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Rdésumé. Dans cetl arlicle, on propose une méthode généralisant i I'optimisation
avec contraintes d’égalité, une technique de sélection de pas, dite de Wolle, qui a fait
ses preuves en oplimisalion sans contrainte. Pour les algorithmes du type quasi-
Newlonien, celle-ci semble assez naturelle puisqu’elle permet d’assurer facilement la
définie positivité des métriques locales A chaque ilération et donc le caractére descen-
dant des directions de recherche. Toutefois, on sait que cette lechnique ne peut pas
étre étendue aux méthodes quasi-Newtoniennes en optimisation avec contraintes. On
montre ici qu'une généralisation est possible dans le cadre des méthodes sécantes
réduites.

Abstract. This paper proposes a generalization to equality constrained optimii-
zation of Wolfe’s step-size selection procedure, which is used with success in uncon-
strained optimization. This one appears rather natural for quasi-Newton methods
because it allows to maintain easily the positive definiteness of the matrices correcting
the steepest descent direction and therefore assures the descent property Lo search
directions. lowever, this technique is known not to be usable for quasi-Newton
methods in constrained optimization. We show here that a generalization can be made
in the framework of reduced secant methods.

* Work supported by the FNRS (Fonds National de la Recherche Scientifique) of Belgium.
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1. Introduction

In this reporl, we deal with the following equality constrained optimization prob-
lem:

min{ f(z):z€w,e(z) =0}, (t.1)

where w is a convex open set in IR”™ and the functions [ :w — R and ¢ : w — IR™,
m < n, are supposed smooth. We shall suppose that the m x n Jacobian matrix
A(z) := Ve(z) has full rank m for all z in w and that w contains a local solution z+ of
problem (1.1), which with its associated Lagrange multiplier A. satisfies the standard
sullicient conditions of optimality (see Fleicher {1981}):

e(z,) =0,
Vi(e) + A(z)T A = 0 -2
and
G = Z(x;)_T L+ Z(z4)~ is posilive definite . (1.3)

In (1.3}, L. is the Hessian according to z of the Lagrangian {(z,A) := f(z} + e(z)Tx at
(z+,2.) and Z(zs)” is a basis of N(A(z)), the kernel of A(z:), i.e. an n x (n—m)
matrix whose columns form a basis of N(A(z+)). We shall suppose that such a basis

exists at each point z in w in such a way thal its dependence on z is smooth. We have
A(z) Z(z)” =0 in R =m) for all zinw . (1.4)
We shall also nced to do displacements in the complementary space R(A(z)”) of

N(A(z)). We shall also suppose that the right inverse A(z)™ of A(z) is a smooth
function of z. We have

Alz) A(z) " =T in R™ ™ forall zinw . (1.5)

This formalism (with the matrix Z(z) introduced later) is due to Gabay (1982).

We shall focus in this paper on the following class of reduced secant methods to
compute iteratively a solution of problem (1.1) (see Coleman and Conn (1982)): start-
ing from a point z;, the next iterate z;, , is obtained by

U= 2 — Alz) " e(z) =13 + 1y, (1.6)

Ty =W — Z(u)” My gly) =y + £ - (1.7)
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In (1.7), If; is a matrix of order n—m approximating . := Giland g is the reduced
gradien! of [ defined by ¢(y) := Z(y)‘TVj(y). The fact that only a matrix of order
n—m, namely I, has to be updated is an advantage of reduced methods over quasi-
Newton methods to soive (1.2). Indeed, in the latter case, a matrix L of order n
approximating the llessian L. has to be updated. For a state of the art on quasi-
Newton methods for constrained optimization we refer to the paper by Powell (1986).

The convergence of algoritm (1.6)-(1.7) is assured locally, i.e. when (zg,H,) is
close to (z.,/{;}, and is then superlinearly convergent if the matrix Hy is correctly
updated: see Byrd (1984) and Gilbert (1988). Moreover, the algorithm can be global-
ized to force convergence from poor starting approximations by using as a merit func-
tion a penalty function of the form

0(z) := f(z) + olc(=)) . (1.8)

See Gilbert (1986,a,b,c). In (1.8), ¢ is a positive real-valued convex function that we
shall suppose continuous in a neighborhood of ¢(w). Therefore we can compute the
directionnal derivatives of 8. For example, using {1.4), the dircctionnal derivative of 8
at y, in the direction ¢, writes 'y ; ) = — o(y)T Hy g(y;). This shows that ;. is a
descent direction of 9 at y; if I is positive definite.

