
LIBOPT – An environment for testing solvers on

heterogeneous collections of problems

J. Charles GILBERT

INRIA Rocquencourt

and

Xavier JONSSON

Mentor Graphics

The Libopt environment is both a methodology and a set of tools that can be used for testing,
comparing, and profiling solvers on problems belonging to various collections. These collections
can be heterogeneous in the sense that their problems can have common features that differ from
one collection to the other. Libopt brings a unified view on this composite world by offering, for
example, the possibility to run any solver on any problem compatible with it, using the same
Unix/Linux command. The environment also provides tools for comparing the results obtained
by solvers on a specified set of problems. Most of the scripts going with the Libopt environment
have been written in Perl.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools; D.2.8 [Software Engineering]: Metrics—Performance measures; G.1.m [Numer-

ical Analysis]: Miscellaneous; G.4 [Mathematical Software]: Efficiency

General Terms: Experimentation, Measurement, Performance

Additional Key Words and Phrases: benchmarking, collection of problems, CUTEr, Libopt, Mod-
ulopt, optimization, performance profile, scientific computing, solver comparison, testing environ-
ment

1. INTRODUCTION

Two of the issues that come up with software development in scientific computing
have to do with benchmarking and profiling solvers on some (possibly large) col-
lections of problems. For example, in the optimization community, these issues are
frequently dealt with the CUTEr testing environment [Bongartz et al. 1995; Gould
et al. 2003]. This one supplies ready-to-use interfaces between some known solvers
and a collection of problems encoded with the SIF language [Conn et al. 2003]. It
is intended to help developers to test and improve their optimization solver. The
Libopt environment has been designed for a similar purpose but, unlike CUTEr, it

Author’s address: J. Charles Gilbert, INRIA-Rocquencourt, BP 105, F-78153 Le Chesnay Cedex,
France; e-mail: Jean-Charles.Gilbert@inria.fr.
Xavier Jonsson, Mentor Graphics (Ireland) Ltd. - French Branch; 180, Avenue de l’Europe -
Zirst Montbonnot; F-38334 Saint Ismier Cedex; e-mail: Xavier_Jonsson@mentorg.com.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0098-3500/20YY/1200-0001 $5.00

2 · J. Ch. Gilbert and X. Jonsson

provides neither collections of problems written in a specific format, nor decoders
for converting problems written in some language into Fortran or C; on the other
hand, it is not restricted to optimization. Rather, Libopt has been thought up for
organizing and using problems coming from heterogeneous sources. Heterogeneity
refers, in particular, to the variety of languages used to write solvers and problems.
As a result, Libopt considers CUTEr a particular collection of problems having its
own features and solver-collection interface.

Originally, we had in mind to make the problems of the Modulopt collection [Le-
maréchal 1980] as easily available as the CUTEr problems, despite the diversity
of their encoding. The Modulopt collection is formed of problems coming from
industrial or scientific computing sources. Because of their complexity, these codes
are often not modeled on the academic standard of idealized problems, so that
it would have been difficult and tedious to rewrite them in SIF. This state of
affairs motivated the development of the Libopt environment, which resulted in
a layer covering various collections of problems (including CUTEr and Modulopt)
and solvers, organizing and normalizing the communication between them. As a
consequence, the Libopt environment also offers to the solver developers who are
not familiar with a particular modeling language, the possibility to define their own
collection of problems, using their preferred general purpose language, and to run
these problems by using the same set of commands as those that can now run the
CUTEr and Modulopt problems.

In addition to its solver-collection setting, Libopt also provides a number of
programs, mainly Perl scripts, that perform repetitive tasks, such as collecting the
results of solvers on problems and comparing these. The features of the solvers
and collections are actually encoded in these programs, some of them having to be
written for each solver-collection pair. Once these are available, all the results are
obtained and compared using the same Unix/Linux commands. This is one of the
advantages of the proposed approach. Now, Libopt is an open structure, which can
grow, depending on the needs of its users, by incorporating more solvers, problems,
or even collections of problems. A large part of a companion manual [Gilbert and
Jonsson 2009] describes this aspect of the software.

The suffix “opt” of the environment name reflects the fact that Libopt was first
introduced to deal with optimization solvers and problems. However, the concepts
implemented in this software are sufficiently general for being suitable to other
scientific computing fields or even to a larger domain in which the comparison of
codes can be based on quantifiable measurements. The tools have been designed
with this idea of generality in mind.

The paper is organized as follows. The guided tour of section 2 invites the reader
to discover the main aspects of the software. This view of Libopt, from 10,000 feet,
essentially presents the tools that are intended to be routinely employed. Section 3
goes a little deeper in the Libopt machinery. Its goal is to shed some light on the
techniques used to implement the Libopt commands. As a representative example,
the libopt run command, used to run solvers on problems, is decorticated to
show how a high level solver-problem-independent command may be decomposed
in sub-scripts more and more attached to solvers and collections. The reasons for
preceding like this are also discussed. This paper is rather short since we already

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

The Libopt environment for testing solvers · 3

give some words of conclusion in section 4. Now, many more details are given
in the companion manual [Gilbert and Jonsson 2009], in particular those that are
too technical to be presented here or that might change with the evolution of the
software.

The current address of the Libopt site is

http://www-rocq.inria.fr/estime/modulopt/libopt/

Notation. We use the following typographical conventions. The typewriter

font is used for a text that has to be typed literally and for the name of files
and directories that exist as such (without making substitutions). In the same
circumstances, a generic word, for which you are supposed to substitute a value
depending on the context, is written in italic typewriter font .

