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INTRODUCTION

® Calculating mean values and covariances in Markov random fields (MRFs)
is generally NP-hard problem.

® Belief propagations (BPs) are one of the most well-known approximate
methods on MRFs.

® Combining BPs with linear response methods leads to susceptibility
propagations (SusPs) that can give approximate values of covariances

with a high degree of accuracy.
(K. Tanaka, 2003; M. Welling & Y. W. The, 2004; M. Mézard & T. Mora, 2009)
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Aim of This Presentation

» Susceptibility propagations are techniques to compute approximate
covariances on Markov random fields using belief propagations
and linear response methods.

> In this presentation, | develop a scheme of susceptibility
propagations using concepts of a variance matching technique.



Susceptibility Propagation

On a given undirected graph G(V, E),

we define a graphical model (an Ising model) expressed by

P(S|hJ)= ( exp(Zh ZJUS,SJ] S e{+1,-1}'
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The derivatives of the free energy give statistical quantities of the MRF:
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Belief Propagation (1)

| introduce a Belief propagation by a Bethe free energy.

Bethe Free Energy _ _ _
o(i) : set of nodes connecting to node 1.
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where

& =coth(2J; )(1—\/1—(1— m? —m?)tanh(2J; ) - 2mm, tanh(2J, ))

Bethe Approximation

The true free energy is approximated by minimizing the Bethe free energy

W.r.t. m.
F(h,J)=minF;(m,h,J)



Belief Propagation (2)

The minimum condition of the Bethe free energy is equivalent to
a message-passing rule (equations of effective fields) of BP.

Message-Passing Rule

Mi%j:tanh1(tanh(Jij)tanh(hi+ > MHB

keo(i)\{ j}

Using the messages satisfying the message-passing rule,
we obtain m that minimize the Bethe free energy as follows:

rﬁiztanh(hi+2|\/|j_)ij where ~ M:=argminF;(m,h,J).

jea(i)

The quantities m given by these relations are approximations of the mean values:
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Susceptibility Propagation (1)

| define the covariant matrix by

Zs (S|hJ) (ZS:SiP(S|h,J)j(ZS:SjP(S|h,J)j.

These quantities are sometime called susceptibilities.

Linear Response Relation

We approximate the susceptibilities using the Bethe free energy:

o°F (h,J) o°
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The SusP is a message-passing algorithm to compute ; =0, /oh; .



Susceptibility Propagation (2)

Message-Passing Rule of SusP

After the BP, we compute the following message-passing:

Slnh<2~]”)(5|k+2|ea(l)\ 77'*"()
cosh(2J, )+cosh(2h +2)

sk = ,
lea(i)\{ Hi)

where 77,_,;, =0M, /oh .
Above equations are closed w.r.t. the approximate susceptibilities }Ei,--

The computational complexity of the SusP is O(I\/||E|)

( with synchronous updating rule )



Susceptibility Propagation (3)

Summary of SusP
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Advanced Susceptibility Propagation

Extended Bethe Free Energy

If A; > 0, this additive term corresponds to the L, regularization.
Extended BP

The additive term changes the message-passing rule in the BP as

I\'/VIHJ.:tanh1£tanh(Jij)tanh£hi—Airﬁi+ > Mkﬁij}

ked(i)\{ )

I :tanh[hi —Am; + _;(_)Mj—ﬂ] where m:=argminF; (m,h,J,A).
Jeoll m
For a given A, these equations are closed.
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Advanced Susceptibility Propagation (2)

Extended SusP

The additive term changes the message-passing rule in the SusP as

~ 1_mi2 ~
Xij = - (5.] + Z 77k—>j,i)’

1+ A, (l— m. ) keo(i)

smh(ZJU)(é ~ AT+ Do, n,%i,k)
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led(i)\{] Hi)

where Z; =0m /oh. and 7., =0M,,, /éh,.
For a given A, above message-passing rules are closed.

The computational complexity of the extended SusP
Is the same as the original SusP.

How to determine suitable values of A ? o



Advanced Susceptibility Propagation (3)

Variance Matching

On binary MRFs, the relations

Xi +(§S:sip(s | h,.J)T =Y SP(S|hJ)=1

S
are always hold.

