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ll.~.~um& l)ans eel article, on propose une mStho(te g6.nSralisant h I'ol)timisation 
avec contraintes d'~galit~, une technique de s~.lection de pas, dite de Wolfe, qui a fair 

ses preuves en optimisation sans contrainte. Pour les algorithmes du type quasi- 

Newtonien, celle-ci semble assez naturelle puisqu'elle permet d'assurcr facilement la 

ddfinie positivitd des mdtriques locales h chaque itdration et done le caractSre descen- 

dant des directions de recherche. Toutefois, on sait que ¢ette technique ne peut paz 

~.tre dtendue aux md.thodes quasi-Newtoniennes en optimisation avec contraintes. On 

montre ici qu'une gdndralisation est possible dans le cadre des m(.,thodes sdcantes 

rdduites. 

A b s t r a c t .  This paper proposes a generalization to equality constrained optimi- 

zation of Wolfe's step-size selection procedure, which is used with success in uncon- 

strained optimization. This one appears rather natural for quasi-Newton methods 

because it allows to maintain easily the positive definiteness of the matrices correcting 

tile steepest descent direction and therefore assures the descent property to search 

directions. However, this technique is known not to be usable for quasi-Newton 

methods in constrained optimization. We show here that a generalization can be made 

in the framework of reduced secant methods. 

* Work supported by the FNRS (Fonds National de la Recherche Scientilique) of Belgium. 



1. I n t r o d u c t i o n  
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In this report ,  we deal with the following equality constrained optimizat ion prob- 

lem: 

rain { I(~) :=  e ~ ' ,  ~(~) : 0 } ,  (1.1) 

where w is a convex open set ill lit n and the functions f : w ~ /R and c : w ~ IR m, 

m < n, are supposed smooth.  We shall suppose that  the m × n Jacobian matr ix 

A(z) := W(z) has filH rank m for all z in w and that  0J contains a local solution z ,  of 

problem (1.1), which with its associated Lagrange multiplier A, satisfies the s tandard  

sufficient conditions of optimali ty (see Fletcher (1981)): 

c(~ , )  : o ,  

Vf(x , )  + A(z, )  T A, : 0 (1.2) 

and 

G, :=  Z(x,)  - T L,  Z ( x , ) -  is positive definite.  (1.3) 

In (t .3),  L,  is the llessian according to z of  the Lagrangian l(z,),) :=  f(z)  t c(z)TA at 
(z,,), ,) and Z(x , ) -  is a basis of N(A(x, ) ) ,  the kernel of a(z , ) ,  i.e. an n × ( n - m )  

matrix whose columns form a basis of N(A(z , ) ) .  We shall suppose that  such a basis 

exists at each point z in w in such a way that  its dependence oil x is smooth.  We have 

a ( z )  Z ( 2 ) -  = 0 in 111 rex(n-m) for all z in to.  (1.4) 

We shall also need to do displacements in the complementary  space R ( A ( z ) - )  of 

N(A(z)) .  We shall also suppose that  the right inverse Z ( z ) -  of Z(z )  is a smooth 

function of z. We have 

A(x) A ( z ) -  = I in 11l : x m  for all z in w .  (1.5) 

This formalism (with the matr ix Z(z) introduced later) is due to Gabay (1982). 

We shall focus in this paper on the following class of reduced secant  methods to 

compute  iteratively a solution of problem (1.1) {see Coleman and Conn (1982)): start-  

ing f rom a point  zk, the next iterate zk+ 1 is obtained by 

uk := ~k - A ( ~ , ) -  ~(~k) =:  =k 4- rk,  (t .¢) 

=k+~ := uk - z ( u k ) -  n~ 0(~k) =:  uk + tk .  (1.7) 
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In (1.7), I/k is a matrix of order n - m  approximating H, :-- G7 t and g is the reduced 
gradient of f delined by g(y) := Z ( y ) - T V ] ( y ) .  The fact that only a matrix of order 
n - m ,  namely Ilk, has to be updated is an advantage of reduced methods over quasi- 

Newton methods to solve (1.2). Indeed, in the latter case, a matrix L k of order n 

approximating the Ilessian L,  has to be updated. For a state of the art on quasi- 

Newton methods for constrained optimization we refer to the paper by Powcll (1986). 

