving the so-called adjoint equationB(x)>p = ryf(x)and next g(x) = ruf(x)�N(x)>p.In the sequel, we suppose that for any x the matrices A�(x) and Z�(x) are givenand adapted to the problem to solve. We want to design an optimization algorithmthat uses these matrices, without modifying them by costly computations.In the formalism given above, any solution of the linearized constraints can bewritten d = r + twith r = �A�(x)c(x) and t = Z�(x)u;for some u 2 Rn�m to determine. This is a �rst way of decomposing d. Substitutingthis expression of d into the �rst equation of (2.3) and multiplying on the left by Z�(x)>yields the so-called reduced system Hu = v; (2.10)where H := Z�(x)>MZ�(x) and v := �g(x) + Z�(x)>MA�(x)c(x): (2.11)The symmetric matrix H, called the reduced matrix, need not be assembled in ouralgorithm. When M = L(x; �), H depends on x and � and is positive de�nite (resp.nonsingular) at a strong solution (resp. a regular stationary point) of (1.1).2.2 Conjugate gradient iterationsWhen M = L(x; �), it is instructive to compare the linear system (2.10) with theNewton system in unconstrained optimization, i.e., r2f(x)d = �rf(x). In both cases,the matrix of the system is symmetric and positive semi-de�nite at a minimum point.For unconstrained problems, it is rarely appropriate to compute an exact solution ofthis linear system when x is far from a minimization point: it is unlikely to be a descentdirection of f (except if f is strongly convex) and it requires therefore unnecessaryRR n° 4346

8 L. Chauvier, A. Fuduli, J. Ch. Gilbertcomputational e�ort. In the truncated Newton approach [11], this linear system is solvedmore and more accurately as the iterates progress to the solution, by a controlled numberof conjugate gradient (CG) iterations. By adapting the accuracy with which systemis solved one can get a superlinear or quadratic rate of convergence. An interestingproperty of this approach is that, provided the CG is interrupted before encountering anegative curvature direction (see below), the approximate solution is a descent directionof f . We follow the same idea and solve the reduced system (2.10) inexactly by truncatedCG iterations. In section 2.3, we show that this strategy provides a direction d alongwhich some classical exact penalty merit function decreases.The truncated conjugate gradient (TCG) algorithm for solving (2.10) approximatelyis presented below. Its iterations are called inner iterations as opposed to the outer it-erations of the SQP algorithm. The algorithm starts with u0 = 0 as the initial approx-imation of u, generates approximate solutions uj for j = 0; : : : ; i, as well as conjugatedirections vj . The negative residual is denoted by rj = v �Huj.The algorithm can be stopped at any iteration, but it must certainly be interruptedat uj if the next conjugate direction vj is a quasi-negative curvature direction. We meanby this that the following inequality does not hold:(vj)>Hvj � �kvjk2: (2.12)The parameter � > 0 is maintained constant during the CG iterations (but it will varyalong the outer iterations, see section 3). Algorithm TCG will simply discard quasi-negative directions, hence also negative curvature directions (for which the left-handside in (2.12) is negative).Algorithm TCG (Truncated Conjugate Gradient):1. Set u0 = 0 and r0 = v.2. If v = 0, set i = 0 and go to Step 4.3. For j = 0; 1; : : : do the following:3.1. Stop to iterate and go to Step 4 with i = j if desired.3.2. Compute the jth conjugate direction:vj := (r0 if j = 0rj + krjk2krj�1k2 vj�1 if j � 1:3.3. Compute pj = Hvj.3.4. If (2.12) does not hold, then go to Step 4 with i = j.3.5. Compute the stepsize: tj = krjk2(vj)>pj :
INRIA

A truncated SQP algorithm 93.6. Compute the new iterate uj+1 = uj + tjvj and the new negativeresidual rj+1 = rj � tjpj.4. If i = 0 take u = v, else take u = ui, as approximate solution of (2.10).It is important to note that the algorithm uses quasi-negative directions in a di�erentway when i = 0 or i � 1. In the �rst case, u is set to that quasi-negative directionv0 = r0 = v, while in the latter case the quasi-negative direction vj is discarded. In thisway, the approximate solution u of (2.10) computed by the algorithm is zero only whenv = 0.The next proposition shows that the approximate solution u = ui can be written ina compact form ui = Jv, where J is a positive semi-de�nite matrix, which can then beviewed as an approximation of the inverse of H (provided this one exists).Proposition 2.1 The approximate solution u of (2.10) computed by Algorithm TCGcan be written u = Jv;where J is the identity matrix if i = 0 andJ := i�1Xj=0 vj(vj)>(vj)>Hvj ; if i � 1: (2.13)Proof. If i = 0, u = v and the result follows. Otherwise Algorithm TCG generatesconjugate directions v0, : : : , vi�1, so that for 0 � j � i� 1:krjk2 = (vj)>rj = �(vj)>(Huj � v) = �(vj)>H j�1Xl=0 tlvl!+ (vj)>v = (vj)>v;by conjugacy of vj and vl. Thereforeu = i�1Xj=0 tjvj = i�1Xj=0 (vj)>v(vj)>Hvj vj = 0@ i�1Xj=0 vj(vj)>(vj)>Hvj1A v:
2.3 Descent directionThe direction produced by our algorithm adds the restoration step r = �A�c and thetangent step t = Z�u, where u = Jv is the approximate solution of the reduced system(2.10) computed by Algorithm TCG:d = r + t = �A�c+ Z�Jv; (2.14)
RR n° 4346