Throughout this paper, we assume that the operating system is Unix or Linux.
The system prompts are denoted by the characters ‘%’ and ‘?’ (the latter for multiple
lines) and are used to distinguish command lines from other indications. Optional
(part of) arguments in a Unix/Linux command line are surrounded by the brackets
‘[’ and ‘]’.

2. A GUIDED TOUR

The Libopt environment has been designed to make easier and faster the repetitive
tasks linked to testing, comparing, and profiling solvers on problems coming from
heterogeneous collections of problems. These tasks can be divided into three stages:
running solvers on problems, gathering the results, and comparing them. Libopt
has three subcommands associated with these stages: run, base, and profile. The
corresponding Unix/Linux command line has the form

% libopt subcommand ...

where subcommand can be run, base, or profile (or many other subcommands
described in the companion manual), and the dots stand for the subcommand
arguments. This section offers an introduction to these subcommands. But before
this, let us start by defining terms that are continually used in this paper.

2.1 A few definitions

The Libopt hierarchy is the set of directories (and files) that form the skeleton
(and material aspect) of the Libopt environment. The directory from which the
Libopt commands are launched is called below the working directory. When this
is important, the commands take care that this directory is not in the Libopt
hierarchy. If this were the case, there would be a danger of incurable destruction.
Indeed, the scripts triggered by the libopt run command generally removes several
files from the working directory after a problem has been solved.

A solver is a computer program that can find the solution to some classes of
problems. Well, not sure this is very explicit, but we shall not try to be more
precise; in the same vein, we shall take the notion of problem as a concept, not
requiring any definition.

A collection is a set of problems in an arbitrary scientific computing area. Prob-
lems in the same collection must differ by their name, but two problems belonging

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

4 · J. Ch. Gilbert and X. Jonsson

to two different collections may have the same name (luckily, since usually collec-
tion designers do not communicate and may well choose the same name for two
different problems). There are good reasons for gathering problems having com-
mon features in the same collection. For instance, problems in a collection are often
written in the same language (Fortran, C, Matlab [Mathworks], Scilab [Scilab

2008], Gams [Brooke et al. 1988], Ampl [Fourer et al. 2003], SIF [Conn et al. 2003],
to mention a few). The motive is that, in the Libopt environment, all the problems
of a collection are dealt with the same scripts and that these scripts are easier to
conceive if the problems are written in the same language. For the same reason,
problems in a collection usually belong to the same scientific computing domain
(optimization, linear algebra, differential equations, etc). Another property that is
usually shared by all the problems of a collection is the extent to which they are
protected against dissemination; this is useful for determining the public to which
the collection can be distributed.

A subcollection is a subset of problems belonging to the same collection. A col-
lection may contain several subcollections, and a problem may belong to more than
one subcollection. The reason why the notion of subcollection is introduced is clear:
some solvers can sometimes only solve a part of the problems of a given collection
and it is useful to be able to designate them. For example, in optimization, there is
some advantages in distinguishing the subcollections of unconstrained problems, of
linear problems, of quadratic problems, of bound constrained problems, etc, since
there are solvers that are dedicated to these classes of problems.

2.2 Running solvers with libopt run

Libopt can only deal with solvers that are registered in its environment. The
procedure to do this is described in the companion manual [Gilbert and Jonsson
2009]. Below, we denote by

solv

the generic name of such a solver. Similarly, Libopt can only consider collections of
problems that are installed in its hierarchy. This simply means that some directory
(or a symbolic link to it) has to contain the problems of the collection (these can
be in an arbitrary format) and some files and scripts have to tell how to use the
collection (this is why the format can be arbitrary). Below, we denote by

coll, subc, and prob

the generic names of a collection, subcollection, and problem, respectively.
The simplest way of running the solver solv on the problem prob of the collec-

tion coll in the Libopt environment is by entering

% libopt run "solv coll prob "

We quote a few advantages to have at our disposal such a command to run solvers
on problems.

• First, the form of the command for running any solver on any problem of any
collection is invariant: it does not depend on the solver, the collection, or the
problem. In our experience, this property saves much memorization effort. In

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

The Libopt environment for testing solvers · 5

particular, it gives to a collection, which is not used often and is coded in a
manner that is difficult to remember, more chance to be tested, even after it has
been abandoned for several years.

• Second, it defines a standard, to which solver developers can contribute by pro-
viding the interfaces between their solver and various collections.

• Also, the possibility to consider a large diversity of collections should allow the
environment to accept problems coming from various sources.

Libopt can deal with collections whose problems may have several data sets. If
prob in the libopt run command above is made of two strings linked by a dot,
like in

pnam.pdat ,

Libopt considers that the radical of the problem name is pnam and that this problem
has to be solved with a data set identified by the string pdat. How the data set is
built from this string depends on the collection and its installation. The Modulopt
collection [Gilbert 2007], which stores each of its problems in a different directory,
takes advantage of this feature to avoid duplicating a problem directory and its
contents for each of its data sets.

A slightly more powerful use of the libopt run command is

% libopt run "solv coll.subc"

where subc is a subcollection of the collection coll. By this command the solver
solv is run on all the problems of the subcollection subc. The libopt run com-
mand can also take into account more than a single directive "solv coll prob "

or even a file listing such directives.
Another interesting way of running a solver on a collection of problems is by

entering

% libopt run "solv.tag coll "

where tag is some string tagging the solver name. This feature can be useful to
mark the results obtained with a particular version of the solver solv or the one
corresponding to a particular set of options (see the companion manual for the
details and section 2.5 for an example of use).