The convergence of algoritm (1.6)-(1.7) is assured locally, i.e. when (zo,llo) is 

close to (z , ,H,) ,  and is then superlinearly convergent if the matrix Il k is correctly 

updated: see Byrd (Iq84) anti Gilbert (1988). Moreover, the algorithm can be global- 

ized to force convergence from poor starting approximations by using as a merit func- 

tion a penalty function of the form 

OCx) := 1(:4  t ~ (c (~ , ) )  • (1.8)  

See Gilbert (1986,a,b,c). In (1.8), ~o is a positive real-valued convex function that we 

shall suppose continuous in a neighborhood of e(w). Therefore we can compute the 

directionnal derivatives of 0. For example, using (1.4), the directionnal derivative of 0 

at Vl, in the direction t k writes O'(y k ; tk) = - g(yk) T I t  k g(yj,). This shows that  t k is a 

descent direction of 0 at Y/c if I1 k is positive definite. 

To maintain the positive definiteness of the matrices Ilk, we l)ropose to update 

them by the inverse BFGS/ormula  (see e.g. Dennis and Mor6 (1977)): 

Ilere, d~ k and q'k are vectors in IR n-re. Then, it is well known that  IIk4 I retains the 

positive definiteness of II k if and only if 

> o .  0.10) 

Other update formula may be used if they retain symmetry and positive definiteness 

under condition (I. tO), e.g., formula of the restricted Broyden's class. 

Inequality (l.lO) must  be satisfied at each iteration. 
locally if we take 

"yk :=  0 ( s t + l )  - 0 ( v k ) ,  

Note that  it is satisfied 

{1.11} 

0 . 1 2 )  

where Yk and xk_t I are defined in (i.6)-(1.7) and Z(y) is the unique ( n - m )  × n matrix 
satisfying Z ( y ) Z ( y ) -  = I in ht/{n-m}x(n-ra) and Z ( y } A ( y ) -  = O in 11~ (n-m)xra. This 

can be seen by expanding g(xkl.l) about Yk in (1.11), observing with Stoer (1984) that  
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v g ( : , )  = z ( : , )  - v  L , .  (L1a) 

This formula shows why 7k is taken as a difference of reduced gradients and ~k is the 

corresponding reduced displacement.  

The aim of tiffs paper is to show how the vectors ffk and 6k can be calculated in a 

global framework (when some step-length is introduced) in order to satisfy inequality 
(1.I0) at each iteration and to recover the values (1.11) and (I.12) after a finite 

number  of steps. 

Hereafter, many implicit references will be done to Gilbert (1987). In particular,  

we refer to this paper for the proof of the theorems. 

2. T h e  l o n g i t u d i n a l  d i s p l a c e m e n t  

In this section, we show how a step-size procedure at t r ibuted to Wolfe (1969) and 

used in unconstrained optimization carl be extended to equality constrained optimiza- 

tion for the longitudinal displacement, which starts from Yk tangent[y to the manifold 

M(yk)  := c - l ( c ( y k ) ) .  First, we recall Wolfe's procedure. 

In unconstrained minimization, rain { ~b(u) : u E //~P }, a large class of methods 

consist in generating a sequence of approximation (uk) of a solution such that  uk÷ 1 :--= 

u k + r k vk, where v k is a descent direction of ~ at u k and r k is a positive scalar step- 

size. In this general framework, Wolfe's procedure to determine rk, consists in finding a 

positive r such that  

~b(Ukq--rok) ~_ ¢(Uk) -{- Ol 1 1" V¢(Uk)  T Ok, (2.1) 

V ~ ( u k + " k )  v °k >-- ~2 V~(uk) v "k, (2.2) 

where 0 < c~ 1 < c~ 2 < l are given. Such a r exists for example if ~b is bounded from 

below, in secant methods,  the descent direction has the form v k := - I1 k V~b(uk), 

where Il k is the current  positive definite approximat ion of the inverse of the llessian of 

~/, at u k. Usually, I1 k is updated by using a formula like (1.9) with 

"~k := V¢(uk~ ~) - V ~ ( u k ) ,  

6 k : = u k ,  l - -  u k = r k v k -  

Therefore, if the step-size r k is determined by Wolfe's procedure,  inequality (2.2) 

implies the positivity of the scalar product  of qck and/f  k. 