To maintain the positive definiteness of the matrices [/, we propose to update
them by the inverse BFGS formula (see e.g. Dennis and Moré (1977)):

& & b 67
ey =1 - 22 g (- 00N 2R (1.9)
i T O Y O

Ilere, &, and -+, are vectors in /R"™™. Then, it is well known that I, retains the
positive definiteness of I if and only if

8 >0. (1.10)

Other update formula may be used if they retain symmetry and positive definiteness
under condition (1.10), e.g., formula of the restricted Broyden’s class.

Inequality (1.10) must be satisfied at each iteration. Note that it is satisfied
locally if we take

M= 9(ze41) — 9(w) » (1.11)

b = Z(ye) b » (1.12)

where y, and 1, | are defined in (1.6)-(1.7) and Z(y) is the unique (n -m) x n matrix

satisfying Z(y)Z(y)” = [ in R{n—m)x(n=m) angd Z(y)A(y)~ =0 in R(n=m)xm  This
can be seen by expanding g(z; ) about y; in (1.11), observing with Stoer (1984) that
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Vg(z:) = Z(I:)—T L. (1.13)

This formula shows why v, is taken as a difference of reduced gradients and §; is the
corresponding reduced displacement.

The aim of this paper is to show how the vectors 4y, and §, can be calculated in a
global framework (when some step-length is introduced) in order to satisfy inequality
(1.10) at each iteration and to recover the values (1.11) and (1.12) after a finite
number of steps.

Hereafter, many implicit references will be done to Gilbert (1987). In particular,
we refer to this paper for the proof of the theorems.

2. The longitudinal displacement

In this section, we show how a step-size procedure attributed to Wolfe (1969) and
used in unconstrained oplimization can be extended to equality constrained optimiza-
tion for the longitudinal displacement, which starts from y; tangently to the manifold
M(y) = ¢ Y(c(y;)). First, we recall Wolfe’s procedure.

In unconstrained minimization, min { ¢(u) : v € P }, a large class of methods
consist, in gencrating a sequence of approximation (1} of a solution such that v, :=
w + 7 v, where v is a descent direction of ¥ at u; and 7, is a positive scalar step-
size. In this general framework, Wolfe's procedure to determine i, consists in finding a
positive 7 such that

Plugtro) < lug) + oy 7 V() T vy, (2.1)
Vip(wyt-7vg) T U > Qg Vt[:(uk)T v, (2.2)
where 0 < a; < a, < 1 are given. Such a r exists for example if ¢ is bounded from
below. In secant methods, the descent direction has the form v := — Hy Vip(uy),

where Hj is the current positive definite approximation of the inverse of the Hessian of
¥ al up. Usually, I, is updated by using a formula like (1.9) with

Sp =y — w =T U
Therefore, if the step-size 75 is determined by Wolfe’s procedure, inequality (2.2)

implies the positivity of the scalar product of v and §;.

In a first stage, we generalize this to a longitudinal displacement on the manifold
M(y). For this, we introduce the curve y:7e R — yM(r) € M(y,) by the
differential equation:
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i) = 2('(0)” 2(w) &

yiw(o) _— (2.3)

Multiplying the first equation of (2.3) to the left by A(y}(r)) and using (1.4) shows
that y(r) belongs to M(yg). Then, if we define p(r) := (8 o y}(7), with 8 given in
(18), we have ¥(r) = 0'(uM() ; Z(u(1) Z(u)t) = a(u())TZ(ug)ty (because of
(1.4)). So, applying Wolfe’s procedure to this ¥ with p = 1, ¥, = 0 and v, = 1 shows
that, provided y,ﬁw(r) exisls for sufliciently large value of r and [ is bounded from below
on M(yy), we can find a positive step-size 7 such that

o(yM() < 8(y) + oy TV (w) T 4 s (2.4)
g N Z2(w) 4 > g 9(y) T Z(w) 1 - (2.5)
Noting 7; such a rand defining

W= g'(0) - alwe) (2.6)
6 =1 Z(ye) 4 (2.7)
we obtain from (2.5): (/)7 6¥ > 0.