2.3 Gathering results with libopt base

By the libopt run command a solver-problem pair writes its output on its usual
files, which probably include the Unix/Linux standard output. In order to compare
solvers, which is one of the main goals of the Libopt environment, there is no reason
to save all these files, which mainly interest the developer of the problem code. In
fact, the standard Libopt scripts normally remove these files after having run a
solver on a problem. This is because, Libopt has been designed to compare the
results of various solvers and does not provide any tool to analyze them. For
this reason, Libopt is interested in the value of various counters that reflect the
performance of a solver on a particular problem. In optimization, these counters
are often the number of function or derivative evaluations, the CPU time, the
precision of the obtained solution, and many others.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

6 · J. Ch. Gilbert and X. Jonsson

In order to be able to make comparisons, Libopt imposes that the results relevant
to a comparison be condensed on the standard output in a string of the form

libopt%solv%coll%prob %sequence-of-token-number-pairs

This one is called the Libopt line. It is formed of a sequence of fields separated by
the character ‘%’.

• The first field is the string “libopt”. It is present to make it easy to locate the
Libopt line in the standard output (using the command grep for example).

• The next three fields give in order the name of the solver (solv), the name
of the collection (coll), and the name of the problem (prob), whose relevant
results are given in the following fields.

These first four fields are positional, i.e., their order is imposed. This is not the
case for the following ones.

• The sequence-of-token-number-pairs is a string formed of a sequence of
token-number pairs, again separated by the character ‘%’. A token-number pair

is a string of the form

token =number

The character ‘=’ must separate the token (an arbitrary string) from the number

(a string representing a real number). There must be at least two token-number
pairs, one of which is used to compare the results (it must be a performance

token-number pair actually, see section 2.4) and another one must have the
form

info=number

where the string “info” is imposed and a number equal to 0 means that the
solver solv has successfully solved the problem prob.

Note that, since the Libopt line is written by some program provided by the
developer of a solver, it is that program that decides whether the solver has
successfully solved a given problem; Libopt has no means to take such a decision.
In the Modulopt collection, each problem helps the solver to take that decision
by specifying criteria that must be satisfied for deciding whether the problem
has been solved [Gilbert 2007].

An example of Libopt line in optimization could be

libopt%m1qn3%modulopt%u1mt1%n=1875%nfc=587%nga=587%info=0

to mean that the solver M1qn3 has been run on the problem u1mt1 of the collection
modulopt, that this problem has 1875 variables (n=1875) and that a solution has
been found (info=0) using 587 function and gradient evaluations (nfc=587 and
nga=587).

The concept of Libopt line, close to the notion of trace files used by the PAVER
server [Mittelmann and Pruessner 2003], introduces some standardization that
could be viewed as an unnecessary constraint. As we shall see below, it plays
however a crucial role in avoiding the duplication of results, which would bias the
information contained in performance profiles.

Now, the command

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

The Libopt environment for testing solvers · 7

% libopt run -l "solv coll.subc" > solv coll subc.lbt

gathers in the file solv coll subc.lbt a sequence of Libopt lines describing the
behavior of the solver solv on the problems of the subcollection subc of the col-
lection coll. The option -l greps indeed the Libopt lines in the standard output.

There may be many files of results like solv coll subc.lbt and there is some
advantages in gathering all the results they contain in a single file. This gathering
operation is also a good opportunity to verify that the Libopt lines in the result
files are consistent and that there is at most one result for each (solver, collection,
problem) triple. This is exactly what the libopt base command with the option
-a does (more generally, the libopt base command deals with the operations in
connection with the result databases). If one enters

% libopt base -a solv coll subc.lbt

the Libopt lines in the result file are decoded, checked, and stored in a database,
whose default name is libopt database in the working directory. This database is
no longer an ascii file, but a binary file or a pair of binary files, depending on the
operating system. By entering the libopt base -a command for all the relevant
result files, one can obtain a database containing all the results of interest, without
duplicated or contradictory data. The database can be managed, using the options
of the libopt base command.

2.4 Comparing results with libopt profile

The libopt profile command has been designed to make comparisons between
solvers on a selected set of problems. The comparison is based on the results stored
in a database, one generated by the libopt base -a command. A single criterion
can be used for making this comparison, and it must be one of the tokens present
in the Libopt lines summarizing the results to compare. This comparison made
by libopt profile produces files that can be subsequently dealt with Matlab or
Gnuplot. These files describe the performance profiles à la Dolan and Moré [Dolan
and Moré 2002] of the solvers.

In the Libopt line, one finds descriptive token-number pairs (or descriptive to-
kens) and performance ones. The semantics behind this distinction is rather intu-
itive: a performance token is a token that can be used to compare solvers, while
a descriptive token is a non-performance token. A performance token-number pair
must have the following properties:

• the token-number pair must, obviously, depend on the solver (not only on the
problem, like the one specifying the number of unknowns),

• the number in the token-number pair must be positive (> 0),
• the number in the token-number pair is better (i.e., indicates a better perfor-

mance) when it is smaller .

