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Abstract The system mentioned in the title belongs to the family of the so-called mas-
sively multi-player online social games. It features a scoring system for the elements
of the game that is prone to herding effects. We analyze in detail its stationary regime
in the thermodynamic limit, when the number of players tends to infinity. In particular,
for some classes of input sequences and selection policies, we provide necessary and
sufficient conditions for the existence of a complete meanfield-like measure, showing
off an interesting condensation phenomenon.
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1 Description of the basic model

Ma Micro Planète [7] is a geolocalized massively multi-player online social game
which entices players to use sustainable means of transport. At the heart of the game
is a community-driven creation of a set of points of interest (POIs): interesting places,
events, or even traffic incidents. The popularity of the POIs is assessed by scores. At
his turn, the player is presented with a number of POIs to visit in his neighborhood,
which have been selected through a mechanism that favors already popular ones. Then
the selected POI has its score increased by a random value. It is not difficult to see that
there is a risk of herding behavior, that would concentrate all the attention on a few
places only. The aim of this paper is to present some results about the POIs dynamics
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by means of a probabilistic model, and in particular to determine when a stationary
solution exists.

Assume there are N players in the game and let ni (t; N ) be the number of POIs
having an integer score i at time t . The state of the system at time t can be described
by the infinite sequence

�R(t; N ) = 1

N
[n1(t; N ), . . . , ni (t; N ), . . .].

The dynamics of the model is

• POIs are created according to a Poisson process of rate λN . Each new POI is
granted an initial score k with probability ϕk, k ≥ 1, where the ϕk’s form a proper
probability distribution.

• For any i ≥ 1, each POI with score i decreases its score by 1 after a random time
exponentially distributed at rate μ, where μ is a strictly positive constant.

• The N players are all independent and visit POIs at instants forming a global
Poisson process with rate αN . Upon being visited, a POI sees its score increased
by j ≥ 1 with probability θ j , independently of any other event, where the sequence
{θ j , j ≥ 1} forms a proper probability distribution. We shall implicitly take θ0 = 0,
which is in no way a restriction, as it is simply tantamount to modifying the
parameter α.

• When he decides to play, at the instant of a Poisson process of parameter αN , a
player selects a POI having score i ≥ 1 with probability πi ( �R(t; N )), written as a
functional of the state of the system, with the normalizing condition

∑

i≥1

πi ( �R(t; N )) = 1.

In accordance with the description of the game, we shall essentially consider selec-
tion policies such that the probability π of selecting a POI, given its score i , is a
non-decreasing function of i .

The following typical scoring rules are used in Ma Micro Planète.

• Each player starts a journey at rate α and selects a POI to visit with a probability
proportional to its current score.

– with probability p, the player adds new information to the POI, the score of
which is increased by 15 points;

– otherwise, the POI is merely visited and its score gains 5 points; this happens
with probability 1 − p.

• Each player creates POIs at rate λ and their initial score is set to 50.
• The POIs decrease their scores by 1 at a rate μ = 3 per day.
• A POI disappears as soon as its score becomes zero or negative.
• The values of α, p and λ can only be measured empirically from concrete game

statistics.

A way of describing this model might be in terms of queues. Consider a possibly
infinite array of queues M/M/1 queues with service rate μ. New queues are created

123



Queueing Syst (2014) 76:243–265 245

at rate λ and batches of customers join an existing queue with score i ≥ 1 at rate
απi ( �R(t; N )). Such systems have already been described, for example when the cus-
tomers join the shortest of two queues [10]. The situation described in this paper is
unusual due to the bias towards selecting the longest queue. This only makes sense
because there is no cost associated to visiting a highly popular POI, whereas joining a
long queue is expensive in terms of waiting time. A similar situation [9] occurs when
customers, unsure of the quality of two restaurants, choose the busier one.

The model can have ramifications with other areas of interest, e.g., dynamics of
populations, social networks, chemical or energy networks in physics.

In this work, we examine the system in the so-called thermodynamic limit, as
N → ∞, the existence of which is proved in Sect. 2, under general conditions, where
the probability of increasing the score of a visited POI is a function of the state of
the system. Section 3 is devoted to the stationary regime, for which complete (but
surprising!) answers are given for various input sequences and selection policies, and
the existence of the so-called herding behavior is connected to possible condensation
phenomena. Section 4 presents miscellaneous simple case studies. The final Sect. 5
outlines a possible method of solution for general input sequences, and also discusses
a brief list of unsolved questions.

2 The thermodynamical limit

To capture information on the behavior of the system under various game policies,
we proceed by scaling and analyze the thermodynamical limit, when the number N of
players becomes large. In mathematical terms, we consider the system when N → ∞,
for any fixed t .

2.1 Notation

It will be convenient to gather here most of the notational material concerning input
sequences and mathematical symbols.

• E def= {�y = [y1, . . . , yi , . . .], yi ∈ Q}, where Q+ is the set of positive rational
numbers. R∞+ being the set of non-negative real numbers, �e j will stand for the
j-th unit vector of R∞+ . We shall also denote by L ∈ R∞+ the subset of bounded

sequences with the norm ‖�y‖ def= ∑
i≥1 |yi | < M < ∞.

• E being an arbitrary metric space, B(E) is the space of bounded real-valued
Borel measurable functions on E , C(E) ⊂ B(E) the Banach subspace of bounded
continuous functions.

• We shall need the three following subspaces of C(L):

C1(L)
def=

{
f : sup

j≥1

∣∣∣∣
∂ f

∂y j

∣∣∣∣ ≤ C

}
,

C2(L)
def=

{
f : sup

j,k≥1

∣∣∣∣
∂2 f

∂y j∂yk

∣∣∣∣ ≤ H

}
,
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C, H being arbitrary positive constants.
• For any complete separable metric space S, let DS[0,∞] denote the space of

right continuous functions f : [0,∞] → S with left limits, endowed with the
Skorokhod topology.