However, the SusP no longer keeps the consistencies due to approximation.
(M. Yasuda & K. Tanaka, 2007)

We determine values of A so as to satisfy the relations that are trivially
hold on binary MRFs, say, match true variances and variances obtained

through the SusP. _ :
J Variance Matching !

This requirement corresponds to the conditions : y:: + r’ﬁf =1.

1_m2 Z 77j—>i,i'
i Jeo(i)

This conditions hold by setting 1
A =
|
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Algorithm of Advanced Susceptibility Propagation
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Overview of Advanced Susceptibility Propagation

Advanced Susceptibility
Propagation (A-SusP)

Susceptibility Propagation

Belief Propagation ™ Variance Matching

The SusP and the A-SusP have the same computational cost.

The variance matching technique introduced here is known as the diagonal trick
method in learning in inverse Ising problems.
(H. J. Kappen & F. B. Rodriguez, 1998; T. Tanaka, 1998; M. Yasuda & K. Tanaka, 2009)

If one employs the naive mean-field free energy instead of the Bethe free energy,
the present framework gives the adaptive TAP equation (M. Opper & O. Winther, 2001).

The A-SusP is interpreted as an extension of the adaptive TAP approach.
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Numerical Experiment (1)

Consider systems on the 4 X 4 square grid. ]

The parameters h; and J;; are independently drawn from ]
distributions N (0, 0.12) and N ( 0, J 2), respectively . B A
N (a, b) : Gaussian with mean a and variance b. — — —
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Numerical Experiment (2)

Next, consider systems on the fully-connected graph with 16 vertices.

The parameters h; and J;; are independently drawn from
distributions N (0, 0.12) and N (0, J 2/ n), respectively .
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CONCLUSION

We have proposed the improved SusP algorithm.
The new SusP has the same computational cost as the conventional SusP.

Since the A-SusP has a feedback scheme to the BP,
it improves not only covariances but means.

INPUT —> Belief Propagation —><Linear Response)——* OUTPUT

INPUT —> Belief Propagation —>< Linear Response)—v—é OUTPUT

pa—

eedback
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Thank you for your kindly attentions !

Advanced Susceptibility
Propagation

Susceptibility Adaptive
Propagation TAP

Sparse Dense

The proposed method is strong for both dense and sparse systems !
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What are A ?

» The parameters A force <Si2> =Xi —
obtained through susceptibility propagations, to be one.

» The condition for A can be also interpreted as a Hessian matching.

Introduction of Gibbs Free Energy (GFE)

=—>"hS— > 3;8S;, Se{+1,-1)"

iV (iT)<E
G(m )_({ax}}rmm{ZH (S)+ZS:Q(S)InQ(S)—y(ZS:Q(S)—lj
sufpreer)

iev
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iev iev
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Properties of Gibbs Free Energy

» minimum of the GFE is equal to the free energy,

» values of m that minimize the GFE
are equal to exact magnetizations of the original Ising model:

—InZ(h,J)zm”i]nG(m), (S)zargnr]ninG(m).

Approximate Gibbs Free Energy

By using an approximation, for example the Bethe approximation,
we can approximate the exact GFE:

G(m)~ Gy, (M).

And, let us extend the approximate GFE as

Gapp (m A) app ZA m

IeV 21



Hessian Matrices of Gibbs Free Energies

Let us define Hessian matrices of the exact GFE and the approximate
GFE as

6(m)], =28 1 (ma)] =S (A

- om,om; J om,om;

We want to find optimal values of A which make the Hessian matrix of
approximate GFE the best approximation of that of exact GFE:

mAin(distance between G (m) and G, (m,A))

22



A Measure of Similarity of Matrices

Given two (positive definite and symmetric) matrices, A and B, let us measure a
similarity between these matrices, using a Kullback-Leibler divergence (KLD), as

N, (x| A)

D(AIIB):= [No(x | A)in{ (xB)

where N, (x| A) is a multivariate Gaussian

det A 1
N, (X|A):= (2] exp(—E XTAx).

Properties of the KLD

D(A||B)>0, D(A||B)=0 iff A=B.
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Let us regard values of A, which minimize the KLD between the Hessian
matrices, give the best approximation of the Hessian matrix of exact GFE:

mAin(distance between G (m) and G, (m,A))

~min D(G (m)]| Gy (M, A))

The minimum condition of above KLD is equivalent to the condition for
A in the proposed framework.
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