In the example given on page 6, n=1875 must be considered as a descriptive token-
number pair (the dimension of the problem is not a property of the solver), while
nga=587 is normally a performance one, since an optimization solver can be consid-
ered to be better when it requires less derivative evaluations. Libopt cannot verify
that these rules have been observed (except for the positivity of the number), but

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

8 · J. Ch. Gilbert and X. Jonsson

the performance profiles that libopt profile generates assume that they hold;
they would have no meaning otherwise.

Descriptive tokens are not useless. In addition to giving information on the
problems, they can be used for selecting the problems on which a comparison is
made. For example, one can be interested in making a comparison of solvers on
problems with more (or less) than 1000 variables, and/or those with (or without)
inequality constraints, etc. Read the companion manual or the libopt manual
page to learn how to specify a selection of problems.

The easiest way of using the command libopt profile is by entering

% libopt profile

Then, the script scrutinizes the database (its default name is libopt database in
the working directory) and reads the specification file libopt profile.spc in the
working directory to know what it has to do. This file is described in detail in the
companion manual. It can contain many directives. Three of the most important
ones are those that specify the solvers that have to be compared, the problems
on which they have to be compared, and the performance token chosen for the
comparison. For example

solver bosch klee durer

collection painting.selfportraiture

performance criterion $time

is understood by libopt profile as a requirement to compare the execution time
for the three solvers bosch, klee, and durer, on the problems from the subcollection
selfportraiture of the collection painting (the solver names do not refer to
the painters with the same names: painters never work on the same “problems”
and comparing their works on their execution time would not be a good idea).
Then libopt profile generates performance profiles like those in figure 1 (a few

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bosch
klee
durer

Fig. 1. Typical performance profiles for three solvers; relative performance (abscissa) in log
2

scale

additional tunings in the specification file are necessary to get precisely that graph).
We refer the reader to the paper by Dolan and Moré [Dolan and Moré 2002] (or to
the companion manual) for the meaning of the performance profiles in the figure.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

The Libopt environment for testing solvers · 9

When developing a solver, one is often led to make harmless modifications, which
should have no effect on the performance of the solver. To be more confident on
the fact that these innocuous modifications have indeed no side effect, one can see
whether the solver provides the same results on a more or less large collection of
problems. Libopt provides a convenient way of realizing this. Suppose that the file
res before.lbt (resp. res after.lbt) contains the Libopt lines obtained on this
collection of problems before (resp. after) having made the modifications. Then the
command

% libopt diff -p perf res before.lbt res after.lbt

will tell whether the performance perf has been affected by the modification and,
in case the answer is affirmative, for which problems.

2.5 An example of use

To make the guided tour more concrete, we present an example in which the Libopt
environment is used to compare two options of an optimization piece of software.
The chosen solver is M1qn3, a largely diffused unconstrained optimization code using
the ℓ-BFGS formula [Gilbert and Lemaréchal 1989]. This example will show in the
same time the usefulness of tagging a solver name, with the optional string “.tag”
in the libopt run command (see the end of section 2.2).

We want to compare the scalar and diagonal running modes of M1qn3 on 143
unconstrained CUTEr problems (identified by the list unc.lst in the cuter di-
rectory). For this, we start by running M1qn3 with its default setting (diagonal
running mode):

% libopt run -l "m1qn3.diag cuter.unc" | libopt base -a

Note that the name of the solver has been tagged with the string “.diag” to
remember the M1qn3 option used in the run. The only effect of this tagging is to
generate Libopt lines in which the name “m1qn3” of the solver is suffixed with the
string “.diag”. Note also that the option -l has been used to grep the libopt lines
from the standard output of the libopt run command. Then, these lines are piped
to the standard input of the libopt base command, which stores (option -a) their
contents in the default database. We assume here that the default database is empty
at the beginning of our experiment; otherwise the option -r of the libopt base

command could have been more appropriate to replace possibly already existing
and obsolete results. The previous command takes some time to be completed and
it does not store the Libopt lines in an intermediate file, which is not particularly
cautious. An alternative way of proceeding, in which the Libopt lines are saved in
the file m1qn3diag-cuter-unc.lbt, could be

% libopt run -l "m1qn3.diag cuter.unc" > m1qn3diag-cuter-unc.lbt

% libopt base -a -v m1qn3diag-cuter-unc.lbt

The option -v has been added in the second command to get more information on
the results inserted in the database.

To get the results of the M1qn3 solver in scalar running mode, one has to modify
the specification file

$CUTER/common/src/pkg/m1qn3/m1qn3.spc,

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

10 · J. Ch. Gilbert and X. Jonsson

by replacing the key-value pair “imode1 0” by “imode1 1”. The results with this
running mode are then inserted in the database by the commands

% libopt run -l "m1qn3.scal cuter.unc" | libopt base -a -v

Observe that, this time, the solver name has been tagged with the string “.scal”
to distinguish the presently generated Libopt lines from those generated by the
previous commands. Actually, libopt run considers that the solver is still M1qn3,
while libopt base considers that the libopt lines with m1qn3.diag are different
from those with m1qn3.scal, so that the latter will indeed be inserted into the
database.