10 L. Chauvier, A. Fuduli, J. Ch. Gilbertwhere v is given by (2.11). Introducing the following right inverse eA� := eA�(x) ofA := A(x) (use (2.7) and (2.8) to see that A eA� = Im):eA� = (I � Z�JZ�>M)A�; (2.15)the direction d can be rewritten d = er + et; (2.16)where er = � eA�c and et = �Z�Jg: (2.17)Formula (2.16) gives a second way of decomposing d in its restoration and tangent steps.Consider the merit function��(x) = f(x) + �kc(x)kP ; (2.18)where k � kP is an arbitrary norm on Rm and � is a positive penalty parameter. Wedenote by k � kD the dual norm of k � kP , which is de�ned bykvkD = supkukP�1 u>v:Note that ju>vj � kukP kvkD . It is known that if (x�; ��) is a strong solution of (1.1) andif � > k��kD , then x� is a strict local minimum of �� (this is known as the exactnessproperty of the penalization by ��, see [25, 4] for example). To force convergence of analgorithm using d as a basic step, it is standard to carry out a line-search at x alongthe direction d, forcing the decrease of ��. The parameter � will be adapted at someiteration to ensure the exactness of ��.The question to know whether d is a descent direction of �� at x is examined in thenext proposition. The expression of the directional derivative �0�(x; d) makes use of thereduced gradient g de�ned by (2.9) and the multiplier estimate e�, associated with theright inverse eA�: e� := � eA�(x)>rf(x): (2.19)Proposition 2.2 Suppose that f and c are di�erentiable at x. Then �� has a direc-tional derivative at x. Its value in the direction d given by (2.16) is�0�(x; d) = �g>Jg + e�>c� �kckP : (2.20)It is negative if x is nonstationary and � > ke�kD .Proof. Since a norm is Lipschitz continuous and has directional derivatives, k�kP �c hasdirectional derivatives and the chain rule applies: (k � kP � c)0(x; d) = (k � kP)0(c;Ad) =INRIA

A truncated SQP algorithm 11(k � kP)0(c;�c) = �kckP . The last equalities come from the fact that d satis�es thelinearized constraints and from the very de�nition of a directional derivative. Therefore�0�(x; d) = rf>d� �kckP :Using (2.16) and (2.19), we get (2.20).Suppose now that � > ke�kD . Using e�>c � ke�kDkckP , we obtain�0�(x; d) � �g>Jg + (ke�kD � �)kckP � 0:If �0�(x; d) = 0, it follows that c = 0 and g>Jg = 0. If i = 0 is set by AlgorithmTCG, J = I and therefore g = 0. Now i cannot be � 1, since otherwise one wouldhave v 6= 0 (see Step 2 of Algorithm TCG) and therefore g 6= 0 (since c = 0). Butwith the structure of J and the fact that v0 = v = �g when c = 0, one would haveg>Jg � (g>v)2=(v>Hv) = kgk4=(g>Hg), which would contradict the fact that g>Jg = 0.Hence x is stationary.Proposition 2.2 shows that if � is larger than the computable threshold ke�kD , thedirection d, whose tangent component is determined by Algorithm TCG, is a descentdirection of ��. We use this fact in section 3 to design a line-search algorithm, in which�� is decreased at each iteration. Before this, let us show how e� can be computedinexpensively.2.4 Computation of e�According to formulas (2.19) and (2.15), the de�nition of e� involves the matrix J . Thismatrix is formed with the conjugate directions vj generated by Algorithm TCG; see(2.13). We do not want to store these vectors or the matrix J , however, since thiswould be in opposition with the low memory requirement of the CG algorithm. In fact,a closer look at the de�nition of e� shows that it is su�cient to evaluate �Jg. Thisvector is an approximate solution of the linear systemHeu = �g; (2.21)obtained by using the same conjugate directions vj and the same Hessian-vector prod-ucts pj = Hvj , j = 0; : : : ; i� 1, as those used to compute u as an approximate solutionof (2.10). This claim will be easy to verify in a moment.Algorithm TCG2 below computes this approximate solution eu of (2.21) by using thevectors vj and pj in sequence, so that the computation can be made in parallel with theone of u, without having to store these vectors. This algorithm also needs to updatethe approximate solution ~uj and the negative residual ~rj = �(H~uj + g) associated with(2.21).Algorithm TCG2:1. Set u0 = 0 and r0 = v. Set ~u0 = 0 and ~r0 = �g.RR n° 4346

12 L. Chauvier, A. Fuduli, J. Ch. Gilbert2. If v = 0, set i = 0 and go to Step 4.3. For j = 0; 1; : : : do the following:3.1. Stop to iterate and go to Step 4 with i = j if desired.3.2. Compute the jth conjugate direction:vj := (r0 if j = 0rj + krjk2krj�1k2 vj�1 if j � 1:3.3. Compute pj = Hvj.3.4. If (2.12) does not hold, then go to Step 4 with i = j3.5. Compute the stepsizes:tj = krjk2(vj)>pj and ~tj = (~rj)>vj(vj)>pj :3.6. Compute the new iteratesuj+1 = uj + tjvj and ~uj+1 = ~uj +~tjvjand the new negative residualsrj+1 = rj � tjpj and ~rj+1 = ~rj � ~tjpj:4. If i = 0 take u = v, else take u = ui, as approximate solution of (2.10).If i = 0 take eu = �g, else take eu = ~ui, as approximate solution of (2.21).It is not di�cult to show that, as announced, the approximate solution eu of (2.21)computed by Algorithm TCG2 can be writteneu = �Jg: (2.22)Indeed, if i = 0, Algorithm TCG2 takes eu = �g and (2.22) follows since J = I. If i � 1,Algorithm TCG2 takes eu = ~ui = i�1Xj=0~tjvj = i�1Xj=0 (~rj)>vj(vj)>pj vj:Now, using an argument similar to the one in the proof of Proposition 2.1, one has(vj)>~rj = �(vj)>(H~uj + g) = �(vj)>H j�1Xl=0 ~tlvl!� (vj)>g = �(vj)>g;by conjugacy of vj and vl. Thereforeeu = �0@ i�1Xj=0 vj(vj)>(vj)>Hvj1A g = �Jg INRIA