In a first stage, we generalize this to a longitudinal displacement on the manifold 

M(yk) .  For this, we introduce the curve yM: r e  /T/I---* y M ( r ) e  M(yk )  by the 

dilferential equation: 
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~ ( ~ )  -- z (u~O))  - z(uk) tk, 
(2.3) y~(o) --= vk. 

Multiplying the first equat ion of (5.3) to the left by A(yM(r)) and using (1.,i) shows 
M r tha t  vM(r) belongs to m(v t ) -  Then,  if we define ~b(r) := (0 o Vt ) ( ) ,  witl, 0 given in 

0.8) ,  we ,,ave ~'(T)= o'(v~(O;z(v~(O)-z(vdtk)= 9(V~(~))TZ(vk)tk (beca.se or 
(1.4)). So, applying Wolfe's procedure to this $ with p = 1, u t = 0 and o k = 1 shows 

that ,  provided yM(r) exists for sulliciently large value of r and f is l, ounded from below 

on M(yk), we can find a positive step-size r such that  

o(vff(r)) <_ o(vt)+ % r v / ( v k )  r t k , (2.4) 

9(v~(O) ~" z(v,)  t, _> ~2 9(v,) 7' z(v , )  t , .  (2.s) 

Noting r k such a T.and defining 

~ := ytv~(,~)) - y(vk), {2.6) 

~ :-- ~k z(vk) t~. (5.7) 

we obtain  from (2.,5): (7~ 4) T ,M > 0. 

In this f ramework,  (1.1 I)-(I .12) may be obtained from (2.6)-(2.7) by taking a first 
order approx imat ion  of r/M(e) and a unit  step-size. We continue with the same point  

of vue and we build an explicit Euler approximat ion  of the solution of the differential 

equation (5.3) for the following discretization points: 

0-- :  ¢ < ,,~ < . . . <  ,~,'. (2.8) 

The  problem is to choose them carefully in number  and position so tha t  for ! = it, 

there exists a posit ive r with 

o(vt(r))  <_ O(uj,) + eq r V/(Ut)  r tk ,  (2.9) 

9(vtd0) T z(vk) t~ > ~: 9(vk) r z(uk) tk. (2.t0) 

Again, 0 < cr 1 < or 2 < 1 are given. Let us denote by V ° the point Vk attd by y°(r) the 

line Yk t- r t k. For 1 < l < lk, let us define rectirsively the points y~ := Yi  I(r~) and 

the piecewise linear curves 

i f ' 0 )  for 0 < ,  < ~I, 
v~:(,) : :  ~L ~ ("---6) z (v l ) -  z(v,,)t~, for , >  " I .  (2.v v) 
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Therefore  the Euler approximat ion  of yM(o) for the discretization (2 .8) i s  yktk(o). 

propose to de te rmine  the discretization points  r~ by the following a lgor i thm.  

We 

L o n g i t u d i n a l  s e a r c h  a l g o r i t h m :  

1. if t k = O  then s top 

2. set 1 :-- 0 ,  r/~ := 0 ; choose r > 0 

3. repeat :  

3.1. if yt(r) is not in w or (2.9) is not satisfied 

3.2. then r := rk / -1- J(ylk,r-r~} 

3.3. else { if (2.10)is  satisfied 

3.4. then { r  k : = r ; I  k : = l ; s t o p }  

3.5. else { l : =  I + 1  ; rk  / : = r ; r : =  r ~ +  E(y~) } } 

(2.12) 

This a lgor i thm is inspired by an a lgor i thm proposed by Lemar6chal  (1981) to find 

a step-size satisfying (2.1)-(2.2) in unconstrained opt imizat ion.  

