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Abstract: Understanding and improving the effects of combined drug treatments in metastatic colorectal Cancer (mCRC) is a multidisci-
plinary and multiscale problem, that can bene t from a systems biology approach. Although a quite limited number of active drugs have 
been approved for clinical applications, a variety of combined delivery regimen options are actually used in the clinic, so that choosing 
between them, or designing new ones, is not an obvious task, which calls for some rationalization based on physiological principles. We 
propose some physiologically based molecular pharmacokinetics-pharmacodynamics models for the main cytotoxic drugs used in the 
clinic and call for others describing more recently used agents, such as associated with monoclonal antibodies. We also advocate simulta-
neously designing models of the proliferating cell populations under therapeutic control, as cancer is primarily a disruption of physiologi-
cal control on tissue proliferation. These two types of models are based on differential equations to continuously describe both the fate of 
drugs in the organism, from infusion until pharmacological effects, and their impact on the proliferation of cell populations, healthy and 
tumor. The multiscale nature of colorectal cancer, from the disruption of intracellular pathways to tumor growth observed at the macro-
scopic level, together with its frequent multilocal extension by simultaneous metastases in various healthy tissues of the organism at the 
time of diagnosis, and later, call for multiscale mathematical models. We thus propose a multi-level vision of cytotoxic drug use in the 
clinic, in which the weapon in the hands of clinicians, a drug combination regimen, the targets -wanted and unwanted –on which it exerts 
its effects, molecular pathways in proliferating cell populations, and the environment of the latter in a whole organism, are all considered 
in order to design a rationale for appropriate shooting, i.e., treatment optimization under patient-tailored constraints.  
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1. INTRODUCTION 

1.1. Basic Facts on Colorectal Cancer  

 Colorectal cancer was in 2008, far behind lung cancer, the sec-
ond most frequent cause of mortality by cancer, both sexes merged, 
in Europe (12%) and in the Americas (8%), according to the Inter-
national Agency for Research on Cancer of the WHO (source: http: 
//globocan.iarc.fr). Survival rates for patients with colorectal cancer 
are 83.2%, 64.3% and 57.6%, respectively 1, 5 and 10 years after 
diagnosis [1]. 5-year survival rate is 90.1% when the disease is 
discovered at a localized stage whereas it drops to 69.2% when 
metastases in adjacent organs are detected and to 11.7% when the 
cancer has spread to distant organs [1]. Therefore, improving thera-
pies against metastatic colorectal cancer (mCRC) remains nowa-
days a clinical challenge.  

 It is generally estimated that about 95% of colorectal cancers 
are adenocarcinomas, i.e., tumors resulting from uncontrolled 
growth of the glandular tissue of colorectal mucosa. Metastases are 
frequent, hit preferentially the liver, but also frequently the lung and 
the peritoneum. They may reveal the cancer, which is then at a 
stage with bad prognosis, requiring extended courses of chemother-
apy, prior to any surgical resection when these metastases are nu-
merous or adherent to vital parts of organs [1]. Therefore, physio-
logically based mathematical models designed to optimize treat-
ments against mCRC may take into account the disseminated char-
acter of cancer cell populations, which are often located in a healthy 
cell environment that will also be exposed to administered antican-
cer drugs.  

1.2. A Whole-body Multi-scale Disease  

 Cancer in general and mCRC in particular may be primarily 
characterized by a loss of physiological control on cell proliferation  
 

*Address correspondence to this author at the UPMC Laboratoire Jacques-
Louis Lions, UMR 7598, Boite courrier 187, 75252 Paris Cedex 05, France; 
Tel: +33 1 44 27 91 70; Fax: +33 1 44 27 72 00;  
E-mails: annabelle.ballesta@inria.fr; ean.clairambault@inria.fr 

and survival, and secondarily by a propensity of tumor cells to in-
vade surrounding tissues [2]. Drugs addressing the invasive poten-
tial of tumor cells (inhibitors of extracellular matrix digesting prote-
inases) having thus far proved disappointing [3], it is mainly on the 
replicative potential of tumor cells that act the few drugs that have 
been recognized as active on mCRC. These drugs act by slowing 
down or arresting the cell division cycle, which is the universal 
process by which a cell, healthy or cancer, becomes two. This cell 
cycle arrest may then lead to cell apoptosis [4].  