A truncated SQP algorithm 13and (2.22) follows again.Finally, the multiplier that is used in the algorithm for setting the lower thresholdke�kD for the penalty parameter � (see section 2.3) is computed bye� = �A�>(rf +MZ�eu); (2.23)where eu is now the approximate solution (2.22) of (2.21) computed in Algorithm TCG2.Note that, when H is positive de�nite and J = H�1, e� is not the QP multiplier �QP,but the multiplier of the problemmin rf>et+ 12et>Mets.t. Aet = 0: (2.24)An approximation of �QP could also be obtained by�QP ' e��A�>MZ�(u� eu) +A�>MA�c:This approximation could be useful for TR algorithms, but we shall not need it in thepresent context.3 The algorithm and its global convergenceThe overall algorithm for solving Problem (1.1) generates a sequence fxkgk�0 by therecurrence xk+1 = xk + �kdk;where the direction dk 2 Rn is determined by (2.16)-(2.17) as in section 2 and thestepsize �k > 0 is determined by a line-search along dk on the merit function ��kde�ned by (2.18). In this section, all quantities depending on the iteration index kreceive a subscript k: vk for v, vjk for vj , etc. We also note ck = c(xk), rfk = rf(xk),gk = g(xk), etc.The tangent part of the direction dk depends on the number of CG iterations per-formed in Algorithm TCG2. In turn, this depends on the quasi-negative curvaturethreshold �k, which is allowed to vary from iteration to iteration. One would like totake �k small when xk is close to a solution and larger far away. The speed of convergencedepends indeed on the precision with which the reduced system (2.10) is solved closeto the solution. Arbitrary small �k > 0 can prevent convergence. The only conditionrequired by the convergence theory below is the following:8<: if for some sequence K � N ;there exists > 0 such that, for all k 2 K, kckk+ kgkk � ;then, there exists �� > 0 such that, for all k 2 K, �k � ��: (3.25)For example, the rule �k � min (� 0; � 00(kckk+ kgkk)), where � 0 and � 00 are positiveconstants, satis�es this assumption.RR n° 4346

14 L. Chauvier, A. Fuduli, J. Ch. GilbertProposition 2.2 has shown us that dk is a descent direction of ��k provided xk isnonstationary and �k > ke�kkD . To get convergence of the algorithm, however, it isnecessary to ask slightly more on the penalty parameter �k. We �x a constant �� > 0and assume that8>><>>: (a) for all k, �k � ke�kkD + ��,(b) there exists an index k0 such that:if k � k0 and �k�1 � ke�kkD + ��, then �k = �k�1,(c) if f�kg is bounded, �k is modi�ed �nitely often. (3.26)Conditions (a)-(b) imply that after a �nite number of iterations, f�kg is nondecreasing.By condition (c), in the favorable case when f�kg is bounded, the merit function ��k isno longer modify for large iteration indices, so that it is always the same function thatis decreased (this is a key point to have convergence). These properties are satis�ed,for example, by the Mayne and Polak [20] update rule (the constant 1:5 is given to bespeci�c; actually, any constant > 1 is convenient):if �k�1 � ke�kkD + �� then�k = �k�1else�k = max(1:5�k�1; ke�kkD + ��)end ifAssume now that �k satis�es (3.26). Since at a nonstationary iterate xk, dk is adescent direction of ��k , one can determine a stepsize �k > 0 such that the Armijocondition ��k(xk + �kdk) � ��k(xk) + !�k�0�k(xk; dk) (3.27)holds. In (3.27), ! is a constant chosen in]0; 12 [. In the algorithm, �k is determined bybacktracking.We can now summarize the overall algorithm for solving the equality constrainedproblem (1.1).Algorithm TSQP (Truncated SQP):1. Initialization. Set k = 0. Choose an initial iterate (x0; �0) 2 Rn�Rm andset the constants � 0 > 0, � 00 > 0 (quasi-negative curvature constants), ! 2]0; 12 [(slope modi�er in the Armijo condition), �� > 0 (penalty parameterthreshold), and � 2]0; 12] (backtracking safeguard parameter).2. For k = 0; 1; 2; : : : do the following:2.1. Stopping test : Stop if ck = 0 and gk = 0.
INRIA

