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Two problems
Compressed sensing Discrete tomography
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Compressed sensing



State of the art in CS

• Incoherent samplings (i.e. a random matrix F)

• Reconstruction by minimizing the L1 norm
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Candès & Tao (2005)
Donoho and Tanner (2005)



State of the art in CS
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The performance of the algorithm for a given distribution 
of signals can be analyzed using a method knows as density 

evolution (coding theory) or replica method (physics)

Analysis of the BP/TAP algorithm
(Also known as AMP in compressed sensing, Montanari et al.)

Rigourous 
Bayati and Montanari
Lelarge and Montanari
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• Maximum is at E=0 (as long as α>ρ0): Equilibrium behavior dominated by the original signal 
• For α<0.58, a secondary maximum appears (meta-stable state): spinodal point
• A steepest ascent dynamics starting from large E would reach the signal for α>0.58, but 
would stay block in the meta-stable state for α<0.58, even if the true equilibrium is at E=0.
• Similarity with supercooled liquids
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Spinodal line

A steepest ascent of the free entropy allows  
a perfect reconstruction until the spinodal line. 

This is more efficient than L1-minimization 

Computing the Phase Diagram
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The limit depends on the type of signal 
(while the Donoho-Tanner is universal)
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A more complex signal

BP
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Our work

• A probabilistic approach to reconstruction 

• The Belief Propagation algorithm

• Seeded measurements matrices

A statistical physics approach 
to compressed sensing



The dynamics is stuck in a metastable state, just as 
a liquid cooled too fast remains in a supercooled 

liquid state instead of crystalizing

This is good, but not good enough
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The dynamics is stuck in a metastable state, just as 
a liquid cooled too fast remains in a supercooled 

liquid state instead of crystalizing

This is good, but not good enough
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By nucleation!

Special design of 
“seeded” matrices



Mixed “mean-field” and 
one-dimensional system:

sub-
system
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A construction inspired by the 
“spatially coupled matrices”
developed in coding theory

cf: Urbanke et al.



Mixed “mean-field” and 
one-dimensional system:

2) Add a first neighbor coupling
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Mixed “mean-field” and 
one-dimensional system:

3) Choose parameters such that the first 
system is in the region of the phase 

diagram where there is no metastability 
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Mixed “mean-field” and 
one-dimensional system:

4) The solution will appear in the first 
sub-system (with large α), and then 

propagate in the system
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M such that the solution arise 
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... and then propagate in the 
whole system!
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Analytical results for seeding matrices
•One can repeat the replica/density evolution analysis for the 
seeded matrices, and the performance of the algorithm can be 
studied analytically, leading to α>ρ in the large N limit:            

•A special case (zero of vanishing noise, and with prior matching 
the signal) have been recently confirmed by a rigorous analysis by 
Donoho, Montanari and Javanmard   (arXiv:1112.0708)

Asymptotically optimal measurements

•But note that the analysis of the density evolution shows that our 
construction works even when the prior is not the correct one, 
and also with large noise (although with noise the performances 
depend on the prior)



Many way to design seeding matrices
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A signal with α=0.5 and ρ=0.4
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Conclusions...
• Probabilistic approach to reconstruction in compressed sensing...

• ... with a Belief Propagation algorithm.

• Seeded measurements matrices allows to perform optimally

... and perspectives:
• More information in the prior ? Calibration noise, additive noise, 

approximated-sparsity, structure sparsity, etc... ? 

• Dictionary learning? Sparse PCA? Fast data compression?        
Quantum tomography? Group testing? etc...



Discrete Tomography



X-ray computed tomography



X-ray computed tomography
The  reconstruction problem

Distance

Angle



Radon and inverse Radon Transform

Direct

Inverse

Works well, but need the knowledge of all possible projections!



Algebraic methods: 
Inverting the matrix!

Can one reconstruct when M (number of measurements)
is smaller than N (number of “pixel”) ?



Discrete tomography

1) The image take discrete values: discrete tomography
2) Interfaces are rare



The problem:
Example with two angles

In general: NP-hard problem for 3 angles and more
☞Popular game known as PICROSS 



Our work
A probabilistic approach 

to X-ray tomography
}

Prior on the images
}

Solution of 
the linear system
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BP for Discrete Tomography

Pixels:
Si=±1

1 constraint
by projection

... and take care of the first-neighboring interaction

Fix the sum of the spins for a given projection ...



BP for Discrete Tomography
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BP for Discrete Tomography
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2L operations!
☞Intractable



In each constraint: BP in BP!
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All the spin involved in one
given constraints are just 

neighboring spins on a line

One needs to estimates the 
marginal of variables on a one-
dimension chain in random field

Use BP!



In each constraint: BP in BP!
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Replace the delta by a 
Lagrange multiplier (magnetic field)

Find H such that the delta constraint is satisfied
(by Dichotomy or using Newton method)



BP at works...

14 angles30 angles 17 angles

Fast, and need for only few projections



Robust to noise!

Original BP
Continuous

+Total Variation

Adding a noise to the projections

From 6 angles...

(i.e. LASSO-type problem)



Conclusions...
• Probabilistic approach to reconstruction in tomography...

• ... with a Belief Propagation algorithm

• 1d ising model (BP in BP) 

... and perspectives:
• Q-state and continuous tomographic reconstruction?

• Multi-scale approach?

• Generic message: LASSO type problem are often better to be 
replace by a probabilistic approach with a BP algorithm.

• ☞Toward Applications!
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