 It is thus appealing to search for intracellular signaling path-
ways that are essential for the cell proliferation and survival, and 
more precisely for key steps in these pathways so-called ’druggable 
targets’. Nevertheless, such pathways are likely to be modi ed in 
cancer cells which are characterized by a high ability to adapt to 
unfavorable environments. As a consequence, drug activity may be 
different in normal tissues compared to tumor ones which may lead 
to treatment-limiting side effects at the level of the whole organism. 
The search for druggable targets, interesting as it may seem, must 
thus be considered by the effects on the different cell populations 
that are actually hit by the drugs. Indeed, simultaneous study of the 
patient’s tumor and healthy tissues may allow the identi cation of 
determinant mutations or molecular differences which could then 
be exploited in the optimization of healthy and cancer cells speci c 
response to treatments.  

 However, intracellular mathematical models need to be linked 
to tissue level models in order to measure therapeutic effects on 
proliferation, as proliferation can only be considered at the level of 
a cell population. Hence the natural idea to consider models of the 
cell division cycle in proliferating cell populations, healthy and 
cancer. A physiological representation of the cell cycle, with ex-
plicit mention of cell cycle phases (G0-G1/S/G2/M), may be re-
quired if the drugs of interest are phase-speci c. Finally, therapeutic 
optimization may imply to take into account efficacy together with 
all induced toxicities at the level of the organism. This may be per-
formed by the use of whole-body physiologically based mathemati-
cal models in which compartments represent the simulated organs. 
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The liver is often modeled for its major part in drug metabolism, as 
well as the healthy cell populations which constitute the main toxic-
ity targets, and the tumor, to assess drug efficacy.  

1.3. Approved Chemotherapy Regimens Against mCRC  

 Nowadays, three cytotoxic drugs have been approved by the US 
Food and Drug Association (FDA) for chemotherapy against 
mCRC: 5-Fluorouracil (5-FU), oxaliplatin (l-OHP), and irinotecan 
(CPT11). 5-FU has been administered to mCRC patients since 1957 
and still remains the main component of current therapeutic strate-
gies. For long, 5-FU monotherapy was the sole effective treatment 
against mCRC, increasing the median overall patient’s survival to 
approximately 12 months, compared with 4-6 months with pallia-
tive care [5]. Its association with folinic acid, also known as leuco-
vorin (LV) ampli es 5-FU activity which results in increased re-
sponse rates and patient overall survival [5]. Moreover, prolonged 
continuous exposure to 5-FU, which was made possible by indwell-
ing central venous catheters and the use of infusion devices 
achieved better response rates and lower toxicities compared with 
daily bolus [6]. The oral prodrug of 5-FU, capecitabine, was ap-
proved by the FDA for the treatment of mCRC in 1998. It is con-
verted to its active metabolite by three different enzymes, including 
thymidylate phosphorylase which tends to be more expressed in 
tumors than in normal tissues. Thus, capecitabine may induce lower 
toxic effects than 5-FU bolus [7]. However, the advantage of oral 

uoropyridimines compared with 5-FU infusion is still under study 
[8].  