In this framewark, (1.11)-(1.12) may be obtained from (2.6)-(2.7) by taking a first
order approximation of y}cw(o) and a unit step-size. We continue with the same point
of vue and we build an explicit Buler approximation of the solution of the differential
equation (2.3) for the following discretization points:

0=:72<1,:<---<1,lc". (2.8)

The problem is to choose them carefully in number and position so that for § =,

there exists a positive 7 with
0(uk(n) < 8(y) + ;T V()T 4, (2.9)
(b)) 2(w) tp > a3 a(u) T Z(y) b - (2.10)

Again, 0 < a; < @3 < 1 are given. Let us denote by yP the point y; and by yP(7) the
line yg + 1. For 1 <1 <4, let us define recursively the points y,i = y,’c"'(r,ﬁ) and
the piecewise linear curves

vl ') for 0<r<1f,

: (2.11)

(=] N 70~
v+ (1) Z(w)” Z(w) 4 for 7> 7.
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Therefore the Kuler approximation of y,iw o) for the discretization (2.8) is yx’:"(O). We

propose {o defermine the discretizalion points ‘r,'c by the following algorithm.

Longitudinal search algorithm: (2.12)
1. if &, =0 then stop
2. set I::O,r,‘c)::();choose r>0
3. repeat:
3.1. if yf(r) is not inw or (2.9) is not satisfied
3.2, then 7:= 1} + J(yf,r—1})
3.3. else {if (2.10) is satisfied
3.4. then {7 =714 :=1;stop}
3.5. else {l:=1+1;7:=r;r:=74+ E(y) }}

This algorithm is inspired by an algorithm proposed by Lemaréchal (1981} to find
a step-size satisfying (2.1)-(2.2) in unconstrained optimization.

The algorithm uses two functions J and E. The interpdlation Junction J:
wx R, — IR, is supposed to satisly the following properties:

J is continuousonw x IR , (2.13)
0 < J(y,r) < r for all y in w and all positive r, (2.14)
JP(7) == (Jy o0 .. (ptimes) .. 0 .Iy)(r) -—0as p— 00. (2.15)

In (2.15), we have denoted J,(e) := J(y,). Therefore the step-size 7 is decreased in
statement 3.2 (property (2.14)) and tends to r," if Lthe statement is executed infinitely
often (property (2.15)). The estrapolation function E:w -—+ IR, is supposed lo
satisfy the following properties:

E is continuouson w , (2.18)
0< E(y) forall yinw . (2.17)

Therefore, the step-size 7 is increased in statement 3.5.

Let us make some remarks on algorithm (2.12).

1) If the algorithm terminates in statement 3.4 after / Ibops 3.1-3.5, this means
that a step-size 7 has been found such that yj(r) is in w, (2.9) is satisfied just as (2.10).

2) If a new discretization point is taken at 7= T,’;‘H in statement 3.5, this means
that y}(7) is in w, (2.9) is satistied but not (2.10).

3) The test in statement 3.1 is always rejected after a finite number of loops 3.1-
3.2. Indeed, because y,': is in w, y,’c(r) is also in w for 7 in a right neighborhood of T,’C.
On the other hand, at yf := y(7}), we have (9 o u) ki 1) = 0'(vt 5 Z(vh) " Z(w)t) =
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gy T2 ()t (by (1.4))) < ey o(y) TZ(y;)t (because by construction inequality (2.10)
is not satisfied at the point yf) < ay g(y) TZ(yk)lk (because g(y) " Z(vp)l is negative)
= oy Vf(y) Tt UHence incquality (2.9) is also satisfied in a right neighborhood of 7
because at y,t, inequality (2.9) is satisfied and the right derivative of its left hand side
is less than the one of its right hand side. Finally, property (2.15) of the interpolation
function J shows thal alter a finite number of loops 3.1-3.2 the value of the step-size 7
belongs to the intersection of the above mentioned right neighborhoods of 'r,ﬁ.