2.2 The main limit theorem

Clearly �R(t; N ) is a continuous time Markov chain, and its generator G(N ), for f ∈
C1(L), is the operator given by,

G(N ) f (�y) = λN
∑

j≥1

ϕ j

[
f

(
�y + �e j

N

)
− f (�y)

]

+μN
∑

j≥1

y j

[
f

(
�y + �e j−1

N
− �e j

N

)
− f (�y)

]

+αN
∑

j≥1

π j (�y)
∑

i≥1

θi

[
f

(
�y − �e j

N
+ �ei+ j

N

)
− f (�y)

]
. (2.1)

Throughout this study, the game will be subject to the following reasonably weak
assumption.

Assumption (L) For all �r ∈ L, the probability distribution π : L → L, con-
sidered as an infinite vector {πi (�r), i ≥ 1} with values in the Banach space L of
absolutely summable sequences, will be supposed to be boundedly and twice con-
tinuously differentiable (see, for example, [1]). In this case, all partial derivatives
∂πi (�y)
∂y j

, j, k ≥ 1, �y ∈ L, belong to C1(L) and the famous Lipschitz condition is also
satisfied.

In particular the above assumption (L) holds for the forthcoming policy, denoted
by P�a , which will be analyzed in Sect. 3,

πi (�r) = airi∑
j≥1 a jr j

,

where the ai ’s form a bounded sequence of positive numbers.
Then, with the notation θ0 = π0(.) = 0, the following proposition holds.

Theorem 2.1 Suppose that, as N → ∞, �R(0; N ) converges in distribution to
�R(0) ∈ L. Then, the Markov process �R(t; N ) converges also weakly in D[0,∞] to a

deterministic dynamical system �r(.) ∈ R∞+ , which evolves according to the following
infinite system of non-linear differential equations

dri (t)

dt
= λϕi + μ

[
ri+1(t) − ri (t)

] + α

⎡

⎣
j=i∑

j=0

θ jπi− j (�r(t)) − πi (�r(t))

⎤

⎦ , (2.2)
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where πi (�r(t)) denotes the probability that the currently visited POI has score i .
Moreover, under Assumption (L) and for any given finite initial condition �r(0) ∈ L,
the system (2.2) admits a unique solution, for all t ≥ 0.

Proof The method to solve this weak convergence problem is somehow classical (see
for example the footsteps of [2]), and relies on theoretical results of [3] quoted in
Appendix. First, a second order Taylor’s expansion in (2.1) yields immediately, for
any f ∈ C2(L),

G(N ) f (�y) = G f (�y) + O
(

1

N

)
, (2.3)

where G is the operator with domain C1(L) satisfying

G f (�y) = λ
∑

j≥1

ϕ j
∂ f

∂y j
+ μ

∑

j≥1

y j

(
∂ f

∂y j−1
− ∂ f

∂y j

)
(�y)

+α
∑

j≥1

π j (�y)
∑

i≥1

θi

(
∂ f

∂yi+ j
− ∂ f

∂y j

)
(�y). (2.4)

Indeed, taking for instance the second term in the right-hand side of (2.1), we have

μN
∑

j≥1

y j

[
f

(
�y + �e j−1

N
− �e j

N

)
− f (�y)

]
= μ

∑

j≥1

y j

(
∂ f

∂y j−1
− ∂ f

∂y j

)
(�y) + RN ,

where, by Taylor’s formula,

RN = μ

N

∑

j≥1

y j

(
∂2 f

∂y2
j−1

+ ∂2 f

∂y2
j

− 2
∂2 f

∂y j∂y j−1

)
(�x j ),

and

�x j = �y j + δ j

( �e j−1

N
− �e j

N

)
, 0 < δ j < 1.

So, for any f ∈ C2(L), we get the estimate

|RN | ≤ 4μM H

N
.

The other terms in (2.1) could be dealt with in a similar way.
Then, for �r ∈ L, denote by U (�r) the right-hand side of system (2.2). Under condition

L, it is known (see, for example, [1,6]) that the solution �x : [0,∞) × L → L of the
differential system
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⎧
⎨

⎩

d�x(t, �a)

dt
= U (�x(t, �a)),

�x(0, �a) = �a,
(2.5)

is unique, for any initial condition �a ∈ L and all finite t . Therefore, for f ∈ C(L), one
can define a one-parameter family {T (t), t ≥ 0}, such that

T (t) f (�a) = f (�x(t, �a)).

Since �x(t + s, �a) = �x(t, �x(s, �a)), it is not difficult to see that {T (t), t ≥ 0} is a
strongly continuous contraction semigroup on C(L) with generator, say B, which is
closed by Theorem 6.1. Under condition L, U (.) admits continuous partial derivatives.
Hence, the solution �x(t, �a) of system (2.5) is also twice differentiable with respect to
�a (see [1], Theorems 3.4.2 and 3.7.1, pp. 148 and 152 respectively). Then Theorem 6.3
shows that C1(L) is a core for B and B = G.

The final line of argument proceeds in two steps.

1. Choose f ∈ C2(L), so that T (t) f (�r(0)) ∈ C2(L). Since C2(L) is dense in C(L),
Theorem 6.3 entails that C2(L) is a core for B.

2. Use Eq. (2.3) together with Theorem 6.4.


�

2.3 Some analytic facts

Let, for |z| ≤ 1,

r(t, z) =
∞∑

i=1

ri (t)z
i , π(t, z) =

∞∑

i=1

πi (�r(t))zi ,

ϕ(z) =
∞∑

i=1

ϕi z
i , θ(z) =

∞∑

i=0

θi z
i .