Tile a lgor i thm uses two functions J and E.  Tile interpolation function J :  
w x /R t_ ----4 /R+ is supposed to satisfy the following properties:  

J is cont inuous on w × /it/+ , (2.13) 

0 < J (y , r )  < r for all y in w and all posit ive r ,  (2.14) 

JP(r) :=  (J~t o .. (p times) .. o ./~)(r) ----~ 0 as p - -4  c o .  (2.15) 

In (2.15), we have denoted J y ( * ) : :  J(y,.) .  Therefore  the step-size r is decreased in 

s t a t emen t  3.2 (proper ty  (2.14)) and tends to r~ if the s t a t emen t  is executed infinitely 

often (proper ty  (2.15)). The  extrapolation function E :w-- - ,  IR+ is supposed to 

satisfy the following properties:  

E is cont inuous on w , (2.16) 
0 < E(y) for all y in w .  (2.17) 

Therefore,  the step-size r is increased in s t a t ement  3.5. 

Let us make  some remarks  on a lgor i thm (2.12). 

1) If tile a lgor i thm terminates  in s t a t ement  3.4 after i loops 3.1-3.5, this means 
tha t  a step-size r has been found such tha t  y~(r} is in w, (2.9) is satisfied jus t  as (2.10). 

2) If a new discretization point is taken at  r - -  rk I+l in s t a t emen t  3.5, this means 

tha t  ylk(r ) is in w, (2.9) is  satisfied but  not (2.1O). 

3) The  test in s t a t emen t  3.1 is always rejected after a finite number  of loops 3.1- 

3.2. Indeed, because y~ is in w, y~(r) is also in w for r in a right neighborhood of r~. 

O1, the other  hand,  at  y / : =  y~(r~), we have (0 o ykl)'(r~ ; 1) = 0'(Fk / ; Z(ylk)-Z(yk)tk) = 
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g(ytk)7'g(yk)tlc (by (1.4)!) < c% g(yk)TZ(yk)tk (because 1,y construction inequality (2.10) 

is not satisfied at the point y~} < a I g(yk)TZ(yk)tk (because g(yk)'rz(yk)tk is negative) 

= cq Vf (yk)T t t .  llence inequality (2.9) is also satisfied in a right neighborhood of r~ t 
because at y~, inequality (2.9) is satisfied and tile right derivative of its left hand side 

is less than the one of its right hand side. Finally, property (2.15) of the interpolation 
function J shows that after a finite number of loops 3.1-3.2 the value of the step-size r 
belongs to the intersection of the above mentioned right neighborhoods of r]c. 

Remark 3 shows that either the algorithm terminates in a finite number l of loops 
3.1-3.5 or that a sequence (ylk)t> o is generated in w. The following theorem shows that 

the latter case is, in a way, pathological and that, in general, algorithm (2.12) works 

well. 

T h e o r e m  2.1. Let 0 be the function defined on w by (1.8) with ~ convex, positive 
and continuous on a neighborhood of c(w). Let y~ be a point in w such that g(Yk) ~- O. 
Let IIk be a symmetric positive definite matrix of order n - r e .  Then, if the longitudinal 

search algorithm (e. lg) with the definitions (e .8) - (e . t t )  and the hypotheses (e. lS)-  
(L  I7) is applied from Yk, one of the following situations occurs: 

(i) the algorithm terminates in a finite number l k of loops 8.1-9.5, with a point 

~'k t t := Ytk('k) satisfying both inequalities ('2.9) and (2. tO), 

(ii) the algorithm builds a sequence (Y~)t>o in oa and either (0(y~))t>0 tends to - go or 

(Y~)/_>_0 converges to a point on the boundary of the open set w. 

Note that situations in point (it} do not occur when w = / R "  and f is bounded 
t~ 

from below. From now on, we shaU denote by xk+ 1 tile point Yk (Tt) found by algo- 

rithm (2.12). 