A truncated SQP algorithm 152.2. Step computation:� Compute the restoration step rk = �A�k ck.� Run Algorithm TCG2 described in section 2.4, with a quasi-nega-tive curvature threshold �k satisfying condition (3.25), to computean approximate solution uk of (2.10) and an approximate solutioneuk of (2.21).� Compute the tangent step tk = Z�k uk.� Compute the total step dk = rk + tk.2.3. Penalty parameter setting :� Compute e�k by (2.23).� Update �k such that (3.26) holds.2.4. Linesearch:� Set � = 1.� While � does not satisfy Armijo's inequality (3.27), take a newstepsize � in [��; (1��)�].� Set �k = �.2.5. New iterates: Set xk+1 = xk + �kdk and �k+1 = �LSk .Before proving the global convergence of this algorithm, let us make some obser-vations. In a concrete implementation of this algorithm, the stopping test in Step 2.1should be replaced by a condition checking that ck and gk are su�ciently small. Alsoin Step 2.4, the new stepsize chosen in the interval [��; (1��)�] during the line-searchshould be determined by interpolation. In Step 2.5, we have set the new multiplier �k+1to the least-squares multiplier �LSk := �A�>k rfk:The interest of this choice is that this multipler estimate does not depend on secondderivatives. In contrast, using e�k or �QPk may not be always faithful during the �rstiterations of the algorithm.Here are the assumptions that are necessary to have global convergence of Algo-rithm TSQP. The convergence proof does not require to have Mk = r2xx`(xk; �k), sothat there is no assumptions related directly to the second derivatives of f and c. Inpractice, however, this is when second derivatives are used that Algorithm TSQP is themost useful.Assumptions 3.1 (i) The functions f and c are continuously di�erentiable with Lips-chitz continuous derivatives. (ii) The sequences fZ�k g, fA�k g, fMkg, and fe�kg generatedby Algorithm TSQP are bounded.Theorem 3.2 Suppose that Assumptions 3:1 hold. Then the sequence of penalty pa-rameters f�kg is stationary for k su�ciently large: �k = �. If furthermore f��(xk)gis bounded below, then the sequences fckg and fgkg converge to 0.RR n° 4346

16 L. Chauvier, A. Fuduli, J. Ch. GilbertProof. We denote by C1, C2, : : : positive constants. By (3.26)-(b) and the bound-edness of fe�kg, f�kg is bounded, hence stationary for k large (by (3.26)-(c)). The �rstpart of the theorem is proved.Since from some index, say k0, the penalty parameters �k have the common value �,the Armijo inequality (3.27) shows that��(xk) decreases. This sequence is also boundedbelow (by assumption), hence it converges. This implies that �k�0�(xk; dk) tends to 0,or equivalently (use Proposition 2.2 and (3.26)-(a))�kg>kJkgk ! 0 and �kck ! 0: (3.28)We proceed by contradiction assuming that there is an unbounded subsequence Kof indices k and a positive constant such thatkgkk+ kckk � ; for k 2 K. (3.29)By condition (3.25), this implies that there is a constant �� > 0 such that �k � ��, fork 2 K.Let us now show that f�kgk2K is bounded away from 0. By the line-search (Step2.4), when �k < 1, there is a stepsize ��k 2]0; 1] such that �k 2 [� ��k; (1��)��k] and��(xk + ��kdk) > ��(xk) + !��k�0�(xk; dk):Using the smoothness of f and c and the fact that dk satis�es the linearized constraints,one has successivelyf(xk + ��kdk) = f(xk) + ��kf 0(xk) � dk +O(��2kkdkk2);c(xk + ��kdk) = (1� ��k)c(xk) +O(��2kkdkk2);��(xk + ��kdk) � ��(xk) + ��k�0�(xk; dk) + C1 ��2kkdkk2:Therefore (! � 1)�0�(xk; dk) < C1 ��kkdkk2 org>kJkgk + kckkP < C2��kkdkk2; (3.30)where C2 = C1=((1�!)minf1; ��g). Using kvjk(vjk)>k = kvjkk2 and (vjk)>Hkvjk � ��kvjkk2,one has from Proposition 2.1kJkk � max0@1; i�1Xj=0 kvjk(vjk)>k(vjk)>Hkvjk1A � max�1; n�m�� � :Hence fJkgk2K is bounded. With the boundedness of fA�k g and fZ�k g (by Assump-tions 3.1), the expression (2.14) of dk yields dk = O(kJ1=2k vkk+ kckkP). Now, the de�-nition (2.11) of vk, the boundedness of fMkg and fJkgk2K provide dk = O(kJ1=2k gkk+kckkP). Inequality (3.30) then becomesg>kJkgk + kckkP < C3��k(g>kJkgk + kckk2P); for k 2 K: INRIA

A truncated SQP algorithm 17By (3.28), �kck ! 0 and thereforeg>kJkgk < C3 ��kg>kJkgk; for k large in K:This inequality shows that g>kJkgk > 0 when �k < 1 and k is large enough in K andthat f��kgk2K is bounded away from zero. Since �k � � ��k, f�kgk2K is also boundedaway from zero. From (3.28)g>kJkgk ! 0 and ck ! 0; for k 2 K: (3.31)We now want to show that gk ! 0 for k 2 K, which will contradict (3.29) andwill conclude the proof. Observe that, with the boundedness of fMkg and fZ�k g, theformula (2.13) of Jk providesg>kJkgk � (g>k vk)2v>kHkvk � C4 (g>k vk)2kvkk2 ; for k 2 K:The numerator can be bounded below as follows: (g>k vk)2 = [�kgkk2+O(kgkk kckk)]2 =kgkk4+O(kgkk3 kckk)+O(kgkk2 kckk2) � 12kgkk4�C5kgkk2 kckk2. For the denominator,we use the upper bound: kvkk2 � 2kgkk2 + C6kckk2. Thereforeg>kJkgk � 12kgkk2 � C5kckk22 + C6(kckk2=kgkk2) ; for k 2 K:This inequality and (3.31) imply that gk ! 0 for k 2 K.4 Numerical experimentsAlgorithm TSQP has been implemented in Fortran-77, with some additional heuristics.The resulting code is denoted by TSQP below. In this section, we relate our experimentswith this code. Actually, TSQP is part of a general purpose optimization software, calledOpinel, which can also deal with inequality constraints. This latter software will bepresented in a forthcoming paper [14]. The current version of the software is 0.1a.One of the aims of these experiments is to make a comparison between the simple and�exible line-search approach implemented in TSQP and the robust, but more complex,trust region (TR) technique. For this reason, we have chosen to compare TSQP with twoother TR codes: ETR (an equality constraint solver [18]) and Knitro (Version 1.00, anequality and inequality constraint solver [7, 6, 24]).4.1 Conditions of the testsOur benchmark is formed of a subset of test-problems from the cute collection [3]and some industrial-real-life test-problems provided by Essilor, a lens manufacturingcompany (see also in [17] Jonsson's contribution to this application). All the selected
RR n° 4346