In this respect, the model of Ma Micro Planète presented in Sect. 1 corresponds to

θ(z) = pz15 + (1 − p)z5, ϕ(z) = z50.

Taking the summation over i in system (2.2), we get immediately

dr(t, z)

dt
+ μ

[
1 − 1

z

]
r(t, z) = λϕ(z) − μr1(t) + α[θ(z) − 1]π(t, z). (2.6)

The following proposition ensures in particular, for the class of policies considered
in Sect. 2.2, the boundedness of the Cesáro limit of r(t, 1) as t → ∞, which, from its
mathematical definition, takes into account the POIs possibly going to infinity.

123



Queueing Syst (2014) 76:243–265 249

For any arbitrary positive function f , let f ∗ denote its ordinary Laplace transform

f ∗(s) def=
∞∫

0

e−st f (t)dt, 
(s) ≥ 0.

Proposition 2.2 When {θk, k ≥ 1} is a proper probability distribution, so that
θ(1) = 1, we have

lim
t→∞

1

t

t∫

0

r1(t)dt = λ

μ
, (2.7)

Moreover, if θ ′(1).ϕ′(1) < ∞, and for any policy satisfying Assumption (L),

lim
t→∞

1

t

t∫

0

r(t, 1)dt = απθ ′(1) + λϕ′(1)

μ
≤ αθ ′(1) + λϕ′(1)

μ
, (2.8)

where

π = lim
s→0

sπ∗(s,
μ

μ + s

)
≤ 1.

Proof By simple algebra carried out on Eq. (2.6), we obtain

r∗(s, z) = 1

μ
(

1 − 1
z

)
+ s

[
λϕ(z)

s
+ α

(
θ(z) − 1

)
π∗(s, z) − μr∗

1 (s) + r(0, z)

]
.

(2.9)

Furthermore, applying Cauchy’s formula

r∗
1 (s) = 1

2iπ

∫

C

r∗(s, y)dy

y2

in Eq. (2.9), where C stands for the unit circle centered at the origin, we get

r∗
1 (s) = 1

2iπ

∫

C

λϕ(y)dy

sy [(μ + s)y − μ]

+ 1

2iπ

∫

C

[
α(θ(y) − 1)π∗(s, y) − μr∗

1 (s) + r(0, y)
]

dy

y[(μ + s)y − μ] ,

which in turn, by a repeated (and elementary) application of Cauchy’s residue theorem,
allows us to extract
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r∗
1 (s) = λϕ

(
μ

μ+s

)

μs
+ α

μ

[
θ
( μ

μ + s

)
− 1

]
π∗(s,

μ

μ + s

)
+ 1

μ
r
(

0,
μ

μ + s

)
. (2.10)

Hence, instantiating the latter expression of r∗
1 (s) in (2.9), we obtain finally

r∗(s, z) = 1

μ
(

1 − 1
z

)
+ s

[
λ

s

(
ϕ(z) − ϕ

( μ

μ + s

))

+α
(
θ(z) − 1

)
π∗(s, z) + α

(
1 − θ

( μ

μ + s

))
π∗(s,

μ

μ + s

)

+r(0, z) − r
(

0,
μ

μ + s

)]
. (2.11)

Take now s > 0 and let z → 1− by real positive values in (2.11). This yields

r∗(s, 1) = 1

s

[
λ

s

(
1 − ϕ

( μ

μ + s

))
+ α

(
1 − θ

( μ

μ + s

))
π∗

(
s,

μ

μ + s

)]
, (2.12)

where we have used the fact that π∗(s, 1) = 1/s, since π(t, 1) = 1,∀t ≥ 0.

Moreover, π∗
(

s, μ
μ+s

)
< π∗(s, 1) = 1

s , for any s > 0, and we are now in a

position to apply a Tauberian-type theorem for positive functions, see, for example,
[4], just letting s → 0 by positive values in (2.12), so that

lim
s→0

sr∗(s, 1) = lim
t→∞

1

t

t∫

0

r(t, 1)dt

= lim
s→0

[
λ

s

(
1 − ϕ

( μ

μ + s

))
+ α

s

(
1 − θ

( μ

μ + s

))
sπ∗(s, 1)

]

= απθ ′(1) + λϕ′(1)

μ
,

which is exactly the asserted equality (2.8). It is worth noting that for the moment
there is no need to assume the finiteness of the derivatives θ ′(1) and ϕ′(1), but this
will be made more precise in Sect. 3.

As for (2.7), it is readily obtained from (2.10), using the inequality sπ∗
(

s, μ
μ+s

)
≤

1, and again the above Tauberian theorem. The proof of the proposition is concluded.

�

3 System behavior as t → ∞

In the sequel, we shall focus our attention solely on the deterministic dynamical system
�r(t) obtained in Theorem 2.1. Of special interest will be the non-degenerate stationary
limits
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�r = lim
t→∞ �r(t), with ri (t) → ri ,∀i ≥ 1,

and

π
def= lim

z→1−
lim

t→∞ π(t, z) =
∑

i≥1

πi (�r). (3.1)

Indeed, from the general theory of differential systems (see, for example, [1,6]),
under Assumption (L) and for a given set of parameters, we know that a unique
stationary regime of the system exists, but possibly degenerate in the sense that
π < 1. Note that this fact is not easy to prove by a probabilistic argument, since,
due to the normalizing condition, system (2.2) cannot be interpreted as forward
Kolmogorov’s equations for a special birth and death process, where r(t, z)/r(t, 1)

would represent the probability distribution function of the score of an arbitrary
POI.