Remark 3 shows that either the algorithm terminates in a finite number ! of loops
3.1-3.5 or that a sequence [Vli)l>0 is generated in w. The following theorem shows ihat
the latter case is, in a way, pathological and that, in general, algorithm (2.12) works
well.

Theorem 2.1. Let @ be the function defined on w by (1.8) with yp convez, posilive
and continuous on a neighborhood of ¢(w). Let y, be a point tn w such that g(y;) # 0.
Let Hy be a symmetric positive definite matriz of order n—m. Then, if the longitudinal
search algorithm (2.12) with the definitions (2.8)-(2.11) and the hypotheses (2.13)-
(2.17) is applied from y;, one of the following situations occurs:

(1) the algorithm terminates in a finite number Iy of loops 8.1-8.5, with a point
Tpyp i y,?‘(rk) salisfying bolh inequalilies (2.9) and (2.10),

(ii) the algorithm builds a sequence (yl{:)l>0 in w end either (O(y,'c)),)O tends lo — oo or
(y;c)lzo converges Lo a point on the boundary of the open set w. N

Note that situations in point (ii) do not occur when w = IR"™ and [ is bounded

from below. From now on, we shall denote by z;,, the point y,l:(rk) found by algo-
rithm (2.12).

3. The algorithm

To insert the longitudinal search algorithm (2.12} in a globally convergent algo-
rithm for problem (1.1), two things remain to be specified: a penalty function, i.e. a
function  in (1.8), and a step-size sclection procedure for the transversal displacement
(governed by the step r; in (1.6)).
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3.1. A penalty function

The choice of the penalty function is here essentially detertmined by the longitudi-
nal displacement and the fact that a unit step-size r; (with I = 0) is necessary for not
preventing the superlinear convergence from occuring. Like Bonnans (1984), we pro-
pose to use the nondifferentiable augmented Lagrangian:

L (ze) 1= 1(2) + g e(z) + pe ] e(2)]] (3.1)

where pp > 0, p; € IR™ and ||e|| is a norm on R™. This penalty function is exact
(that is to say that z. is a local minimizer of it) if pp > ||pug—A+||p, where [[o]]p is
the dual norm of ||e]||: see also Han and Mangasarian (1979). In the algorithm pro-
posed below, p; is normally modified finitely often to be small enough asymptotically
while s, normally tends to As. Therefore the penalty function ka(ohuk) will resemble

more and more the true Lagrangian I{s,X.). Now, because H} is updated to be a good
approximation of the inverse of the projected Hessian of the Lagrangian, the unit long-
itudinal step-size will be garanteed asymplotically.

3.2. The transversal displacement

We have I, (zp 5 1p) = (A(z)—1) T e(z) — py Helze) ||, where A(e) is the

approximation of the Lagrange multiplicr A« defined by

Az) = — A(z)" T V(z). (3.2)
Therefore r; is a descent direction of the penalty function (3.1) at z if

r 2 |1 A(z) -l lp + pe s (3.3)

where p, is some positive number. If the algorithn manages to satisly this inequality at
each iteration, the transversal step-size py can be determined by Armijo's procedure:
see Armijo (1966). Let a and 8 be in J0,1{. Then py is taken in the form

b
pri=0"%, (3.4)
where b, is the smallest non negative integer such that:
T+ pp L E W (3.5)

and

b (Tt ppren) <4, (za) + apy (M)~ T e(z) — pitlelze) 1] - (3.6)
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By expanding lm(zk-}-pkrk,uk) in £ about z;, it is not difficult to sce that the unit step-

size p, = 1 is accepled asymptotically if p in (3.3) is bounded away from zero.

3.3. A reduced secant algorithm

The algorithm we propose hereafter uses

= oyl 1 elay DI
ed:=min{:0< i<k},

to test the convergence and to decide whether to adapt pg, pp and ji,.

Reduced secant algorithm:

(3.7)

1. Let be given the constanls: D<a<l, 0<fB8<1l, 0<ea <1/2,

ap<ay<l,0<e, L<a(1=123).