 In the early 2000s, 5-FU associated to LV was combined to 
newly-approved anticancer drugs: oxaliplatin (FOLFOX regimen) 
or CPT11 (FOLFIRI regimen). Exposure to both FOLFOX and 
FOLFIRI, irrespective of their sequence, further increased patients 
overall survival. Indeed, survival rates have risen from 35% at 5 
years in the 1980-1994 period to 57% in 2001 [7]. The regimen 
combining all three drugs (FOLFOXIRI) achieved superior re-
sponse rate and survival compared with FOLFIRI but induced se-
vere toxicities which advocate for patient selection [5]. Meta-
analysis of clinical trials do not conclude rmly on any global guid-
ance concerning optimal chemotherapy cycle durations and optimal 
drug infusion schemes, which opens the way for personalized 
medicine [5, 8, 9].  

 The three above-mentioned cytotoxic drugs may be combined 
to targeted monoclonal antibody therapies in the treatment of 
mCRC. Cetuximab is a monoclonal antibody (mAb) against Epi-
dermal Growth Factor Receptor (EGFR) which binds to the ex-
tracellular receptor and induces its internalization thus reducing cell 
proliferation rate [10, 11]. Cetuximab use in combination with ei-
ther FOLFOX or FOLFIRI is advised in patients who are Kirsten 
rat sarcoma gene (KRAS) wild-type. Indeed, two independent ran-
domized clinical trials demonstrated a signi cant improvement in 
response rate and progression-free survival with cetuximab-
FOLFIRI or cetuximab-FOLFOX compared with FOLFIRI or 
FOLFOX alone [12, 13]. Panitumumab is a human immuno-
globulinG2 mAb against EGFR with proven clinical activity in 
KRAS wild-type metastatic colorectal carcinoma. Its combination 
with chemotherapy regimen is being further evaluated in phase III 
trials [7, 14].  

 Bevacizumab is a mAb which targets Vascular Endothelial 
Growth Factor (VEGF), one of the most important pro-angiogenic 
proteins [15]. Several clinical trials have demonstrated that its com-
bination with cytotoxic drug regimens may increase patient survival 
compared with the sole administration of standard chemotherapy. 
More recently, the FDA approved the angiogenesis inhibitor ziv-
a ibercept for use in combination with FOLFIRI regimen to treat 
adults with mCRC whose tumors are resistant to oxaliplatin-
containing chemotherapy regimen.  

 

 A current clinical challenge lays in the resistance to chemother-
apy against mCRC which may appear over time due to drug-
induced adaptation of cancer cells [7]. Molecular mechanisms of 
chemoresistance can involve drug uptake when in ux transporter 
amount is decreased, or drug export when cancer cells increase the 
activity level of their efflux pumps (ATP-Binding Cassette trans-
porters). Expression of enzymes responsible for drug metaboliza-
tion/activation or inactivation can also be decreased or enhanced to 
allow cell resistance. Resistance mechanisms can also involve a 
decrease in molecular target levels. Finally, cancer cell may en-
hance DNA repair mechanisms or inhibit the apoptotic machinery 
by overexpressing anti-apoptotic proteins or repressing expression 
of pro-apoptotic ones [7].  

2. MATHEMATICAL MODELS: PROLIFERATION OF 

CELL POPULATIONS AND FATE OF DRUGS IN THE OR-

GANISM 

2.1. Mechanistic VS. Phenomenological Mathematical Modeling  

 Representing proliferation in cell populations may be done 
using a global model of the general form dN/dt = {birth(N) death 
(N)}.N, where ‘birth minus death’ is the proliferation rate of the 
population of size N, as proposed in simple population dynamics 
models (e.g., [16–18] and many others). But it is then impossible in 
such a global (phenomenological) setting to have access to different 
molecular mechanisms of control that can be exerted on apoptosis, 
on cell cycle transition blockade (in particular as performed by the 
protein p53 and cyclin dependent kinase inhibitors), or on slowing 
down the cell cycle in the G1 -phase by cytostatic drugs for in-
stance. In the same way, to try and understand what the synergies 
between drugs in anticancer treatments are, and how they can be 
optimized, one can take advantage of molecular representations of 
the modes of action of the drugs, when they are known. In this 
sense, a model will also be said to be physiological (or mechanistic) 
by opposition to a non molecular one, in which coarser statistical 
characterizations by linear and bilinear (in the case of interactions) 
effects will be used. This goes also for population models of PK-
PD, in which characterizations of drug responses are based on sta-
tistical measurements of global drug effects in populations of pa-
tients (in particular for drug associations), without taking any ac-
count of molecular considerations.  