Throughout the rest of the paper, we shall speak of ergodicity, with a slight abuse
of language: this will always refer to a finite stationary dynamical system satisfying
the conditions

r(1) =
∑

i≥1

ri < ∞, π = 1. (3.2)

This notion of ergodicity will be also referred to as a non-herding behavior, in agree-
ment with the brief description given in Sect. 1. Conversely, a herding behavior will
refer to transient phenomena, as introduced more precisely in Sect. 3.5.

3.1 Global conservation equations

Define the generating functions

r(z)
def=

∞∑

i=1

ri z
i , π(z)

def=
∞∑

i=1

πi (�r)zi ,

with the shortened notation π(z) ≡ π(z; �r), and

1 − θ(z)

1 − z
def=

∑

n≥0

	nzn,
1 − ϕ(z)

1 − z
def=

∑

n≥0


nzn . (3.3)

Two characteristic values are of special interest, namely

• r(1) = ∑
i≥1 ri , the mean number of POIs per player;

• r1, since μr1 is the global death rate of POIs per player.

By (2.6), one sees easily that r(z) satisfies the functional equation

α [1 − θ(z)] π(z) + μ[1 − z−1]r(z) = λϕ(z) − μr1, (3.4)
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from which can be deduced the following corollary, which is the direct continuation
of Proposition 2.2.

Corollary 3.1 1. We have always lim
z→1

(1 − z)r(z) = 0 and r1 = λ

μ
.

2. If in addition θ ′(1).ϕ′(1) < ∞, then

r(z)

z
= α	(z)π(z)

μ
+ λ
(z)

μ
, ∀|z| ≤ 1, (3.5)

r(1) = απθ ′(1) + λϕ′(1)

μ
. (3.6)

Proof Immediate from Proposition 2.2 together with notation (3.3). 
�
Assumption (F) In the rest of the paper, unless otherwise explicitly mentioned, the

product θ ′(1).ϕ′(1) < ∞ will always be assumed to be finite.
From Eq. (3.5), we get the immediate recursion, valid ∀n ≥ 0,

rn+1 = α

μ

n−1∑

i=0

πn−i	i + λ

μ

n . (3.7)

In the next sections, we examine in detail the effect of specific choices of the policy
π on the behavior of the system. One of main goals of the study is to find out the
necessary and sufficient conditions for the system to be ergodic in the sense given by
the conditions (3.2).

3.2 Selection of POIs according to their scores

Hereafter, but in Sect. 3.4, we shall consider a set of policies where the selection of a
POI depends solely on its score. Letting each score i ≥ 1 be associated with a positive
weight ai , then we recover the policy P�a announced in Assumption (L) of Sect. 2.2,
namely

πi (�r) = airi

K
, K

def=
∞∑

j=1

a jr j , (3.8)

and (3.7) can be rewritten as

rn+1 = α

μK

n−1∑

i=0

an−i rn−i i	i + λ

μ

n . (3.9)

In the context of Ma Micro Planète, it seems quite realistic to assume that the ai ’s
are increasing with i , since POIs with high scores should be more attractive. In the
sequel, we shall mainly consider this situation of herding effect.

Since the ai ’s are assumed to form an increasing sequence, there exists limi→∞ ai .
When this limit is not finite, the following simple interesting proposition holds.
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Proposition 3.2 If limi→∞ ai = ∞, then the system is non-ergodic.

Proof The relation (3.9) leads to the simple bound

rn+1 ≥ α

μK
anrn	0 = α

μK
anrn,

so that, when the ai ’s are unbounded, system (3.2) admits no solution with K < ∞.
Nonetheless, it turns out there is in this case exactly one admissible solution to (3.2),

namely

rn+1 = λ

μ

n, with K = ∞,

which implies also (see (3.1)) π = 0. Here, it is worth checking that π(�r) does not
satisfy a uniform Lipschitz condition, since

lim
j→∞

a j∑
i≥1 airi

= ∞.


�
Consequently the only interesting case is when {ai , i ≥ 1} is a non-decreasing

sequence tending to a finite limit, which ad libitum can be taken equal to 1, since the
ai ’s are defined up to a constant.

3.3 When scores of selected POIs are exactly increased by one

As it will appear in Sects. 5.1 and 5.2, a complete solution to the non-linear Eq. (3.9)
for a general θ(z) seems to be technically almost untractable. In this section, in order
to get ideas about the general behavior of the system, we analyze in detail the simple
(but nonetheless not elementary!) case θ(z) = z, for which Eq. (3.9) becomes the
following first order recursive sequence

rn+1 = α

μK
anrn + λ

μ

n . (3.10)

Simple algebra carried out on this last equation leads to the formula

rn+1 = λ

μ
An

n∑

j=0


 j

A j

( α

μK

)n− j
, n ≥ 0, (3.11)

where

An
def=

n∏

i=1

ai .

The constant K can then be recovered as
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K =
∑

i≥1

airi = λ

μ

∞∑

i=0

ai+1 Ai

i∑

j=0


 j

A j

( α

μK

)i− j

= λ

μ

∞∑

j=0


 j

A j
(

α
μK

) j

∞∑

i= j

Ai+1

( α

μK

)i

= λK

α

∞∑

j=0


 j

A j
(

α
μK

) j

∞∑

i= j+1

Ai

( α

μK

)i
,

which leads to the following implicit equation

α

λ
= F

( α

μK

)
, (3.12)

allowing us to determine K , after having set

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F(z)
def=

∞∑

k=1

uk zk,

uk =
∞∑

j=0

A j+k
 j

A j
, ∀k ≥ 1.