18 L. Chauvier, A. Fuduli, J. Ch. Gilbertproblems deal with equality constraint optimization. The codes have been run on aDEC-alpha PWS500 platform, under the Unix operating system.We compare the solvers ETR, Knitro, and TSQP, through their performance pro�les,a concept introduced by Dolan and Moré [12]. For the reader's convenience, we brie�ysummarize here the key points of this comparison principle. For a given collectionof test-problems and a chosen performance criterion (such as the number of functionevaluations, or gradient evaluations, etc), a graph is drawn with a curve relating thee�ciency of each solver with respect to the other ones. For example, the �rst graphin �gure 4.1 compares the relative performance of ETR, Knitro, TSQP, and TSQP+prec(4 curves; the code TSQP+prec is described below), when one considers the number offunction evaluations as the performance criterion and one uses a subset of the cutecollection as benchmark. Only three facts need to be kept in mind to have a goodinterpretation of these curves (for a precise de�nition of the curves, see the originalpaper [12]):� the value given by a curve at abscissa 0 is the percentage of test-problems onwhich the corresponding code is the best;� the value given by a curve at the rightmost abscissa is the percentage of test-problems that the corresponding code can solve (this is independent of the per-formance criterion in consideration);� more generally, a point of a curve with coordinates (�; �) 2 [0;+1[�[0; 1] providesthe following information: the number of test-problems for which the performanceof the corresponding code is never worse than 2� times the performance of thebest code is a fraction � of the total number of test-problems; to this respect, therange of values taken by � in a particular graph is meaningful.With performance pro�les, the relative e�ciency of each code appears at a glance: thehigher is a particular curve the better is the corresponding solver.We have drawn these performance pro�les for describing the behavior of four codes:ETR, Knitro, TSQP, and TSQP+prec. Also, four performance criteria have been selected,which leads to four graphs per benchmark: the number of function evaluations, thenumber of gradient evaluations, the number of Hessian-vector products r2xx`(xk; �k) v,and the CPU time.In order to make the comparison meaningful, the same stopping criterion is usedin all the codes. The outer iterations are stopped at the current point (xk; �k) if thefollowing conditions hold: kr`(xk; �k)k1 � "l (4.32)kc(xk)k1 � "c; (4.33)where "l and "c are positive tolerances, which may depend on the test problems andwill be speci�ed below.
INRIA

A truncated SQP algorithm 194.2 HeuristicsTrust region codes like ETR and Knitro have been developed during several years. Tohave a chance to be competitive with them, the skeleton Algorithm TSQP needs someheuristics. We brie�y describe here some of those that have been implemented in TSQP,to enrich the basic algorithm, and that contribute signi�cantly to the e�ciency of thesolver.Precision criterion for the CG iterationsEach CG iteration requires a Hessian-vector product r2xx`(x; �) v. This may be an ex-pensive operation for large problems when the Hessian of the Lagrangian is not cheaplyavailable. In order to avoid to make a large number of CG iterations at each outer iter-ation, the reduced system (2.10) is solved with low accuracy at the �rst outer iterationsand progressively more precisely as the outer iteration index k increases.TSQP has several ways of controlling the precision to which the linear system (2.10)has to be solved by CG iterations. To get the results presented below Nash's stoppingrule [23] has been used: Algorithm TCG2 is interrupted in Step 3.1 at iteration j � 1 ifqj�1k � qjk�qjk=j � "CGk ;where qjk = �v>kuj + 12 (uj)>Hkujis the value at uj of the quadratic model associated with (2.10) and "CGk 2]0; 1[is aprecision threshold.Clearly, (2.10) is solved with a higher accuracy when "CGk is smaller. The number ofCG iterations is then controlled by "CGk , which is updated by a rule using the stepsize�k�1 of the previous outer iteration to decide whether a higher precision is desirable atthe current outer iteration. Here is the rule for updating "CGk .if k = 1 then"CGk = 10�1elseif �k�1 = 1 then"CGk = max(10�7; 12 "CGk�1)else"CGk = min(10�1; 2 "CGk�1)end ifend ifHandling negative curvature directionsTSQP does not implement any sophisticated technique for dealing with negative (resp.quasi-negative) curvature conjugate directions, which are those directions vjk for whichRR n° 4346

20 L. Chauvier, A. Fuduli, J. Ch. Gilbert(vjk)>Hkvjk is negative (resp. almost negative). The code just discards them by inter-rupting the CG iterations as in Algorithm TCG2, with a threshold �k (see (2.12)) thatis maintained �xed to a small value.Second order correctionUsing the nondi�erentiable merit function (2.18) can a�ect the convergence rate ofAlgorithm TSQP (but not its convergence) because unit stepsizes can be rejected. Inorder to avoid this phenomenon, known as the Maratos e�ect [19], we have implementeda second order correction (see for example [25, 4]).Recall the notation for the restoration, tangent, and total steps at iteration k:erk = � eA�k c(xk); etk = �Z�k Jkgk; and dk = erk + etk:The positive constant CME below is initially set to CME := 0:1 ker0k2=ket0k2, where er0 andet0 are the initial restoration and tangent steps. It is also updated at some iterations bya rule that is not essential to specify here.if ��k(xk + dk) � ��k(xk) + !�0�k(xk; dk) thenxk+1 := xk + dkelseif kerkk2 � CMEketkk2 thenek := � eA�k c(xk + dk)if ��k(xk + dk + ek) � ��k(xk + dk) thendo an arc-search along � 7! xk + �dk + �2ekelsedo a line-search along � 7! xk + �dkend ifelsedo a line-search along � 7! xk + �dkend ifend ifThe line-search or arc-search �rst tries � = 1. If this stepsize does not lead to a decreaseof the merit function, the stepsize is reduced, using safeguarded interpolation. It canbe shown that with this technique, the unit stepsize is accepted asymptotically.Tangent BFGS preconditioning: TSQP+precA nice feature of TSQP is its ability to use �curvature� information from the reducedHessian at previous iterations to form a preconditioning matrix for solving more rapidlythe reduced systems (2.10) and (2.21) at the current iteration. This information iscollected during the CG iterations, using the BFGS formula. This is quite similar tothe approach proposed in [22] (see also [15] where the approach is used to accelerate
INRIA