 We advocate here (and elsewhere, see e.g., [19, 20]) the use of 
molecular representations of the action of drugs as physiological 
bases for treatment optimization (Fig. 1). Drugs with different mo-
lecular targets can thus be studied as outputs of chains of chemical 
reactions, and their delivery regimens in combinations at the whole 
organism level can be varied and optimized. Indeed, current clinical 
chemotherapy against mCRC involves combinations of several 
drugs which have different mechanisms of action on intracellular 
targets in proliferating cell populations, all of which impact the 
division cycle. By representing the effects of drugs on these physio-
logical targets, with their consequences on proliferation of the cell 
population, it is theoretically possible, by tuning their delivery in 
time, to obtain the best possible therapeutic results and thus to de-
sign optimized drug infusion schemes to be implemented into pro-
grammable devices in the clinic.  

 Furthermore, such physiological representations by molecular 
PK-PD and cell population dynamic models clearly involve 
identi cation of parameters (such as enzyme kinetics of drug me-
tabolism) of these dynamical systems to allow for predictions of 
therapeutic outputs. This is a non trivial problem, which often can 
be solved only for simpli ed forms of the models at stake, by mak-
ing use of appropriate biomarkers, not easily found. But when it is 
solved, such parameters will give access to physiological charac-
terization of the drug response mechanisms in a given patient and 
will then allow for anticancer therapy personalization on physio- 
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Fig. (1). Theoretical framework to optimize drug administration. 
 

logical, rather than phenomenological and statistical, grounds. Be-
ing thus able to ‘pro le’ a patient from physiologically relevant 
characteristics at the level of his/her organism, involving cell popu-
lation pharmacodynamics as well as blood and tissue PK, popula-
tion PK-PD can then be developed in populations of patients on the 
basis of such physiological characteristics, that go beyond pharma-
cogenomic typing, as exposed in a recent review article [21].  

2.2. Models of Intracellular Pathways Involved in Cell Prolif-
eration and Survival  

 In order to optimize cell response to treatment it is rst neces-
sary to accurately model the intracellular mechanisms that occur in 
the absence of drugs, drug effect being added as a second step. 
Intracellular pathways of interest consist in the ones targeted by the 
considered drugs. In the case of anticancer drugs approved against 
mCRC, one should focus on gene networks involved in cell prolif-
eration and survival.  

 First, the p53 protein is known to have a central role in cell 
response to cytotoxic insults. When DNA damage is detected, p53 
blocks the cell cycle, triggers DNA repair mechanisms and/or 
launches apoptosis. Simplest mathematical models of p53 regula-
tion represent the negative feedback that the protein Mdm2 exerts 
on p53 expression [22, 23]. Another class of models takes into ac-
count the spatial organization of the cell and shows that oscillations 
in the p53-Mdm2 network can be achieved by considering the loca-
tion of biological processes [24-26]. The same authors further de-
tailed spatial components including both a nuclear membrane and 
the structure of cytosolic microtubules which resulted in even more 
robust oscillators [25, 27].  

 The mammalian cell cycle is the phenomenon by which a cell 
becomes 2. It is composed of 4 successive phases: Gap 1 (G1), 
Synthesis (S), Gap 2 (G2) and Mitosis (M). It results from underly-
ing intracellular gene networks organized in negative and positive 
feedback loops. Sequential activation of different cyclin/Cdk com-
plexes controls the successive phases of the cell cycle. Several theo-
retical models of portions or entire mammalian cell cycle have been 
proposed and are all based on nonlinear ordinary differential equa-
tions (ODEs) [28-31]. They intend to better understand the structure 
of the gene network and its response to gene knock-outs and drug-
induced perturbations.  