3. T h e  a l g o r i t h m  

To insert the longitudinal search algorithm (2.12) in a globally convergent algo- 
rithm for problem (1.1), two things remain to be specified: a penalty function, i.e. a 
function ~o in (1.8), and a step-size selection procedure for the transversal displacement 

(governed by the step r k in (1.6)). 
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3.1. A p e n a l t y  f u nc t i on  

The choice of the penalty function is here essentially deternfined by the longitudi- 

nal displacement and the fact that a unit step-size rio (with ! k = 0) is necessary for not 

preventing the superliuear convergence from occuring, lake Bonnans (1984), we pro- 

pose to use the nondilferentiable augmented Lagrangian: 

Ipk(z,#k) : :  f(z) + kt T c(z) -f- Pk I I~ (~ ) l l ,  (3.,) 

where Pk > 0, Pk ~ /Rm and I I . I I  is a n o r m  on  #~,n. This penalty function is exact 

(that is to say that  z ,  is a local minimizer of it) if Pk > I It, k-m,I ID, where I I.I ID is 

the dual norm of I1.1 I: see also Hart and Mang~arian 0O7O), In the algorithm pro- 
posed below, Ptc is normally modified finitely often to be small enough asymptotically 

while #It normally tends to ,~,. Therefore the penalty function lpk(o,/.tk) will resemble 

more and more the true Lagrangian l(o,)~,). Now, because ltl~ is updated to be a good 

approximation of the inverse of the projected Ilessian of the Lagrangian, the unit long- 

itudinal step-size will be garanteed asymptotically. 

3.2. T h e  t ransw+rsa l  d i s p l a c e m e n t  

We have lp~(xk ,#k;rk)= (A(xk)-#k)Tc(xk)- Pk [{C(Xk){{' where A ( . ) i s  the 

(32) 

approximation of the Lagrange multiplier ,X, defined by 

~(:~) := - A ( z ) - - T V I ( z ) .  

Therefore r k is a descent direction of the penalty function (3.1) at z~ if 

r,k -> I IA(.~k)-~kl I~ +_Pk, (3.3) 

where Pk is some positive number. If the algorithn manages to satisfy this inequality at 

each iteration, the transversal step-size Pk can be determined by Armijo's procedure: 

see Armijo (1966). Let ~ and/5 be in 10,11. Then Pk is taken in the form 

p~ :=/sbk, (3.4) 

where b k is the smallest non negative integer such that: 

z k -t- Pk rk E w (3.5) 

and 

lpk(x~-t ?~rk,t~) <- lr,~(~'k,t"k) + ~ at [ (~ (~k ) - -#~ : ) r c (zk }  -- Pk I I,:(.~,,:) I l} • (3.0) 
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By expanding Ipt(zk-tpl:rk,#k ) in z about  zk, it is not difficult to see tha t  the unit  step- 

size Pk -- I is accepted a.sympt.otically if p/~ in (3.3) is bounded away from zero. 

3.3.  A r e d u c e d  s e c a n t  a l g o r i t h m  

The  algori thm we propose hereafter uses 

ek:= ]10(vk)ll J I l c ( ~ , t , ) l l ,  

~ : =  rnin { c i : o  < i < k },  

to test tim convergence and to decide whether to adapt_pt:, Pt and t% 

R e d u c e d  s e c a n t  a l g o r i t h m :  (3.7) 

l. Let be given the constants:  0 < tx < 1 , 0 < fl < 1 , 0 < a I < 1 / 2 ,  

ctl < (~2 < 1 , 0 <  c ,  I < a i ( i =  1,2,3). 
2. Let x 0 be a point ill w and II o be a symmetr ic  positive definite matr ix of 

o r d e r  I t -  ITI. 

3. Calculate A(Xo) by (3.2), cimose Po > 0, set #o :=  A(z0) and Po :=  S(po) and 

set the indices k := 0 (iterations), i :=  0 (adaptat ion of_Pk), J := 0 (adapta-  

tion of Pt~ and #t)" 

4. Select a transversal step-length Pk by Armijo's procedure (3.4)-(3.6) and set 

Yk :=  Zk 1 Pk rk" 
5. Execute the longitudinal search algori thm (2.12), s tar t ing with r = 1 and 

using the penalty function Ipk(.,#k) instead of 0(°) in (2.9) to determine the 
tk 

step-length rio and the point xk4 1 := Yt (rk), if possible. 