A truncated SQP algorithm 21Newton's method within the TR framework and [16] for a convergence proof in the TRcontext). We refer to this technique as the tangent BFGS preconditioning.One advantage of line-search algorithms, over the TR approach, is their ability touse tangent BFGS preconditioning, without increasing its complexity. This techniqueis more di�cult to implement with TR, where the preconditioning is made through amodi�cation of the trust regions. Since the updated matrix only intervenes in the tan-gent part of the step and provides no information on how to precondition the restorationpart, tangent BFGS preconditioning suggests to modify the �tangent trust region� with-out a�ecting the region controlling the full step. The algorithm has then to control twotrust regions, whose consistency is more di�cult to maintain (see [17] for more details).We have denoted by TSQP+prec, the version of TSQP that uses tangent BFGS pre-conditioning. Full BFGS updates are performed. We shall see that this code is verye�cient on the Essilor problems.4.3 Tests on the cute collectionIn this section, we present the numerical results obtained by running ETR, Knitro,and TSQP on some test-problems from the cute collection. These have been givenby the �selection facility� with the following rules: the number of variables is �xedbetween 1 and 100 and the number of constraints is �xed between 1 and 100. Then,295 test-problems (from academic, modeling exercises and real life cases) have beenselected. Next, we have discarded the problems with inequality constraints (the selectionfacility does not o�er the possibility to select equality constrained problems directly)and those with m > n (argauss, growth, nystrom5). Finally, we have not consideredthe problems for which the Jacobian of the constraints has not full rank at the initialpoint (cluster, heart6, heart8, hs61, pfit1, pfit2, pfit3, pfit4 and s316-322),since TSQP is presently not designed for solving this kind of problems. As for problemhs111lnp, it was not possible to have the results because of a running error, appearedalso when using Knitro and ETR. Although we have investigated on this, we have notbeen able to �nd a remedy. Thus it remains 60 test-problems which are given in table 4.1,together with their dimensions: n is the number of variables and m is the number ofequality constraints.The positive thresholds used in the stopping tests (4.32) and (4.33) are set in thethree codes to "l = "c = 10�7. Also, we declare a failure on a test-problem when thestopping tests cannot be satis�ed in less than 1500 function evaluations.Figure 4.1 gives the performance pro�les of ETR, Knitro, TSQP, and TSQP+prec,comparing the number of function calls, gradient calls, and Hessian-vector products.We do not compare the codes on the CPU time, since this one is usually so smallthat its variation from run to run makes such a comparison meaningless. The selectedproblems have sometimes as many constraints as variables. When such is the case, thereduced space is of dimension n�m = 0 and there is no Hessian-vector products. As aresult, the performance pro�les comparing the number of Hessian-vector products weremade on a subset of the selected problems.
RR n° 4346

22 L. Chauvier, A. Fuduli, J. Ch. Gilbert

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
TSQP vs. Knitro vs. ETR on function calls (CUTE collection)

TSQP+prec
TSQP
Knitro
ETR

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
TSQP vs. Knitro vs. ETR on gradient calls (CUTE collection)

TSQP+prec
TSQP
Knitro
ETR

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
TSQP vs. Knitro vs. ETR on Hessian−vector products (CUTE collection)

TSQP+prec
TSQP
Knitro
ETR

Figure 4.1: Performance pro�les of ETR, Knitro, and TSQP on the cute problems

INRIA

A truncated SQP algorithm 23Problems n m n�maircrfta 8 8 -booth 2 2 -bt1 2 1 1bt2 3 1 2bt3 5 3 2bt4 3 2 1bt5 3 2 1bt6 5 2 3bt7 5 3 2bt8 5 2 3bt9 4 2 2bt10 2 2 -bt11 5 3 2bt12 5 3 2byrdsphr 3 2 1coolhans 9 9 -dixchlng 10 5 5genhs28 10 8 2gottfr 2 2 -hatfldf 3 3 -

Problems n m n�mhatfldg 25 25 -himmelba 2 2 -himmelbc 2 2 -himmelbd 2 2 -himmelbe 3 3 -hs6 2 1 1hs7 2 1 1hs8 2 2 -hs9 2 1 1hs26 3 1 2hs27 3 1 2hs28 3 1 2hs39 4 2 2hs40 4 3 1hs42 4 2 2hs46 5 2 3hs47 5 3 2hs48 5 2 3hs49 5 2 3hs50 5 3 2