(3.13)

So, the problem of showing the existence of a strictly positive and finite constant K
is exactly tantamount to finding a strictly positive real number x , such that

α

λ
= F(x) =

∞∑

k=1

uk xk .

Hence, in order to get effective ergodicity conditions, one has to check the lower and
upper bounds of F(x), which is an increasing function of x , for x ≥ 0. We note first
that F(x) is finite for small enough |x | if, and only if,

u1 =
∞∑

j=0

a j+1
 j < ∞. (3.14)

But, ex hypothesis, Ak+1/Ak = ak increases to 1 from below, so that uk is a monotone
decreasing sequence and inequality (3.14) is plainly equivalent to

ϕ′(1) =
∑

j≥0


 j < ∞. (3.15)

As for the upper bound, we have the immediate inequality

uk ≤ ϕ′(1), ∀k ≥ 1,
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and hence the radius of convergence of F(z) is exactly equal to 1. Now, in order to
decide whether the consistency relation (3.12) admits a solution, the key point will be
to analyze the quantity

M = lim
x→1−

F(x).

There are two possibilities.

(i) If M is infinite, then for any value of λ, α, μ, it is possible to find a unique
admissible finite K , and we shall say that the system is ergodic.

(ii) Conversely, if M < ∞, then it will act as a limiting value for α/λ, and hence a
non-trivial ergodicity condition takes place.

The situation is summarized in the following brief statement.

Theorem 3.3 Assume that lim
i→∞ ai ↗ 1.

(i) The system is never ergodic when ϕ′(1) = ∞.
(ii) When ϕ′(1) < ∞, the system is ergodic if, and only if,

α

λ
≤

∞∑

k=1

∞∑

j=0

A j+k
 j

A j
, (3.16)

where the r.h.s. of the inequation above may be infinite.

It is interesting to note a few not so intuitive facts related to (3.16): first, this
condition does not depend on the value of μ, as long as μ > 0 obviously. Second,
the ergodicity range increases when the initial score increases in distribution—that is,
when the 
i ’s increase.

To propose a somehow concrete classification, let us concentrate for the remainder
of this section on the reasonably general set of sequences satisfying, for some strictly
positive constants γ and ν,

• a1 > 0,
• the ai ’s form an increasing sequence,
• ai = 1 − γ i−ν + O(

i−ν−1
)
.

The following proposition describes the phase transition phenomenon that occurs
when the parameters vary.

Proposition 3.4 Assume the sequence ai satisfies the above conditions, and that
θ(z) = z. Then,

• if ν > 1, or ν = 1 and γ ≤ 1, the system is always ergodic;
• if ν < 1, or ν = 1 and γ > 1, there is a finite ergodicity bound M if, and only if,∑

j>0 jν+1ϕ j < ∞.
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Proof The first step is to obtain a convenient estimate for An when n is large. Using
the property 0 < a1 < ai < 1, valid for all i , one gets

log An =
n∑

i=1

log ai = −γ

n∑

i=i

i−ν + O(1).

The finiteness of M depends strongly on the properties of the series
∑

An , which
can be deduced from the following estimates.

• If ν > 1, then the Dirichlet series
∑

i≥1 i−ν converges to some positive number,
so that the series

∑
An diverges, and then clearly M = +∞.

• If ν = 1, then An ≈ C1n−γ . When γ ≤ 1,
∑

An still diverges and M = +∞;
conversely, when γ > 1,

1

A j

∞∑

i= j+1

Ai ≈ C2 j,

and M is finite whenever the second moment
∑

j>0 j2ϕ j of the distribution
{ϕk, k ≥ 1} exists.

• If ν < 1, then An = O(e−γ n1−ν
). Using classical techniques (Riemann sums and

integration by parts), one gets

∞∑

i= j+1

e−γ i1−ν ≈
∞∫

j

e−γ x1−ν

dx ≈ jν

γ (1 − ν)
e−γ j1−ν

,

and hence M is finite whenever
∑

j>0 jν+1ϕ j is.

This concludes the proof of the proposition, the results of which will be illustrated in
Sect. 4.5. 
�

3.4 Selecting POIs in terms of their cumulative score distribution

All models considered so far are based on exogenous parameters ai , supposed to
be known and independent of �r(t). Actually, it turns out that most of the compu-
tations remain valid when these parameters are a functional of the state �r(t). We
tackle hereafter such a model, for which ergodicity conditions can be explicitly
obtained.

The selection policies family we are interested in will be expressed as a functional
of the cumulative score distribution. Let

Pi
def= 1

r(1)

i∑

j=1

r j
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be the proportion of POIs with score less of equal to i , and let f be a positive convex
function on [0, 1] such that f (0) = 0, f (1) = 1 and f ′(1) < ∞. Then the prob-
ability of selecting a POI with a score less or equal to i is chosen to be f (Pi ) or,
equivalently,

πi (�r) = f (Pi ) − f (Pi−1). (3.17)

An example of such a policy is given by the following simple algorithm: c > 1
POIs are selected uniformly, and the one with the largest score will be visited. This
model is reminiscent of the queueing model of [10], which proves to be very efficient
in thermodynamical limit. The probability of selecting a POI with score equal to i is
then given by (3.17) when f (x) = xc.

From a formal point of view, we remain in the framework of Sect. 3.2, as it can be
seen just by setting

ai = r(1)

f ′(1)ri

[
f (Pi ) − f (Pi−1)

]
, K = r(1)

f ′(1)
, (3.18)

and remarking that the a′
i s are no more exogenous constants as before. To check they

form an increasing positive sequence bounded by 1, it suffices to note that, since f is
a convex function of x ,

r(1)

ri

[
f (Pi ) − f (Pi−1)

] ≤ f ′(Pi ) ≤ r(1)

ri

[
f (Pi+1) − f (Pi )

] ≤ f ′(1).

