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1 Institut Français du Pétrole (IFP), Rueil-Malmaison, France, frederic.delbos@ifp.fr
2 Previously IFP, Centre for Integrated Petroleum Research, Bergen, Norway, Tao.Feng@cipr.uib.no

3 Institut National de la Recherche en Informatique et en Automatique, Le Chesnay, France,

Jean-Charles.Gilbert@inria.fr
4 IFP, Rueil-Malmaison, France, delphine.sinoquet@ifp.fr

1. Abstract

At IFP, optimization problems are encountered in many different applications, such as seismic tomogra-
phy, characterization of reservoirs, engine model calibration, etc. Many of them are expressed as inverse
problems with a nonlinear forward problem that is generally time consuming. The size of those problems
is varying: from 10 up to 10000. Moreover, the underlying optimization problems are often subject to
inequality constraints. To solve these problems, we are currently developing a general software package,
called SQPAL, which should be flexible enough to fit the large variety of requirements of the applications
under study.

SQPAL is a Sequential Quadratic Programming algorithm developed to solve general nonlinear pro-
gramming problems dealing with nonlinear equality and inequality constraints. The originality of our
approach is to solve the osculating quadratic problem with linearized constraints by an augmented
Lagrangian method, which has the potentiality to cope with many inequality constraints. The perfor-
mances of SQPAL first on small and then on middle size NLP problems from the CUTEr benchmark
are illustrated.

The presented industrial application is a reservoir characterization problem, which aims at forecasting
the production of an oil or gas field from available production data. Production data are measures of
pressure, oil/water/gas rates at the wells and may be completed with 4D seismic data. Parameters to
be determined in this inverse problem are for example, the petrophysical properties in some reservoir
zones (permeability, porosity, . . . ) or the well productivity indexes. The associated forward problem is
a fluid flow simulator for a given reservoir geological model, which may require a large computational
time. The potential of the SQPAL solver for this industrial application is illustrated on a 2D realistic
static problem including 2D seismic data.

2. Keywords: nonlinear optimization, SQP algorithm, augmented Lagrangian, CUTEr benchmark,
reservoir characterization.

3. Introduction

Optimization takes place in many IFP applications: estimating the parameters of numerical models from
experimental data (earth sciences, combustion in engines), design optimization (networks of oil pipelines),
optimizing the settings of experimental devices (calibration of engines, catalysis). These optimization
problems consist in minimizing a functional that is complex (nonlinearities, noise) and expensive to
estimate (solution to a numerical model based on differential systems, experimental measurements), and
for which derivatives are often not available, with nonlinear constraints, and sometimes with several
objectives among which it is necessary to find the best compromise. IFP has engaged an active research
in this field for a number of years and develops its own optimization tools in order to match the needs
of its applications as well as possible. The SQPAL solver is a sequential quadratic programming method
suited to constrained nonlinear optimization problems. It has been developed in partnership with INRIA
and industrialized for the TOMOinv1 and CondorFlow codes. Moreover, this solver has been successfully
tested in two major fields of IFP applications: earth sciences and calibration of engines. We give below
a list, which does not claim to be exhaustive, of the optimization problems solved with SQPAL in this
two application fields.

• Optimization problems in geophysics. Two large scale nonlinear inverse problems have been tested
in this discipline. The first one is the inverse problem of seismic reflection tomography [9]. It
consists in determining a subsurface velocity model from the traveltimes of seismic waves reflecting
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on geological interfaces. The optimization problem has a nonlinear least-squares objective and
linear constraints. The size of the data space, of the model space and of the constraint space can be
quite large (up to 106 data, 104 unknowns, and 104 constraints). The forward simulation is CPU
time consuming. This problem has been solved with SQPAL using a Gauss-Newton method, the
Jacobian matrix being sparse and computed at a negligible CPU time cost. The second problem
of this discipline is the prestack elastic waveform inversion. Its aims at determining a subsurface
elastic model (P-impedance, S-impedance, and density) from prestack seismic data. It is formulated
as a nonlinear least-squares optimization problem with bound constraints. For 3D real applications,
the number of data, unknowns and constraints are each larger than 107. The forward simulation
is CPU time consuming and only the gradient is available (the Jacobian matrix cannot be stored
in memory). This problem is classically solved with a nonlinear conjugate gradient algorithm. The
SQPAL solver has been tested on this problem using a BFGS Hessian approximation.

• Optimization problems in geology and more particularly the stratigraphic inversion of sedimentary

basins. This problem consists in determining the geometry, facies, and petrophysical properties of
sedimentary layers from geological data (subsidence rate, sea-level variations, bathymetry range).
This is a large scale nonlinear optimization problem with nonlinear constraints. The gradient is
computed by the adjoint-state method. This problem is solved using the SQPAL solver with a
Gauss-Newton method.