We are now ready to produce performance profiles, comparing the two running
modes of M1qn3. In order to compare them on the number of gradient evaluations,
identified by the token nga in the Libopt lines, we have to adapt the solver and
performance directives of the specification file libopt profile.spc as follows:

solver m1qn3.diag m1qn3.scal

performance criterion $nga

gnuplot filetype epsc

The performance criterion directive expects to find a Perl expression; this is
why, above, nga has been prefixed by the character ‘$’ to make it a Perl variable.
The next gnuplot directive asks to generate an encapsulated postscript file for color
printers, using the Gnuplot plotting software (while Matlab was used to draw the
picture in figure 1). Now the command

% libopt profile

generates the performance profiles shown in figure 2. A reader used to this kind of

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4

m1qn3.diag
m1qn3.scal

Fig. 2. Performance profiles of the diagonal (m1qn3.diag, red top curve) and scalar (m1qn3.
scal, green bottom curve) running modes of M1qn3 on 143 unconstrained problems of the CUTEr
collection, comparing the number of function evaluations; relative performance (abscissa) in log

2

scale

curves can deduce that the diagonal mode of M1qn3 can be considered slightly more
efficient than the scalar mode (its profile is higher). This is an average estimation,
since the plot with its 2-logarithmic abscissa reveals that, if the scalar mode can

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

The Libopt environment for testing solvers · 11

require about 4 times more function evaluations than the diagonal mode on some
problems, the latter can also require sometimes about 2.5 times more function
evaluations than the former on other problems.

Now that the experiment has revealed that the diagonal running mode is usually
better than the scalar running mode, it is probably a good idea to switch back the
option imode1 to 0 in the specification file m1qn3.spc.

3. BEHIND THE SCENERY

The goal of this section is to shed some light on the techniques used to implement
the commands introduced in the guided tour of section 2. We restrict ourselves to
the aspects of the software that are unlikely to change with its evolution, letting
the companion manual [Gilbert and Jonsson 2009] give an account of the details
and the last improvements.

Libopt can be viewed as a rigid empty shell (the core of its directory structure
sketched in section 3.1) and a flexible methodology (embodied in its scripts). Some
scripts are permanent, independent of the considered problem collection and solver.
These are called the Libopt commands and cannot be modified by the user. Other
scripts, triggered by the Libopt commands, depend on the considered problem
collection and solver, on the way they are installed in the Libopt hierarchy, on
their features. Some of them must be installed at definite places in the Libopt
hierarchy. Because of this decomposition of the commands in levels, Libopt can
be very permissive on the kinds of problem collection and solver installation, and
should be easily adaptable to various situations. This organization in execution
levels is encountered in various Libopt subcommands, such as run, addcell, and
addproblem. We examine the case of the run subcommand in section 3.2; the other
ones are considered in the companion manual.

3.1 Structure of the Libopt hierarchy

The Libopt hierarchy is formed of a tree of subdirectories, whose root name is
libopt, which is identified by the Unix/Linux environment variable

LIBOPT DIR.

This top-level directory contains the directories bin (Perl scripts of the Libopt
commands), collections (problem collections), and solvers (solver descriptions
and interfaces), as well as other directories and plain files; see figure 3.

The collections directory gathers a set of subdirectories, each of them corre-
sponding to an installed collection of problems. The standard distribution includes
the collections CUTEr [Gould et al. 2003] in cuter and Modulopt [Lemaréchal
1980; Gilbert 2007] in modulopt. More generically, the directory collections/

coll contains the description of the collection coll. What this actually means
is reflected in the scripts that use this collection, so that these directories can be
organized with a great freedom, as far as Libopt is concerned.

It is natural to put in these collection directories (the subdirectories of collec-
tions) some lists of problems. These are files whose name must have the suffix
“.lst”. Two of these lists are mandatory:

• all.lst is the list of all the problems of the collection;

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

12 · J. Ch. Gilbert and X. Jonsson

Level 0 Level 1 Level 2 Description

bin Libopt scripts

collections Collection directory

cuter CUTEr collection

modulopt Modulopt collection

solvers Solver directory

m1qn3 M1qn3 directory

bin M1qn3 binary directory

cuter M1qn3/CUTEr interface

modulopt . M1qn3/Modulopt interface

sqplab Sqplab directory

cuter Sqplab/CUTEr interface

Fig. 3. Part ot the Libopt hierarchy

• default.lst is a list of a subset of the problems of the collection; this list is
chosen by the run subcommand when no list is specified as one of its arguments
(see section 3.2.2); it is sometimes a symbolic link to the list all.lst.

It is also natural (but not mandatory) to have in collections/coll a subdirec-
tory, usually called probs, which contains all the problems of the collection. For
example, in the standard distribution, collections/modulopt/probs contains a
subdirectory for each of the problems of the Modulopt collection, which describes
this problem by programs, data, Perl scripts, and a makefile. Of course probs can
be a symbolic link to the actual problem directory.

The directory collections provides no information on the solvers. This infor-
mation is given by the directory solvers, which has a subdirectory for each solver
known to the Libopt environment. The directory solvers is actually very rich,
since, in some sense, it reflects the structure of the Cartesian product

{solv 1, . . . , solv m} × {coll 1, . . . , coll n} (3.1)

corresponding to the interfaces between the solvers and collections. An element
(solv, coll) of this Cartesian product, where solv is some solver solv i and
coll is some collection coll j, is called a cell below. For each cell (solv, coll),
the directory solvers/solv/coll contains information describing how to run the
solver solv on the problems of the collection coll. This directory includes the
following mandatory files/scripts (see figure 4):

[Makefile]
all.lst (list)
default.lst (list)
solv coll (script)
[solv coll main.src (source code)]

solv

coll

Fig. 4. A single cell of the {solvers}× {collections} Cartesian product

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

The Libopt environment for testing solvers · 13

• all.lst is the list of all the problems of the collection coll that the solver solv
is structurally able to solve (note that this meaning is quite different from the one
of the file collections/coll/all.lst described above); for instance, the file
solvers/m1qn3/cuter/all.lst is a symbolic link to the list of unconstrained
problems of the CUTEr collection;

• default.lst lists a subset of the problems in all.lst; this list is used by some
scripts when no list is specified as one of its arguments (see section 3.2.2);

• solv coll is a script that tells how to run the solver solv on a problem of the
collection coll ; it essentially takes care of the operating system commands that
are required to launch solv (see section 3.2.3); note that the name of the script
depends on the directory where it is placed.