6. If e t < e then stop. 

7. Update II k by (1.9) with 7k :=  g(Xt+l)-g(Yt)  and 6 t :=  rio Z(ylc ) tl~ . 

8. Adapt  Pk:  if { , ~ _ < c ~ / a ~  and (I t ~ 0  or r k ~ l ) }  then { i : = k  ; 

_P/c+l : = _ P j a 2  } else _P~+I :=_Pk • 

9. A d a p t P k a n d  # / ¢ : i f  t ~ < , ° / a  3 then { j : = k ; # k ~ l : = , ~ ( Z k l l )  ;pl¢+l := 
S(pk+l) } else { t t k + l : =  /t k ; Pk+l :=  m a x ( P k ,  S(llA(xk+3-g,+~ll + 

e k + ~ ) )  ) • 

10. Set k :=  k + l  and go to s ta tement  4. 

As function S : ]0,oo[ --~ ]0,co I in s ta tement  3 and 9, we can take like in Bonnans 

(1984): 
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S(a) := rain { 10q: a < 10 q , q integer } . 

This non-decreasing function difl'ers from the identity flmction by the fact tha t  for 
each a < 5 in ]0,oo[, S([_a,~]) is finite. This  proper ty  impedes the penal ty  factor Pk to 

change too often and allows to have it cons tant  after a finite number  of i terat ions.  

We see tha t  the matr ices  ll  k are updated  at  each i teration and this is possible 

because 7/~'df/: is positive and therefore formula  (1.9) is well defined. In s t a t emen t  8,_p/c 

is decreased when the unit  longitudinal step-size (l/c = 0 and r k : I) is not admi t t ed  

and convergence seems to occur (for some subsequence).  In s t a t emen t  9 i convergence 

is also required to adap t  Pk and Ilk otherwise only Pk can be increased to preserve ine- 

quality (3.3). 

4. C o n v e r g e n c e  r e s u l t s  

The  following global convergence theorem can be proved.  

T h e o r e m  4.1 ( g l o b a l  c o n v e r g e n c e ) .  Suppose that algorithm (3.7) produces 
sequences (ztc) and (Yk) in w and a bounded sequenc.e o[ matrices (Ilk) with bounded 

inverses. Then, one of the following situations occurs: 

(i) l i m i n f  ( l l c ( x k ) l l + l l g ( y k ) l l ) = O ,  

(ii) Itk =-It for k large, (Pk) is unbounded and I I ~ ( ~ * ) l l o  . . . .  , c o  w h e n  k - - *  o o  i , ,  

{ k : P k >  Pk._l} , 

(iii} # k =  It /or k large, Pk=  P ]or k large and either lp(zk,It ) ~ - co or for some 

subsequence dist(zt,w c) ---~ 0 . 

Because the theorem assumes tha t  the sequences (xk) and (Yk) have been gen- 

erated by the a lgori thm, it is implicitly supposed tha t  the longitudinal search algo- 
r i thm (2.12) has succeeded at  each iteration k, which, according to theorem 2.1, will 

usually occur. Si tuat ion (ii) of the theorem means tha t  either { x k : p  k > Pk- I}  is 

unbounded or has accumula t ion  points ~ on the boundary  of ca at  which )~(£') is not 
well defined by (1.15), for instance, because A( I )  has not full rank. In (iii), dist(xk,ta c) 

is the dis tance from x k to the complementa ry  set of ta. 

It can also be proved tha t  the t ransversal  and longitudinal unit  step-sizes are 

accepted after a finite number  of i terat ions and,  consequently,  tha t  the convergence is 

superl inear.  
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T h e o r e m  4.2 ( super l inear  convergence) .  Suppose that algorithm (8.7) pro- 

duces a sequence (zk) in ~ converging in ¢o to a solution a'. o / p r o b l e m  (I.  I)  and a 

bounded sequence o~ positive definite matrices (Ilk) with bounded inverses. Suppose, as 

well, that we have 

(ek - -C , )  Z(uk ) t k  = o ( l l t k l l )  • (4.1) 

Then, Pk = 1, I k : 0 and r~ : 1 for k laree enoueh and the sequence (xk) converges 

superlinearly. 

Condition (4.1) is a suflicient condition of superlinear convergence for the local 
algorithm (1.6)-(1.7) and is usually satisfied by the update scheme of Ilk: see Coleman 
and Conn (1984), Byrd (1984) and Gilbert (1986,a and 1988). 
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