• Optimization problems in calibration of engines. It aims at finding the best control parameters
of an engine over multiple objectives such as jointly minimizing polluting agent emission and fuel
consumption. It is a multi-objective nonlinear constrained optimization problem where analytical
gradients are not available. Luckily, the size of the problem is small: less than 50 unknowns and
around 100 constraints. Numerical gradient are computed thanks to an approximated model of the
cost function and a solution can be found with SQPAL using a BFGS Hessian approximation.

In Section 4, we briefly describe the SQPAL package and give a particular attention to two new im-
plemented techniques: second order correction of the line-search globalization algorithm and elastic
programming. Both techniques are crucial when dealing with nonlinear optimization avoiding respec-
tively Maratos Effect and constraint infeasibility. The robustness of this solver is illustrated in Section 5
on small and middle size optimization problems of the CUTEr benchmark. The results are compared
to ones obtained from other solvers. In Section 6, we test SQPAL on a new industrial application: a
reservoir characterization problem issued from reservoir engineering discipline.

4. SQPAL: a package for general constrained optimization problem

We consider the general constrained optimization problem

min
x∈Ω

f(x) subject to cE(x) = 0, cI(x) ≤ 0, (1)

where a real-valued function f : Ω→ R is defined on an open set Ω in IRn, cE and cI are the vectors of
equality and inequality constraint functions, respectively. We further define the feasible set

X = {x ∈ Ω : cE(x) = 0, cI(x) ≤ 0}

and assume that f, cE and cI are differentiable functions. Moreover, c′E is surjective or onto for all x in
the open set Ω. Presently, numerical methods to solve (1) can by gathered into two classes:

• the class of penalty methods, which includes the augmented Lagrangian approaches and the interior
point (IP) approaches,

• the class of direct Newtonian methods, which is mainly formed of the sequential quadratic program-
ming (SQP) approach.

Often, actual algorithms combine elements of the two classes, but their main features make them be-
longing to one of them. The choice of the class of algorithms strongly depends on the features of the
optimization problem to solve. The key issue is to balance the time spent in the simulator (to evaluate
the functions defining the nonlinear optimization problem) and in the optimization procedure (to solve
the linear systems or the quadratic programs). In the seismic reflection tomography application we
argue that the SQP approach is the best fitted (see Delbos et al. [9]). Generally, this is particularly
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true for applications where the forward modeling is CPU time consuming and where the number of
iterations with a Newton-like algorithm is less smaller than the one generated with IP algorithms. This
type of conditions are widely encountered at IFP, and particularly in inverse problems issued from earth
sciences. This is our main motivation for developing the SQPAL solver, which implements an SQP-like
algorithm.

4.1. Description of the SQPAL solver

Sequential quadratic programming (SQP) is one of the most effective methods for solving nonlinearly
constrained optimization problems. The approach was first suggested by Wilson [23] for the special
case of convex optimization, then popularized mainly by Biggs [3], Han [15], and Powell [19, 20] for
general nonlinear constraints. Gould and Toint [14] survey the recent development in SQP. The main
idea of the SQP approach is to solve the nonlinearly constrained problem using a sequence of quadratic
programming (QP) subproblems. In each QP subproblem, the constraints are obtained by linearizing
the constraints in the original problem, and the objective function is a quadratic approximation to the
Lagrangian function.

SQPAL is a software developed for the general nonlinear optimization problem (1). Quasi-Newton
techniques are used for the approximate the Hessian of the Lagrangian. Two types of quasi-Newton
methods are implemented into the solver:

• the BFGS method, which is adapted to applications where second order derivatives of the cost
function are not available but where gradient can be estimated.

• the Gauss-Newton method, which is suitable for least-squares applications in which Hessian is not
available, while the Jacobian matrix of the forward problem can be computed.

To be practical, an SQP method must be able to converge from remote starting points. Two class
of methods can be used at this point: line-search or trust regions. Several line-search algorithms are
supplied in SQPAL. They use the l1 exact penalty function as merit function. On the other hand, trust
regions can also be used to globalize the Gauss-Newton algorithm, even when bound constraints are
present. In subsection 4.2, we describe how to avoid the Maratos effect using a second order correction
technique. To overcome the difficulty linked to linear constraint infeasibility, we follow the elestic mode
idea proposed in the SNOPT program [13]; we will be be more specific on this technique in section 4.3.