The directory may also contain other files, like the source code of a main pro-
gram solv coll main.src able to run the solver solv on a single problem of the
collection coll, which takes care of the instructions that cannot be written in a
Unix/Linux script, and a makefile Makefile (see section 3.2.4).

3.2 The libopt run command

3.2.1 Overview. The libopt run command, with its dependent scripts and pro-
grams, is probably one of the most complex commands offered by the Libopt envi-
ronment. It is used to run solvers on problems (see section 2.2 for an introduction).
Because of its genericity, this command cannot perform by itself all the details of
this operation. Indeed, it cannot know all the features of any possible solver and
any possible collection of problems, especially those that are still not installed in
the hierarchy! For this reason, the libopt run command must delegate part of the
operations to other scripts/programs, some of them being written by the persons
introducing new solvers and collections into the Libopt environment.

The operation of running solvers on problems is actually decomposed in three
levels of scripts/programs.

• The Libopt level.

The first level is formed of the operations implemented in the script

$LIBOPT DIR/bin/libopt run.

These operations are those that are independent of any solver and any problem
collection. The aim of this level is to analyze the libopt run command line and
to decompose it in a sequence of elementary operations of the form

run the solver solv on the problem prob of the collection coll. (3.2)

There are as many elementary operations as there are combinations of solvers,
collections, and problems expressed by the libopt run command line. To ex-
ecute each elementary operation, the libopt run script calls the solv coll

script of the second level.

The libopt run script is further described in section 3.2.2.

• The operating-system level.

The second level is the one that takes in charge the elementary operation (3.2).

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

14 · J. Ch. Gilbert and X. Jonsson

It is performed by the programs

$LIBOPT DIR/solvers/solv/coll /solv coll

These are actually Perl scripts in the standard distribution. There is a third
level since, by choice and for more flexibility and readability, the solv coll

scripts are restricted to the necessary operations at the operating system level.
However, unlike the libopt run script, these operations depend here on the
solver solv and the problem collection coll. Typical operations consist in
copying data files in the working directory, running makefiles to get executable
programs, launching the main program, and removing data and result files from
the working directory on exit from the main program. For some collections of
problems (like CUTEr), a part of these operations may also have been delegated
to other programs intimately incorporated into the collection.

More is said about the solv coll scripts in section 3.2.3.

• The main program level.

Running a program on a problem does not only depend on operations done at the
operating system level. A main program has to be written, which reads the data,
calls the solver, and delivers diagnostics. It is at this level that the Libopt line is
generally written to standard output. This is the part of the Libopt environment
that is the most interlinked with the solver and collection structures. As a result,
such a program has to be written for each new solver-collection pair.

This level is further described in section 3.2.4.

3.2.2 The libopt run script. The libopt run command calls the libopt run

script to execute the required operations (both libopt and libopt run are located
in the bin directory of the Libopt hierarchy). We have said that the latter is
independent of any solver and problem, so that it need not be adapted when the
Libopt environment is enriched with new solvers or new collections of problems.

This paper might not the right place to describe in large the libopt run script.
However, a rather detailed description of the command should give a good idea of
the possibilities of the Libopt environment.

The general form of the libopt run script is the following

% libopt run [-g] [-h] [-k] [-l] [-t] [-v] \

? [directives] [-f DFile]

It is here equivalent to enter ‘libopt run’ instead of ‘libopt run’, since the former
is transformed into the latter by the libopt command.

Let us start by describing the options. If the option -h (help) is present, the other
arguments of the command are ignored and a short help message is given. This
is probably the best way of getting a reminder of any libopt subcommand. The
option -v (verbose) sets the command in verbose mode, which is interesting when
one has to debug the installation of a new solver or collection, or the activation of
a cell. The option -t (test) is similar to the verbose option, except that nothing
is executed; the command just tells what it would do without doing it. This is
also interesting to check new installations, with an additional degree of safety.
We have already encountered the option -l (libopt line), which filters the libopt

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

The Libopt environment for testing solvers · 15

lines from the standard output. The option -k (keep) can be used to prevent the
command from removing files once they are no longer useful. In that case, all the
files generated during the run remain in the working directory. With the option -g

(debug), the final executable program that can solve a given problem with a given
solver is not executed but saved in the working directory with symbolic debug
information to allow debugging.

If directives is present, it must be formed of one or more directives, separated
by blanks. Each directive must be surrounded by quotes (") and must be a string
of the form

solv [.tag] coll[.subc] [list-of-problems]

where solv is the name of a solver installed in the Libopt hierarchy, tag is an
optional string that will tag the solver name in the Libopt line (the usefulness of
this option was illustrated in section 2.5 and is further discussed in the companion
manual), coll is the name of a collection installed in the Libopt hierarchy, subc
is the name of a subcollection of the collection coll, and list-of-problems is a
list of strings separated by blank characters, which selects some problems from the
considered (sub)collection. If the option ‘-f DFile ’ is present, each line of the file
DFile must be formed of at most one directive of the form above. Then the libopt
run command considers the directives in directives and those in the file DFile

in sequence. For each of them, it runs the solver solv on each of the problems of
the collection coll from the list-of-problems .