2. Let z; be a point in w and H; be a symmetric positive definite matrix of

order n—m.

3. Calculate A(z)) by (3.2), choose py > 0, set pgy := A(zg) and pg := S(p,) and
sel the indices & := 0 (ilerations), ¢ := 0 (adaptation of p;), j := 0 (adapta-

tion of p; and p;).

4. Select a transversal step-length p, by Armijo’s procedure (3.4)-(3.6) and set

Yk = T ) Pp Ty

5. Execute the longitudinal search algorithm (2.12), starting with r =1 and
using the penally function lm(o,[l.k) instead of g(s) in (2.9) to determine the

step-length 7 and the point 7, , := y::(rk), if possible.
If ¢, < € then stop.
Update I by (1.9) with g 1= g(z;, ) —9(ye) and & == 7, Z(y;) 4 .

8. Adapt pp: il {e¢f <€/a; and (L #0 or 7 #1)} then {i:=k ;

Pryy = ppfay } else Pry1 = Py -

9.  Adapt pp and pg : il (,? < e?/a3 then {j:=k;pp = ,\(:r,'.H) P Pryr =
S(Pk+1) } else {l‘k+1 = B v Ppyy rT max (Pe s S(ll/\(lk“)“ﬂkHH +

Pei1)) }-
10. Set k := k41 and go lo statement 4.

As function S : |0,00] —+ ]0,00| in statement 3 and 9, we can take like in Bonnans

(1984):
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S(a) := min { 107: @ < 107, ¢ integer } .

This non-decreasing function differs from the identity function by the fact that for
each g < @ in ]0,00(, S(|a,a]) is finite. This property impedes the penalty factor p, to
change too ofien and allows to have it constant after a finite number of iterations.

We sec that the matrices I} are updated al each ileration and this is possible
because 'y,;]' 6, is positive and therefore formula (1.9) is well defined. In statement 8, p;
is decreased when the unit longitudinal step-size (§ = 0 and 7 = 1) is not admitted
and convergence seems to occur {for some subsequence). In statement 9; convergence
is also required to adapt pg and jy; otherwise only p; can be increased to preserve ine-
quality (3.3).

4. Convergence results
The following global convergence theorem can be proved.

Theorem 4.1 (global convergence). Suppose that algorithm (3.7) produces
sequences (1) and (y;) in w and a bounded sequence of matrices (Il}) with bounded

inverses. Then, one of the following situations occurs:

(i) tminf (||e(z)l|-+lla(m) ) =0,

(1) py = p for k large, (py) is unbounded and ||A(z)||p —> oo when k —» 00 in
{k:p>mea},

(1) p = p Jor k large, pp = p for k large and either Ip(zk,u) —+ — co or for some
subsequence dist(z;,w°) — 0 .

Because the theorem assumes that the sequences (z) and (y;) have been gen-
erated by the algorithm, it is implicitly supposed that the longitudinal search algo-
rithm (2.12) has succeeded al each iteration k, which, according to theorem 2.1, will
usually occur. Situation (ii) of the theorem means that either { zz:py > pp_,} is
unbounded or has accumulation points  on the boundary of w at which A(%) is not
well defined by (1.15), for instance, because A(Z) has not full rank. In (iii}, dist(zg,w®)
is the distance {rom z; to the complementary set of w.

It can also be proved that the transversal and longitudinal unit step-sizes are
accepted after a finite number of iterations and, consequently, that the convergence is

superlinear.
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Theorem 4.2 (superlinear convergence). Suppose thal algorithm (8.7) pro-
duces a sequence (z;) in w converging in w to a soluiion r, of problem (1.1) and a
bounded sequence of positive definite matrices (Hy) with bounded inverses. Suppose, as
well, that we have

(G Gy) Z(we) 1 = o(ll4l1) - (4.1)

Then, pp = 1,4, =0 and 7, = 1 for k large enough and the sequence (z;) converges
superlinearly.

Condition {4.1) is a suflicient condition of superlinear convergence for the local
algorithm (1.6)-(1.7) and is usually satisfied by the update scheme of II;: sce Coleman
and Conn (1984), Byrd (1984) and Gilbert (1986,a and 1988).
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