While the equations are similar, the situation is nonetheless very different from that
encountered in Sect. 3.2. The model is more difficult to solve, as the πi ’s do not have
a simple expression in terms of the score i , so that a formal solution like (3.11) is not
really usable; however, they can be computed by recurrence, since the normalization
constant r(1) is given by (3.6). As a consequence, the ergodicity condition is easier to
obtain and, interestingly enough, appears to be insensitive to the distributions θ and
ϕ.

Theorem 3.5 Assume that the POIs are visited according to policy (3.17), with f
strictly convex, and therefore 1 < f ′(1) < ∞. Then, according to the definition given
in Sect. 3, the system is ergodic if, and only if,

αθ ′(1)

λϕ′(1)
≤ 1

f ′(1) − 1
.

Proof The recurrence relation (3.7) takes the form

Pn+1 − Pn = α

μr(1)

n−1∑

i=0

(
f (Pn−i ) − f (Pn−i−1)

)
	i + λ

μr(1)

n,
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which by a direct summation yields

Pn+1 = α

μr(1)

n−1∑

i=0

f (Pn−i )	i + λ

μr(1)

n∑

i=1


i , ∀ n ≥ 0. (3.19)

The form (3.19) allows for a direct graphical analysis of the convergence problem,
starting from the following simple facts. Using (3.6) with π = 1, it is straightforward to
check that the non-decreasing sequence defined by (3.19) is bounded by 1. Therefore,
it always converges to a finite value

P∞
def= lim

n→∞ Pn ≤ 1,

that satisfies, by a direct application of the celebrated Toeplitz lemma,

P∞ = α

μr(1)
θ ′(1) f (P∞) + λ

μr(1)
ϕ′(1).

It is actually possible for the sequence to converge to some P∞ < 1 but, f (.) being
a convex function, this can only happen when the slope at the point 1 is greater than
1. This concludes the theorem, since (3.6) implies the equivalence

αθ ′(1)

μr(1)
f ′(1) ≤ 1 ⇐⇒ αθ ′(1)

λϕ′(1)
≤ 1

f ′(1) − 1
.


�

3.5 About transience: herding phenomena

Hereafter, we do not pretend to give exhaustive rigorous proofs of all our claims, which
can rather be viewed as very likely true conjectures, and have been verified by several
numerical simulation runs.

Our concern is to extend Theorem 3.3, when there is no solution to (3.16), i.e.,
when its right-hand side member is finite and α is too large. In fact, it appears that the
system has still a stationary regime, but a finite number of POIs have an infinite score.
This means that, as t → ∞, the selection policy π(�t) becomes defective, namely [see
Eq. (3.1)] when

π < 1.

This implies exactly

πi (�r) = airi∑
j≥1 a jr j + δ

,
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where δ is a positive constant representing the proportion of POIs going to infinity.
Obviously, δ = 0 when the system is normally ergodic, i.e., no escape of mass to
infinity. By contrast, δ > 0 corresponds to a phase transition with condensation. Then
the consistency Eq. (3.12) must be modified and becomes

1 = λ

α
F

(
α

μK

)
+ δ

K
, (3.20)

which has always a solution (K , δ) by monotonicity with respect to K , remembering
that F(1) < ∞, while F(1 + ε) = ∞,∀ε > 0, and α > λF(1). Equation (3.20) is
not sufficient to determine the two unknowns K and δ. To get a second equation, we
resort to the following heuristic stochastic least action principle, which in our opinion
should be provable in a very general context.

Ansatz 3.6 The least action principle. When a multicomponent irreducible Markov-
ian system ceases to be ergodic, the first component(s) becoming infinite with positive
probability can be identified by continuity with respect to the set of parameters P
defining the system.

This definition, which might look obscure to the reader, can be rephrased by saying
that the phase transition takes place as soon as one touches some regions (hyperplanes
or surfaces) in P . This is for instance the case for the famous Jackson–Kelly stochastic
queueing networks.

Applying this principle leads to say that we are looking for the minimal δ > 0
ensuring the system

�r = lim
t→∞ �r(t)

is no more ergodic, so that some POIs go to infinity. This implies necessarily

α

μK
= 1. (3.21)

Then (3.20) and (3.21) yield at once

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

δ = α − λF(1)

μ
,

π = K − δ

K
= λF(1)

α
< 1,

r(1) = λ

μ
[F(1) + ϕ′(1)].

A possible way to decide analytically when π < 1 would be to design a converging
iterative scheme to solve system (2.2) or (2.6) (see, for example, the polling net-
work analyzed in [2]): this appears to be another interesting, but practically intricate
problem.
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4 Some simple examples and limit cases

For the sake of completeness, we quote hereafter simple peculiar cases, which hope-
fully shed light on some aspects of the behavior of the system.

4.1 No creation of POIs, i.e., λ = 0

In this case, the system is empty at steady state for any Markovian policy. The argument
is elementary, since the vector state �0 is absorbing due to the M/M/∞ character of
the score decreasing process.

4.2 The lower bound α = 0

Here no POI will see any increase of score upon being visited, and hence one gets a
clear lower bound for the model. Solving (3.5) leads to

ri = λ

μ

∑

k≥i

ϕk, r(1) = λϕ′(1)

μ
, r ′(1) = λ

[
ϕ′′(1) + 2ϕ′(1)

]

2μ
.

Consequently, when α �= 0, we have the following bound, valid for any point selection
scheme (i.e. policy) π ,

r ′(1) ≥ λ
[
ϕ′′(1) + 2ϕ′(1)

]

2μ
,

and therefore the mean score r ′(1)/r(1) of a POI can be finite only when ϕ′′(1) is
finite. This leads to some unintuitive behavior, since it was shown in Proposition 3.4
that having ϕ′′(1) = ∞ can at the same time make the system always ergodic.