For each directive, the list of problems that are passed over to solv depends on
the presence of the strings subc and list-of-problems in the command line. In
addition, the subcollection subc may refer to lists of problems with the same name
in one of the directories

$LIBOPT DIR/collections/coll

$LIBOPT DIR/solvers/solv/coll ,

or in the working directory. To determine the final list of problems to solve, the run
subcommand follows a number of rules with a certain logic, in which the all.lst

and default.lst lists, with their directory-dependent meaning (see section 3.1),
play a key role. These rules are explained in the companion manual.

3.2.3 The solv coll scripts. A solv coll script must exist for each solver
solv that has been installed in the Libopt environment to run problems from the
collection coll. It must be placed in the directory

$LIBOPT DIR/solvers/solv/coll

and is launched by the libopt run script discussed in section 3.2.2. It must accept
the following command line structure

% solv coll [-g] [-k] [-l] [-t] [-v] prob

The command options, inherited from the libopt run command that launches
solv coll , have been described in section 3.2.2. It is the libopt run command
that determines the problem prob to solve.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

16 · J. Ch. Gilbert and X. Jonsson

As discussed in section 3.2.1, the solv coll script is in charge of the operations,
at the operating system level, for running the solver solv on the problem prob of
the collection coll. Let us describe the tasks that the script has to perform.

1. It must build in the working directory the executable program, say solv coll

main (a binary code that will solve the problem prob using the solver solv), and
must construct into the working directory, from information stored somewhere
in the directory $LIBOPT DIR/collections/coll , the data files that are useful
for running solv coll main.

These operations strongly depend on the installation of the collection coll. We
consider two cases.

• For the Modulopt collection (see [Gilbert 2007]), a problem name prob may
have the form

pnam [.pdat],

where pnam is the radical of the problem name, referencing to a directory
name, and pdat is an optional string, referencing to a data set. For this
collection, the operations mentioned above are encoded first in the Perl script

$LIBOPT DIR/collections/modulopt/probs/pnam/Makebin,

which takes care of the data selection or construction, and next as appropriate
targets in the makefiles

$LIBOPT DIR/collections/modulopt/probs/pnam/Makefile

$LIBOPT DIR/solvers/solv/modulopt/Makefile.

The target pnam in the first makefile builds an archive with the procedures
describing the problem and the target solv modulopt main in the second one
takes care of the solver dependent procedures and of the main program.

• For the CUTEr collection, this first task could have been skipped, since the
CUTEr command sdsolv (or something similar) takes it in charge. However,
for allowing to store the problems in a compressed format, a symbolic link to
the file prob.SIF[.gz] is created in the working directory and decompressed
there if necessary.

2. It must run the executable program solv coll main (or the script sdsolv for
the CUTEr collection) in the working directory.

3. It must remove from the working directory the now useless executable program
solv coll main (not necessary for the CUTEr collection), the data files, and
the output files that have been generated during the execution of the program.
This task also depends on the collection coll and the solver solv. For the
CUTEr collection, part of the task is taken in charge by the command sdsolv

itself.

Writing a solv coll script is not an easy task. Luckily, this one can often be
adapted from a similar script existing in the Libopt hierarchy. For example, all the
solv modulopt scripts only differ by a few character strings, at such a point that
it can actually be generated by the command activating the cell (solv, modulopt),
namely

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

The Libopt environment for testing solvers · 17

% libopt addcell -s solv -c modulopt

using the template

$LIBOPT DIR/collections/modulopt/templates/SOLV modulopt

and the generating script

$LIBOPT DIR/collections/modulopt/bin/libopt addcell modulopt.

This quasi-independence of the solv coll scripts from the solver solv looks like
a general rule. It is therefore the charge of the designer of the collection coll

to provide a SOLV coll template and a generating script libopt addcell coll.
If these are not found in the appropriate directories, the solv coll script is not
generated by the addcell subcommand and must be written by hand.

3.2.4 The main programs. This is the main program that would have to be
written if one had to run the solver solv on a particular problem prob of the
collection coll. The required genericity of this main program (it has to be able to
consider any problem prob of the collection) can be obtained in the following way.
All the problems of the collection are described by procedures with a name that
depends on its function but is identical for all the problems. Typically, one finds

• initialization procedures, which specify the dimensions of the problem, possibly
its name, initialize the variables, read the data, etc,

• a simulator, which gives the state of the system to solve at a given iterate when
the problem is nonlinear and the solver has an iterative nature,

• auxiliary procedures, which precise the way some objects are computed (for ex-
ample, the procedure that performs the inner product used for computing a
gradient),

• and possibly post-solution procedures, which can do some post-solution compu-
tations.

The connection between the main program and the problem is then made by the
linker, to which the object files associated with the main program and the proce-
dures describing the selected problem are given by the solv coll script described
in section 3.2.3.

It is normally the main program that prints the Libopt line on the standard
output. It can do this after the problem has been solved by collecting the various
features of the problem and the various counters that depict the behavior of the
solver solv on the problem prob.