An originality of our SQP implementation is to use the augmented Lagrangian (AL) method to
solve the QPs [9]. This is a well-established method to solve nonlinear optimization problems. Since
it can be implemented in such a way that it does not need any matrix factorization, it is adapted
to large problems. The difficulty linked to the augmentation parameter determination is based on a
precise theoretical study [8], which has led us to design a suitable and effective heuristics [9]. The inner
subproblems are solved by a technique combining gradient projection, active set, and conjugate gradient.

4.2. Avoiding the Maratos effect by second order corrections

The l1 exact penalty function used in SQPAL can prevent the rapid local convergence of SQP by
truncating steps that judged inadequate although they make good progress toward the solution. This is
called the Maratos effect (see, for instance, Counter-example 15.6 in [5]). To avoid this difficulty, we use
a second-order correction (SOC). This one provides further decrease in the constraints and is added to
the usual SQP step.

Let us be more specific. If the SQP step is dk, the second order correction wk is defined by (see [18])

wk = −MT
k (MkM

T
k )−1c̃(xk + dk), (2)

whereMT
k = [∇c̃i(xk)] and c̃(x) denotes the active constraint functions. In fact, wk is the minimum-norm

solution to the following equation Mkwk + c̃(xk + dk) = 0.
We describe the Armijo algorithm with second order correction as Algorithm 1. First the Jacobian

matrix Mk of active constraints at xk is formed and the constraint function c̃ is evaluated at xk + dk.
We note that the step wk can be defined by

wk = −Yk c̃(xk + dk), (3)
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where Yk is some right inverse of the Jacobian matrix Mk (see [5]), which is assumed to be surjective.
We assume that MT

k ∈ IRn×nc , n ≥ nc, where n is the number of parameters and nc the number of
active constraints. To compute matrix Yk, we make a QR factorization of the matrix

MT
k = QR,

where Q ∈ IRn×nc is an orthogonal matrix, R ∈ IRnc×nc is an upper triangular matrix, using the modified
Gram-Schmidt algorithm. By setting

Yk = Q(RT )−1

and (3), wk can be obtained (see [1] for more details).
The inefficiencies caused by Maratos effect can also be avoided by occasionally accepting steps that

increase the merit function. But if a sufficient reduction of the merit function has not been obtained
within a certain number of iterates of the relaxed step, then we return to the iterate before the relaxed
step and perform a normal step, using a line-search or some other techniques to force the reduction of
the merit function. This technique is called watchdog strategy (see [18]). Another way is to change
the merit function. For instance, Fletcher’s augmented Lagrangian merit function does not suffer the
Maratos effect; see [5, 18] for more details.

Algorithm 1. Armijo algorithm with second order correction.

data: αk = 1, newpoint=false;

while not newpoint do

if Armijo condition is satisfied then

xk+1 = xk + αkdk, newpoint=true;
if Armijo condition is not satisfied and αk = 1 then

compute wk from (2);
if Armijo condition is satisfied for xk+1 = xk + αkdk + α2kwk then

xk+1 = xk + αkdk + α2kwk, newpoint=true;
else

choose new αk;
end

if Armijo condition is not satisfied and αk < 1 then

if Armijo condition is satisfied for xk+1 = xk + αkdk + α2kwk then

xk+1 = xk + αkdk + α2kwk, newpoint=true;
else

choose new αk;
end

else

choose new αk;
end

end

4.2. Elastic programming: a technique to deal with infeasible QP subproblems

A difficulty arises in the SQP algorithm when the linearized constraints are incompatible, since then the
QP subproblem is infeasible. Let us consider a simple example

x2 + y2 = 10, x ≥ 1, and y ≥ 1.

These constraints are compatible ((1, 3) satisfies them). Now if the linearization point is x = y = −10,
then the linearized constraints read

20dx + 20dy = 190, dx ≥ 11, and dy ≥ 11.

It is clear that this system is inconsistent. To overcome this difficulty, we can define a relaxation of
the SQP subproblem that is guaranteed to be feasible. Thus, the so-called elastic programming, which

4



is proposed in the SNOPT program [13], is used in SQPAL. When the QP subproblem is found to be
infeasible, SQPAL solves the following auxiliary problem

min
x

f(x) + βeTw

subject to cE(x) + w = 0,

cI(x) + w ≤ 0, (4)

w ≥ 0,

where e is the vector of ones and the penalty parameter β is chosen sufficiently large. The choice of β
requires a heuristics and the condition ‖λ‖∞ ≤ β should be satisfied. We let the initial value of β to be

β = max(104‖∇f(xs)‖∞, εβ),

where xs is the first iterate at which inconsistent linearized constraints were detected and εβ is a small
positive threshold. In order to enforce the condition ‖λ‖∞ ≤ β, the penalty parameter β is updated
using the same algorithm as the one that updates the penalty weights of the merit function.