Problems n m n�mhs51 5 3 2hs52 5 3 2hs56 7 4 3hs77 5 2 3hs78 5 3 2hs79 5 3 2hs100lnp 7 2 5hydcar6 29 29 -hydcar20 99 99 -hypcir 2 2 -maratos 2 1 1methanb8 31 31 -methanl8 31 31 -mwright 5 3 2orthregb 27 6 21powellbs 2 2 -powellsq 2 2 -recipe 3 3 -trigger 7 7 -zangwil3 3 3 -Table 4.1: Description of the cute problemsAt �rst glance, the �rst two pro�les show that the 4 codes are comparable in e�-ciency: the curves are very close to each others and there is no real winner. A closerlook, however, reveals some slight di�erences. Observe �rst that TSQP has the largestnumber of wins (values at abscissa 0) with respect to the number of gradient calls (it isequalled by Knitro for the number of function calls). On the other hand, TSQP has morefailures (see the values taken at the largest abscissa): 3 (on hatfldf, himmelbd, andpowellsq) instead of 2 for Knitro (on hatfldf and himmelbd) and TSQP (on himmelbdand hs56). In the three cases where TSQP fails, n = m (i.e., there is no optimization)and non-convergence arises because the restoration step becomes too large. TSQP hasalso some di�culties on byrdsphr (minimization of a linear function on the intersectionof two spheres), since at the starting point the Jacobian of the constraints is nearlysingular and, again, large restoration steps are generated during the �rst iterations. Forthe while TSQP has not the possibility to manage such cases with e�ciency.Let us now consider the performance pro�les on the number of Hessian-vector prod-ucts (third picture in �gure 4.1). Clearly, Knitro is the most e�cient code with respectto this criterion. We don't have any clear explanation why there is such an importantdi�erence between Knitro and its cousin ETR. We should also note that TSQP+prec andTSQP behave approximately the same. To this respect, observe that the dimension n�mof the constraint manifold is usually very small for the selected problems (� 3, excepton 3 problems for which the value is 5 or 21). Therefore the number of CG iterations isnever very large and we believe that this is the reason why TSQP+prec cannot bene�tfrom its tangent BFGS preconditioning. We shall see that the situation is quite theopposite for the industrial problems considered in the next section: the number of con-
RR n° 4346

24 L. Chauvier, A. Fuduli, J. Ch. Gilbertstraints is small with respect to the number of variables and TSQP+prec performs muchbetter that TSQP.To conclude, one can say from �gure 4.1 that for these small-size academic problems,TSQP is quite competitive with ETR and Knitro, only slightly less robust. Future researchis needed to improve the behavior of the code on problems with singular or almostsingular Jacobian matrices.4.4 Tests on a few industrial applicationsIn this section, we present numerical experiments with ETR, TSQP, and TSQP+prec on afew real-life test-problems, provided by the lens manufacturing company Essilor. Thecomparison does not include Knitro, since for unclari�ed reasons it was not possible tolink this code with a simulator that uses �Matlab engines�.The experiment is limited to 5 nonlinear least-squares problems, taken with theirnames from the benchmark made up by Jonsson [17]. The problem dimensions are givenin table 4.2: n is the number of variables, m is the number of equality constraints, nrProblems n m nr �2T1 228 4 3194 6:3� 105T2 228 4 1850 5:5� 108T4 150 4 904 1:0� 107T5 150 4 662 3:6� 107T6 228 4 3176 2:1� 109Table 4.2: Description of the Essilor problemsis the number of residuals, and �2 is the `2 condition number of the Hessian of f atthe solution. One of the noticeable features of these problems is their ill-conditioning,which varies between 105 and 109.The positive thresholds used in the stopping tests are set in the three codes to"l = "c = 10�3. None of the codes fails to reached these thresholds in a reasonableamount of iterations.The performance pro�les of the solvers are given in �gure 4.2. The most spectacularchange with respect to the results obtained on the cute collection is the much betterperformance of TSQP+prec. In terms of Hessian-vector products or CPU time, thesolver is always the best (its performance pro�le is the vertical line at abscissa 0, whichis hidden by the vertical axis). As shown by the largest abscissa in the last picture, thistechnique can decrease the computing time by a factor of 25. This is essentially dueto the fact that for these problems, the computing time is directly proportional to thenumber of Hessian-vector products (the last two pictures show very similar curves). Itis therefore important to limit this number. This is precisely the role of the tangentBFGS preconditioning, which turns out to play a decisive role here.
INRIA

A truncated SQP algorithm 25

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
TSQP vs. ETR on function calls (Essilor problems)

TSQP+prec
TSQP
ETR

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
TSQP vs. ETR on gradient calls (Essilor problems)

TSQP+prec
TSQP
ETR

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
TSQP vs. ETR on Hessian−vector products (Essilor problems)

TSQP+prec
TSQP
ETR

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
TSQP vs. ETR on CPU times (Essilor problems)