4. DISCUSSION AND PERSPECTIVE

In this short paper, we have presented the Libopt environment and have decorti-
cated one of its main commands. The software has been designed to make more
pleasant the tedious, but essential, task of solver developers that consists in rou-
tinely running solvers on problems and comparing their results using performance
profiles. Now, adding solvers and collections to the environment and activating
(solver, collection) pairs are still delicate operations, despite our effort to automate
them. Even though these do not occur often, we expect to make them more user-

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

18 · J. Ch. Gilbert and X. Jonsson

friendly in the future, when we will have acquired more experience with a larger
variety of solvers and collections.

The Libopt software would certainly deserve other improvements: we think, for
instance, to the introduction of modularity in the Perl scripts, to the notion of
platform (see the companion manual), to the efficiency of the solv coll script
generation from templates (see section 3.2.3), to the normalization of the tokens in
the Libopt line for a specific scientific computing domain (see section 2.3), to the
development of a Web interface with the environment (either for using it [Mittel-
mann and Pruessner 2003] or for downloading part of it), to the implementation of
other measures of performance [Mittelmann and Pruessner 2003; Moré and Wild
2008], to the uniformization of the solver stopping criteria (see [Dolan et al. 2006]
and the Examiner tool in [GAMS 2003]), and to the many other subjects that today
are out of our imagination. Another breach of the current version of Libopt is that
it does not provide tools, or even concepts, for avoiding to consider as different a
problem that would be present in more than one collection (for example the Hock
and Schittkowski problems [Hock and Schittkowski 1981] are present in the CUTEr
and Schittkowski [Schittkowski 2002] collections). Clearly, such a duplication biases
the performance profiles. In the same vein, it would be interesting to be able to
qualify what is a good selection of problems, since taking in such a selection many
problems with similar features would also degrade the relevance of performance
profiles based on it.

Only very few collections and solvers are incorporated in the standard distribution
of the current version of the software. Installing new collections (like [COPS], to
mention another parameterizable collection in nonlinear optimization) and solvers
(they are numerous) in a consistent way, maintaining the compatibility with the
possible evolution of Libopt, may require some expertise and obstinacy. Note,
indeed, that a change in the Libopt software may affect all the cells of the {solvers}×
{collections} Cartesian product. We intent to provide these new installations in
the future versions of Libopt, at least in the nonlinear optimization domain, taking
advantage of the possible contributions of generous users.

ACKNOWLEDGMENTS

We thank Jorge Nocedal for having offered the second author hospitality at North-
western University (Evanston, USA) when this work was initiated and François
Clément for his careful reading of the manuscript. Many thanks also to two referees,
whose remarks lead us to propose a largely rethought version of the environment.

REFERENCES

Bongartz, I., Conn, A., Gould, N., and Toint, P. 1995. CUTE: Constrained and unconstrained
testing environment. ACM Transactions on Mathematical Software 21, 123–160.

Brooke, A., Kendrick, D., and Meeraus, A. 1988. GAMS: A User’s Guide. The Scientific
Press, San Francisco, CA, USA.

Conn, A., Gould, N., Orban, D., and Toint, P. 2003. The SIF Reference Report (revised
version). Online report.

COPS. http://www-unix.mcs.anl.gov/~more/cops/.

Dolan, E. and Moré, J. 2002. Benchmarking optimization software with performance profiles.
Mathematical Programming 91, 201–213.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

The Libopt environment for testing solvers · 19

Dolan, E., Moré, J., and Munson, T. 2006. Optimality measures for performance profiles.

SIAM Journal on Optimization 16, 891–909.

Fourer, R., Gay, D., and Kernighan, B. 2003. AMPL: A Modeling Language for Mathematical

Programming. Duxbury Press, Brooks/Cole-Thomson Publishing Company, Pacific Grove, CA,
USA.

GAMS. 2003. The Solver Manuals. GAMS Development Corporation, Washington, DC, USA.

Gilbert, J. 2007. Organization of the Modulopt collection of optimization problems in the Libopt
environment – Version 2.1. Technical Report 329 (revised), INRIA, BP 105, 78153 Le Chesnay,
France.

Gilbert, J. and Jonsson, X. 2009. LIBOPT – An environment for testing solvers on hetero-
geneous collections of problems – The manual, version 2.1. Technical Report 331 (revised),
INRIA, BP 105, 78153 Le Chesnay, France.

Gilbert, J. and Lemaréchal, C. 1989. Some numerical experiments with variable-storage quasi-
Newton algorithms. Mathematical Programming 45, 407–435.

Gould, N., Orban, D., and Toint, P. 2003. CUTEr (and SifDec), a Constrained and Uncon-
strained Testing Environment, revisited. ACM Trans. Math. Softw. 29, 373–394.

Hock, W. and Schittkowski, K. 1981. Test Examples for Nonlinear Programming Codes.
Number 187 in Lecture Notes in Economics and Mathematical Systems. Springer-Verlag, Berlin.

Lemaréchal, C. 1980. Using a Modulopt minimization code. Unpublished Technical Note.

Mathworks. 2008. The Matlab distributed computing engine. http://www.mathworks.com.

Mittelmann, H. and Pruessner, A. 2003. A server for automated performance analysis of
benchmarking data. Working paper.

Moré, J. and Wild, S. 2008. Benchmarking derivative-free optimization algorithms. Submitted
to SIAM Journal on Optimization.

Schittkowski, K. 2002. Test problems for nonlinear programming – User’s guide. Online Paper.

Scilab. 2008. The open source platform for numerical computation. http://www.scilab.org.

Received March 2007; revised November 2007; accepted —

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