5. Small and middle size examples of the CUTEr benchmark

CUTEr [4] is a versatile testing environment for optimization and linear algebra solvers. The package
contains a collection of test problems intended to help developers design, compare and improve new and
existing solvers. In order to test the SQPAL solver, an interface has been built with this environment.
This interface furnishes most of the input informations that SQPAL needs to solve an optimization prob-
lem (such as the evaluation of the function and gradient, the constraint Jacobian matrix, etc). SQPAL
needs also several user-defined optimization parameters such as the required accuracies to reach the
first-order optimality conditions, the maximum number of SQP iterations and the violation threshold
of constraints. Note that, if these parameters are not defined, SQPAL can initialize them to standard
values. Table 1 summarizes the SQPAL run-time options chosen for this study. Gradients are externally
computed through CUTEr tools. A BFGS method with Powell’s correction has been chosen to approx-
imate the Hessian matrix. The method is globalized thanks to an Armijo line-search with second order
corrections. Finally, KKT thresholds are all fixed to 10−6.

Table 1: SQPAL run-time options

gradient estimation method no internal gradient estimation
Hessian matrix estimation/update method BFGS method with Powell’s correction

globalization method Armijo line-search with SOC
maximum number of SQP iterations 800

Lagrangian gradient threshold 1.0e-6
equality constraint violation threshold 1.0e-6
inequality constraint violation threshold 1.0e-6

Lagrangian multipliers threshold for inequality constraints 1.0e-6
complementarity conditions threshold 1.0e-6

The results presented in this section focus on two different classes of the CUTEr benchmark: the
small size problems of Hock and Schittkowski [16] and the middle size problems. They can be selected
from the complete benchmark and uploaded online∗. Although these classes do not contain large scale
problems, it is not an easy task, even for commercial optimization solvers, to solve them correctly (i.e.
to fulfill the KKT conditions up to a defined accuracy). For each class, we present next the solver results
in term of failure number. We then compare the SQPAL results with the ones obtained from three other
optimization solvers: SNOPT [13], KNITRO [6] and LOQO [22].

The class of Hock and Schittkowski test problems contains 124 nonlinear optimization problems. Fig-
ure 1 shows that these problems are small size: the number of unknowns and constraints are respectively

∗http://numawww.mathematik.tu-darmstadt.de:8081/opti/select.html
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less than 30 and 40. Figure 2 shows that only SNOPT reach perfect results with no failure. SQPAL
failed to find a solution for only 4 examples of this benchmark (the hs13, hs16, hs17 and hs61 exam-
ples). Note that this number of failures is in the order of the failures generated by the other optimization
solvers. The use of a second order correction technique with a line-search globalization algorithm helps
in solving more test of this benchmark. We particularly observe that 4 tests (the hs12, hs27, hs47 and
hs49 examples) cannot be solved without the use of this technique.

Figure 1: Description of the small size examples (Hock & Schittkowski examples) of the CUTEr bench-
mark

Figure 2: Results obtained with different optimization solvers on the small size examples of the
CUTEr benchmark (SNOPT, KNITRO and LOQO results can be found from LOQO website
http://wwww.princeton.edu/∼rvdb/bench.htm)

The class of middle size problems contains 319 general constrained optimization problems (linear or
nonlinear, equality, inequality and bound constraints). Optimization problems of this class have less
than 5000 unknowns and less than 350 constraints (see figure 3). The results of SQPAL compared to the
other solvers are plotted in figure 4. We notice a good behavior of SQPAL with a small failures number
(42 over 319) which is in the order of the other solvers. For this class, LOQO has the best results with
10 failures.

Figure 3: Description of the middle size examples of the CUTEr benchmark
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Figure 4: Results obtained with different optimization solvers on the middle size examples of
the CUTEr benchmark (SNOPT, KNITRO and LOQO results can be found from LOQO website
http://wwww.princeton.edu/∼rvdb/bench.htm)

6. Application of SQPAL for reservoir characterization

The goal of reservoir characterization is the estimation of the unknown reservoir parameters by integrat-
ing all kinds of available data. These reservoir parameters could be classified in two classes: those related
to the geological modeling (spatial distribution of porosity, permeability, faults) and those related to the
fluid flow modeling (relative permeability curves, productivity index of the wells). Those parameters
could be determined directly by measurements (or only locally using well logs), this is the reason why
this parameter estimation problem is formulated as an inverse problem with some forward simulators
that depend on those parameters and compute some measurable data: production data acquired at
production/injection wells (bottom-hole pressure, gas-oil ratio, oil rate), time lapse seismic data (more
precisely compressional and shear wave impedances for different seismic campaigns at different calendar
times during the production of the field). The associated forward problems are on one hand a fluid flow
simulator, on the other hand, a petro-elastic model (PEM) based on rock physic Gassmann equations.
For further details on this application see Fornel et al. [12] and Feraille et al. [11].