 Finally, several published works propose mathematical model-
ing of apoptosis that is the phenomena by which a cell triggers its 
own death. Some of them model all pathways to apoptosis from the 

apoptotic stimulus to the actual cell death [32–34]. Others focus on 
the nal part that is the caspase cascade leading to apoptosis [35]. 
The mitochondrial pathway of apoptosis is of particular interest 
here as it is often mutated in cancer cells. It has therefore been stud-
ied and modeled in several works [36–40]. They all intend to repre-
sent kinetic reactions between pro-and anti-apoptotic Bcl2 family 
proteins which may lead to mitochondria permeabilization and 
subsequent release of their content into the cytosol that would even-
tually trigger cell apoptosis.  

2.3. Mechanistic Cell Population Models  

 Mathematical models of molecular pathways may then be 
linked to tissue level models in order to describe the in uence of 
intracellular reactions on the cell population behavior. Mechanistic 
cell population model types range from cellular automata to ordi-
nary and partial differential equations.  

 Physiological variability between individual cells can easily be 
represented by stochastic cellular automata models in which cells 
are simulated one by one, as individual agents. So-called individ-
ual-based models (IBMs) are amenable to include any kind of rules 
one puts in the cellular model. However, this kind of computational 
model does not allow mathematical analysis of asymptotic behav-
iors as they rather intend to investigate possible properties of the 
cell population. Alarcon et al. [41] used a cellular automaton model 
to represent tumor growth in a vascular environment, opening the 
way to the possible representation of anti-angiogenic therapies. 
Jagiella et al. also designed an IBM to study cancer cell population 
dynamics and assumed that cell entry into the cell cycle is governed 
by a phenomenological function which depends on glucose and 
oxygen extracellular concentrations [42]. Altinok and Goldbeter 
developed a cellular automaton in which cell cycle phases are ex-
plicitly represented [43–45]. Indeed, transitions between phases of 
the cell cycle are assumed to respect some prescribed rules. For 
instance, each phase is characterized by a mean duration associated 
to an inter-cell variability within the cell population.  

 Then, the simplest continuous models to represent cell popula-
tion behavior over time are based on ordinary differential equations 
(ODEs). Basic ODE models for cancer growth are primarily the 
exponential, the logistic, and the Gompertz models, which have 
been studied in numerous works (see [46] for a review). However, 
these models consider a sole cancer cell population whereas it may 
be relevant to consider several populations to account for tumor 
heterogeneity. For instance, in [47, 48], authors assumed several 
tumor cell subpopulations characterized by their sensitivity to che-
motherapy agents. Moreover, distinguishing between tumor and 
healthy cell populations enables to take into account possible side 
effects of treatments [49, 50]. As most anticancer drugs preferen-
tially kill cells in a speci c phase of the cell cycle, ODE-based 
models that integrate two or more compartments representing the 
phases of the cell cycle have been developed (reviewed in [46]).  

 To increase accuracy of cell population modeling, one may 
consider physiological features of cells and in particular cell age in 
the different phases of the cell cycle. To address this issue, physio-
logically structured partial differential equation (PDE) models 
which take as variables time together with the physiological age in 
cell cycle phases have been developed in numerous works [51–54]. 
Asymptotics behaviors of this kind of representations can be stud-
ied when the model is tractable, sometimes resulting in theorems. 
For instance, the McKendrick PDE framework is of particular in-
terest as its asymptotics is governed by a rst eigenvalue , also 
called the Malthus exponent. This means that its solution for large 
times is equivalent to a bounded function times exp( t).  