TSQP+prec
TSQP
ETR

Figure 4.2: Performance pro�les of ETR and TSQP on the Essilor problems

RR n° 4346

26 L. Chauvier, A. Fuduli, J. Ch. Gilbert5 ConclusionThis paper has presented an elementary truncated SQP approach for solving equalityconstrained optimization problems. Nonconvexity is detected by conjugate gradientiterations on the linear system formed with the reduced Hessian of the Lagrangian.The convergence of the approach is analyzed. Furthermore, numerical experiment hasshown that its e�ciency is competitive with the trust region approach, except whenthe problems present singularity in the Jacobian of the constraints. When the solveruses a tangent BFGS preconditioning, its remarkable e�ciency to solve some industrialill-conditioned problems has been demonstrated.The algorithm can only �nd stationary points, since it discards negative or quasi-negative curvature directions. For using these directions e�ciently, and therefore beingable to �nd points satisfying the second order conditions of optimality, it would benecessary to study �rst the correspondence between negative curvature directions forthe tangent quadratic problem and negative curvature directions for the merit function��, provided one can give a sense to this latter notion when �� is nondi�erentiable.References[1] J.T. Betts (2001). Practical Methods for Optimal Control Using Nonlinear Pro-gramming. SIAM.[2] P.T. Boggs, J.W. Tolle (1995). Sequential quadratic programming. In Acta Nu-merica 1995, pages 1�51. Cambridge University Press.[3] I. Bongartz, A.R.Conn, N.I.M. Gould, Ph.L. Toint (1995). CUTE: Constrained andunconstrained testing environment. ACM Transactions on Mathematical Software,21, 123�160.[4] J.F. Bonnans, J.Ch. Gilbert, C. Lemaréchal, C. Sagastizábal (2001). NumericalOptimization � Theoretical and Practical Aspects. Springer Verlag, Berlin. (toappear).[5] R.H. Byrd (1987, May). Robust trust region methods for constrained optimization.Third SIAM Conference on Optimization, Houston, TX.[6] R.H. Byrd, J.Ch. Gilbert, J. Nocedal (2000). A trust region method based oninterior point techniques for nonlinear programming. Mathematical Programming,89, 149�185.[7] R.H. Byrd, M.E. Hribar, J. Nocedal (1999). An interior point algorithm for largescale nonlinear programming. SIAM Journal on Optimization, 9, 877�900.[8] L. Chauvier (2000). Commande Optimale d'Engins Sous-Marins avec Contraintes.Thèse de doctorat, Université Paris I (Panthéon-Sorbonne).
INRIA

A truncated SQP algorithm 27[9] L. Chauvier, G. Damy, J.Ch. Gilbert, N. Pichon (1998). Optimal control of adeep-towed vehicle by optimization techniques. In Proceedings of the IEEE/OESConference "Oceans'98", Nice, France, pages 1634�1639.[10] A.R. Conn, N. Gould, P.L. Toint (2000). Trust-Region Methods. MPS/SIAM Serieson Optimization. SIAM and MPS.[11] R.S. Dembo, T. Steihaug (1983). Truncated-Newton algorithms for large-scaleunconstrained optimization. Mathematical Programming, 26, 190�212.[12] E.D. Dolan, J.J. Moré (2001). Benchmarking optimization software with perfor-mance pro�les. Technical Report ANL/MCS-P861-1200, Mathematics and Com-puter Science Division, Argonne National Laboratory, 9700 South Cass Avenue,Argonne, Illinois 60439.[13] R. Fletcher (1987). Practical Methods of Optimization (second edition). John Wiley& Sons, Chichester.[14] A. Fuduli, J.Ch. Gilbert (2002). OPINeL: a truncated Newton interior-point al-gorithm for nonlinear optimization. Technical report, INRIA, BP 105, 78153 LeChesnay, France. (to appear).[15] J.Ch. Gilbert, X. Jonsson (1997). Méthodes à régions de con�ance pourl'optimisation surfacique de verres ophtalmiques progressifs. Rapport de �n decontrat Essilor-Inria, référence 1-97-D-577-00-21105-012, INRIA, BP 105, 78153Le Chesnay, France.[16] J.Ch. Gilbert, X. Jonsson (2002). BFGS preconditioning of a trust region algorithmfor unconstrained optimization. Rapport de recherche, INRIA, BP 105, 78153 LeChesnay, France. (to appear).[17] X. Jonsson (2002). Méthodes de Points Intérieurs et de Régions de Con�anceen Optimisation Non Linéaire � Application à la Conception Optimale de VerresOphtalmiques Progressifs. Thèse de doctorat, Université Paris VI. (to appear).[18] M. Lalee, J. Nocedal, T. Plantenga (1998). On the implementation of an algorithmfor large-scale equality constrained optimization. SIAM Journal on Optimization,8, 682�706.[19] N. Maratos (1978). Exact penalty function algorithms for �nite dimensional andcontrol optimization problems. PhD Thesis, Imperial College, London.[20] D.Q. Mayne, E. Polak (1982). A superlinearly convergent algorithm for constrainedoptimization problems. Mathematical Programming Study, 16, 45�61.[21] B. Mohammadi, O. Pironneau (2001). Applied Shape Optimization for Fluids.Oxford University Press.
RR n° 4346

28 L. Chauvier, A. Fuduli, J. Ch. Gilbert[22] J.L. Morales, J. Nocedal (2000). Automatic preconditioning by limited memoryquasi-Newton updating. SIAM Journal on Optimization, 10, 1079�1096.[23] S.G. Nash (1984). Truncated-Newton methods for large-scale function minimiza-tion. In H.E. Rauch (editor), Application of Nonlinear Programming to Optimiza-tion and Control, pages 91�100. Pergamon Press, Oxford.[24] J. Nocedal, R.A. Waltz (2001). Knitro 1.00 � User's manual. Department ofElectrical Engineering and Computer Science, Northwestern University, Evanston,Il 60208, USA.[25] J. Nocedal, S.J. Wright (1999). Numerical Optimization. Springer Series in Oper-ations Research. Springer, New York.[26] E.O. Omojokun (1991). Trust region algorithms for optimization with nonlinearequality and inequality constraints. PhD Thesis, Department of Computer Science,University of Colorado, Boulder, Colorado 80309.[27] E. Polak (1997). Optimization � Algorithms and Consistent Approximations. Ap-plied Mathematical Sciences 124. Springer, Paris.[28] T. Steihaug (1983). The conjugate gradient method and trust regions in large scaleoptimization. SIAM Journal on Numerical Analysis, 20, 626�637.

INRIA

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le ChesnayCedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38330 Montbonnot-St-Martin (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)http://www.inria.fr

ISSN 0249-6399