In the presented example, the dataset is composed of 2D seismic impedances (P and S-impedance)
associated with a cross section of a reservoir built up of two block units (see figure 5 for P and S-
impedance data). Its size is 3240m in x-direction and 90m in z-direction. The unknown parameters
are the mean porosity of the two units and some parameters which control the spatial variations of the
porosity (gradual deformations of Gaussian stochastic models of porosity, see Hu et al. [17]). It ends up
with 18 parameters and 15000 measurements. This is a small test case with no repeated seismic (only
one 2D seismic survey). This allows to compare easily different optimization methods. A realistic case
will be larger: especially the number of measurements will be much larger (up to 1M , Berthet et al.
[2]). The formulation is a classical least-square formulation which measures the mismatch between the
observed data and the modelled data, some weights are introduced to handle the uncertainties associated
with the different types of data.

An important point is that the gradient of the objective function is not available in the forward
simulator, the derivatives are computed thanks to finite differences. Then, a key point is the choice of
the perturbation: we have adopted an adaptive step depending on the size of the trust region. If the
size of the trust region is small, the step size is reduced. A too small step size leads to difficulties, some
numerical instabilities in the forward simulator being observed. On this application, we have tested three
methods (figure 6): BFGS quasi-Newton method coupled with a line search method for globalization,
a Levenberg-Marquardt Gauss-Newton method and a Gauss-Newton Dog-Leg trust region approach,
three options available in SQPAL. The two latter methods are very similar, the Levenberg-Marquardt
coefficient being tuned from the comparison of the reduction of the quadratic model of the cost function
with the effective reduction of the cost function as in the trust-region method. We notice that the two
Gauss-Newton approaches give slightly better results than BFGS method which is not surprising for least-
square problems. However, theses methods are not applicable for realistic cases of 1M of measurements
(with the computation of the huge Jacobian matrix). BFGS quasi-Newton is the appropriate method
for this type of problem. On figures 7 and 8 are respectively plotted the P-impedance and S-impedance
residuals associated to the initial and optimal model of the BFGS method. Both figures shows that
residuals are smaller on the optimal model than on the initial one, which shows the good behavior of
the optimization process.
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Figure 5: Ip and Is data

Figure 6: Cost function versus simulation numbers for 3 optimizations performed with BFGS method
with line search globalization (in blue), with Levenberg-Marquardt Gauss-Newton method (in pink) and
with Dog-Leg trust region method (in black). Each tag on the curves indicates one nonlinear iteration,
the simulations needed to compute the numerical gradients being not taken into account here. The total
number of simulations are: 193 for BFGS method (9 iterations), 181 for Dog-Leg method (8 iterations)
and 227 for Levenberg-Marquardt Gauss-Newton method (9 iterations).
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Figure 7: Residuals between Ip data and Ip modelled by the forward PEM simulator for the final model
obtained by BFGS method.

Figure 8: Residuals between Is data and Is modelled by the forward PEM simulator for the final model
obtained by BFGS method.

5. Conclusions

The results obtained with our SQPAL solver are promising: it gives good global results on small and
medium size problems of the CUTEr benchmark. The techniques of elastic programming and line-search
second order corrections are crucial to correctly solve more problems of the benchmark. Note that, to
better estimate the potential of SQPAL over other solvers a performance profile analysis should be
undertaken (see Dolan [10]). A Further step would be to investigate the efficiency of this solver for the
large size problem of the CUTEr benchmark. This study may require a limited storage algorithm like
the l-BFGS algorithm which is not yet implemented in SQPAL.

For the static problem of our reservoir characterization application, SQPAL gives a reliable solution.
The next step will be to apply it to the dynamic problem which includes 4D seismic data. As the
number of unknowns and data is much larger in the dynamic problem, SQPAL should be used with the
l-BFGS algorithm. Moreover, the computation of numerical gradient is an obstacle to a large number
of parameters (simulations are time consuming, especially fluid flow simulator). A study of surrogate
optimization techniques as Derivating Free Optimization approach proposed by Conn et al. [7] and
Powell [21] is in progress.
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