4.3 Score independent visits

When the POIs are visited uniformly regardless of their score, which amounts to the
choice

πi (�r) = ri∑
i≥1 ri

,

we have π(z) = r(z)/r(1). Then Eq. (3.5) allows us to derive immediately the corre-
sponding generating function, which takes the compact explicit form

r(z) = λr(1)(ϕ(z) − 1)

α(1 − θ(z)) + μr(1)(1 − z−1)
,

where, for λ �= 0,
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r(1) = αθ ′(1) + λϕ′(1)

μ
,

and one can check the denominator of r(z) does not vanish for |z| < 1. Moreover, r(1)

is clearly finite and given by Eq. (3.6). So, we have obtained a unique function r(z)
analytic in the unit disc and continuous for |z| = 1. Consequently the system admits of
a unique limit invariant measure {ri , i ≥ 1} for any value of the parameters. Intuitively,
this is due to the fact that the decrease rate of the scores is somehow proportional to
the number of points, like in a M/M/∞ queue. But, when the selection process favors
heavily enough the POIs having a big score, proper ergodicity conditions appear, as
in the models analyzed in Sect. 3.2.

4.4 An unstable model with a score dependent policy

A policy that may seem attractive at first sight is to give to each POI a weight propor-
tional to its score

πi (�r) = iri∑
i≥1 iri

,

so that π(z) = zr ′(z)/r ′(1) and (3.5) becomes a differential equation

α [1 − θ(z)]
zr ′(z)
r ′(1)

+ μ[1 − z−1]r(z) = λ[ϕ(z) − 1].

However, the weight ai = i given to the score i is unbounded, and from Proposi-
tion 3.2 we conclude that no choice of parameters can lead to a stable system under
this policy. More precisely, there exists at least one POI having an infinite score.

4.5 A case study of Proposition 3.4

Assuming the conditions of Proposition 3.4 hold, let us take in addition ϕ(z) = z and,
for some γ > 0,

ai =
( i

i + 1

)γ

.

This implies Ak = 1/(k + 1)γ and therefore (3.11–3.12) become

rk+1 = λ

μ

1

(k + 1)γ

(μK

α

)k
,

α

λ
= F(x) =

∞∑

k=1

Ak xk = 
(x, γ, 1) − 1,

where 
 stands for the classical Lerch function [5, formula 9.550]
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Fig. 1 Expected score of POIs per player r ′(1) as a function of the visit rate α. The parameters λ = μ = 3
remain fixed


(x, γ, v)
def=

∞∑

k=0

xk

(k + v)γ
.

When ϕ(z) = z, the computation of the expected score of POIs per player r ′(1) is
easy:

r ′(1) =
∞∑

k=1

krk =
∞∑

k=1

λ

μ

∞∑

k=1

k Ak

( α

μK

)k = λ

μ

α

μK
F ′( α

μK

)
.

The above formulas allow us to represent the expected score per player as a function
of α in a parametric way, by letting x vary from 0 to 1 (Fig. 1). As expected from the
theoretical results obtained above, 3 different situations prevail:

• γ ≤ 1: the system is always ergodic (dashed curves);
• 1 < γ ≤ 2: there is an explicit ergodicity condition on α, and r ′(1) tends to infinity

at the boundary;
• γ > 2: there is an explicit ergodicity condition on α, but r ′(1) remains bounded.

5 Miscellaneous outcomes and open problems

The next three paragraphs present briefly some ideas and mathematical questions
concerning the general model.

5.1 General approach via an integral equation

Consider the situation of Sect. 3.2, and let a(z)
def= ∑

j≥1 a j z j . Denote the respective
convergence radii of r(·) and a(·) by ρr and ρa . Then, by Hadamard’s multiplication
theorem [8] and definition (3.8), we can write
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π(z) = 1

2iπ K

∫

L
r(w)a

( z

w

) dw

w
,

where L stands for a circle of radius ρ, centered at the origin, such that |z|/ρa < ρ <

ρr . This yields the non-linear integral equation

μr(z)

z
= α[1 − θ(z)]

2iπ K (1 − z)

∫

L
r(w)a

( z

w

) dw

w
+ λ(1 − ϕ(z))

1 − z
. (5.1)

Methods of solution of (5.1) (e.g. via boundary value problem or Fredholm integral
equation) depend heavily on the explicit form of a(·). Alas, tractable explicit expres-
sions can hardly be derived (nor expected!), even when a(·) is a polynomial.

5.2 General approach via a matrix form solution

The problem becomes more intricate when θ(z) is an arbitrary probability generating
function with ϕ′(1) < ∞. Then the following approach, based on the recursion (3.9),
involves infinite matrices and seems to be computationally quite acceptable. We sketch
hereafter its main lines.

Clearly, Eq. (3.9) can be rewritten in the vector form

�Un+1 = Mn

( α

μK

) �Un + λ

μ
�Vn+1, (5.2)

where

• �Un is the n-column vector [rnrn−1 . . . r1]T , where T denotes the transpose opera-
tion;

• �Vn is the n-column vector [
n−1, 0, . . . , 0]T ;
• Mn(x) is a (n + 1) × n matrix for all x > 0. Its first row is the vector x �Bn , where

�Bn denotes the row vector

[an	0, an−1	1, . . . , a1	n−1],

and the remaining internal matrix is exactly the n × n identity matrix denoted by
In .

By direct algebra, the solution takes the form

�Un+1 = λ

μ

n+1∑

i=1

Qn,i

( α

μK

) �Vi , n ≥ 0, (5.3)

where
{

Qn,i (x) = Mn(x)Mn−1(x) . . . Mi (x), i ≤ n,

Qn,n+1(x)
def= In+1.
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The next step is to carry out the scalar product of (5.3) with the row vector

�An+1
def= [an+1, . . . , a1],

and then to let n → ∞. Keeping in mind that K = ∑
i≥1 airi , we get the following

final relationship, which is formally similar to the one given by (3.12),

α

λ
= α

μK

∞∑

n=0

n+1∑

i=1

�An+1 Q̃n,i

( α

μK

) �Vi . (5.4)

From the definition of Mn , each term of the double sum in (5.4) is clearly a decreasing
scalar function of K . Hence, ergodicity conditions could be obtained along the same
lines as in Theorem 3.3, by analyzing the series in the right-hand side member of (5.4).

5.3 The case θ ′(1).ϕ′(1) = ∞

When either θ ′(1) or ϕ′(1) are infinite, we are a priori facing a transient phenomenon
as r(1) = ∞. However, the system can have an interesting behavior provided that
K = ∑

i≥1 airi < ∞, which yields necessarily

lim inf
i→∞ ai = 0,

but this would correspond to a non-herding system, which is an other story, although
most of the mathematical arguments presented in Sect. 3 could be readily applied.
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Appendix: Generators, cores and weak convergence

Here we quote the material necessary for the proof of Theorem 2.2. The results are
borrowed from [3].

Theorem 6.1 If O is the generator of a strongly continuous semigroup {T (t)} on L,
then its domain D(O) is dense in L and O is closed.

Definition 6.2 [3, p. 17] Let O be a closed linear operator with domain D(O). A
subspace S of D(O) is said to be a core for O if the closure of the restriction of O to
S is equal to O, i.e., if O|S = O.

The next proposition is an important criterion to characterize a core.

Theorem 6.3 [3, p. 17] Let O be the generator of a strongly continuous contraction
semigroup {T (t)} on L. Let D0 and D be dense subspaces of L with D0 ⊂ D ⊂ D(O).
If T (t) : D0 → D for all t ≥ 0, then D is a core for O.

The proof of Theorem 2.1 relies heavily on the next general proposition.
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Theorem 6.4 [3, Theorem 6.1, p. 28] In addition to L, let Lk, k ≥ 1, be a sequence
of Banach spaces, �k : L → Lk be a bounded linear transformation, subject to
the constraint supk ‖�k‖ < ∞. Let also {Tk(t)} and {T (t)} be strongly continuous
contraction semigroups on Lk and L with generators Ok and O. We write fk → f to
mean exactly

f ∈ L, fk ∈ Lk for k ≥ 1, and lim
k→∞ ‖ fk − �k f ‖ = 0.

Then, if D is a core for O, the following are equivalent:

(a) For each f ∈ L, Tk(t)�k f → T (t) f for all t ≥ 0, uniformly on bounded
intervals.

(b) For each f ∈ L, Tk(t)�k f → T (t) f for all t ≥ 0.
(c) For each f ∈ D, there exists fk ∈ D(Ok) for each k ≥ 1, such that fk → f and

Ok fk → O f .

References

1. Cartan, H.: Cours de calcul différentiel. Collection Méthodes. Hermann, Paris (1997)
2. Delcoigne, F., Fayolle, G.: Thermodynamical limit and propagation of chaos in polling systems. Markov

Process. Relat. Fields 5(1), 89–124 (1999)
3. Ethier, S.N., Kurtz, T.G.: Markov Processes Characterization and Convergence Wiley Series in Prob-

ability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, New York (1986)
4. Fuchs, B.A., Levin, V.I.: Functions of a Complex Variable and Some of Their Applications, vol. II.

Pergamon Press, London (Translated by J. Berry; edited by T. Kövari) (1961)
5. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Academic Press,

New York (2007)
6. Ince, E.L.: Ordinary Differential Equations. Dover Publications, New York (1956)
7. Ma Micro Planète. http://www.ludigo.net/index.php?rub=3&ssrub=3, (2011). (in French) Accessed

21 May 2013
8. Titchmarsh, E.C.: The Theory of Function, 2nd edn. Oxford University Press, Oxford (1939)
9. Veeraraghavan, S., Debo, L.: Joining longer queues: information externalities in queue choice. Manuf.

Serv. Oper. Manag. 11, 543–562 (2009)
10. Vvedenskaya, N.D., Dobrushin, R.L., Karpelevich, F.I.: A queueing system with a choice of the shorter

of two queues–an asymptotic approach. Probl. Peredachi Inform. 32(1), 20–34 (1996)

123

http://www.ludigo.net/index.php?rub=3&ssrub=3

	Modeling a case of herding behavior in a multi-player game
	Abstract
	1 Description of the basic model
	2 The thermodynamical limit
	2.1 Notation
	2.2 The main limit theorem
	2.3 Some analytic facts

	3 System behavior as t->oo
	3.1 Global conservation equations
	3.2 Selection of POIs according to their scores
	3.3 When scores of selected POIs are exactly increased by one
	3.4 Selecting POIs in terms of their cumulative score distribution
	3.5 About transience: herding phenomena

	4 Some simple examples and limit cases
	4.1 No creation of POIs, i.e., lambda=0
	4.2 The lower bound alpha=0
	4.3 Score independent visits
	4.4 An unstable model with a score dependent policy
	4.5 A case study of Proposition 3.4

	5 Miscellaneous outcomes and open problems
	5.1 General approach via an integral equation
	5.2 General approach via a matrix form solution
	5.3 The case theta'(1)phi'(1)=oo

	Acknowledgments
	Appendix: Generators, cores and weak convergence
	References