 To design an even more realistic model of tumor growth, one 
may include modeling of angiogenesis. This type of models allows 
optimizing co-administration of standard chemotherapy drugs and 
anti-angiogenic agents which usually act on endothelial cells thus 
inhibiting vessel formation. Hahnfeldt et al. [16] have represented 
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tumor growth using a Gompertz model in which the carrying capac-
ity K undergoes variations overtime standing for spontaneous, tu-
mor-induced and anti-angiogenic drug-induced effect on blood 
vasculature. In a more mechanistic way, Billy et al. designed a 
model of endothelial cells which act on cancer cell population 
through the extracellular oxygen concentration [55].  

 Once one has designed an appropriate representation of cell 
population dynamics, anticancer drug pharmacokinetics-pharmaco-
dynamics modeling may be added. A simple formulation says that 
pharmacokinetics (PK) is the study of what the body does to the 
drug (e.g., metabolism, transport), whereas pharmacodynamics 
(PD) is the study of what the drug does to the body (toxicities/ 
therapeutic efficacy).  

2.4. PK-PD Molecular Models: From Drug Infusion to Effects 
on Cell Death and Proliferation  

 In this part, we review existing physiologically based models of 
5-FU, oxaliplatin and CPT-11 molecular PK-PD which are the three 
main cytotoxic drugs used in therapies against mCRC. Those mod-
els describe the drug pharmacology either at the level of a single 
cell, of a cell population or of the whole organism.  

2.4.1. 5- uorouracil (5-FU) Molecular PK-PD  

 5-FU intracellular molecular PK-PD has been modeled in a rst 
work which focuses on relevant molecular mechanisms [9]. This 
system of ordinary differential equations computes the dynamics of 
protein and drug concentrations in the intracellular or the blood 
compartments (Fig. 2). 5-FU and LV are infused in the plasma and 
reach the intracellular compartment where they trap the target en-
zyme thymidylate synthase (TS) into stable ternary complexes 
which irreversibly consumes free TS. More precisely, the intracel-
lular active compounds, FdUMP for 5-FU and methylene tetrahy-
drofolate (MTHF) for LV, exert their action on TS by yielding rst 
a reversible binary complex B binding 5-FU and TS, and then the 
irreversible ternary complex T by the adjunction of MTHF. Con-
cerning PK, LV cell uptake is considered as passive and therefore 
not saturable whereas 5-FU enters the cells through a saturable 
mechanism. The intracellular form of 5-FU FdUMP is expelled 
outside of the cells by an ABC transporter whose expression is 
enhanced by drug exposure through the activation of a nuclear fac-
tor (Fig. 2). The model also describes the degradation of 5-FU by 
hepatic dihydropyrimidine dehydrogenase (DPYD). Genetic differ-
ences in 5-FU catabolism by DPYD could be taken into account in 
this model by different Km and Vmax values of the enzyme activity 
[9].  

 Bodin et al. have implemented a multi-scale mathematical 
model of 5-FU PK-PD that links the drug injection into the blood to 
its efficacy on tumor growth by integrating its molecular pharma-
cokinetics and intracellular mechanism of action [56]. They have 
taken into account two different observation scales. At the cell 
level, they have modeled 5-FU-induced blockade of TS enzyme 
which inhibits DNA synthesis but also the incorrect incorporation 
of FdUTP to DNA leading to abnormal DNA production. At the 
tissue level, they have integrated the effect of those perturbations of 
DNA synthesis on cell cycle regulation and resulting tumor growth. 
A sensitivity analysis on TS level shows that it may be a potential 
biomarker regarding efficacy, as already reported in the clinical 
literature. This model also allows to simulate the effect of 5-FU on 
mCRC in order to test hypotheses to help optimizing treatments in 
particular by comparing different 5FU-based protocols in terms of 
efficacy.  

 Finally, Tsukamoto et al. have designed a whole-body physio-
logically based PK model of capecitabine, the oral prodrug of 5-FU, 
in cancer patients [57]. Four compartments have been considered: 
the liver, the gastrointestinal tract, the tumor and non-eliminating 
tissues (NET) such as skin and muscles. The mathematical vari- 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Mathematical model of 5-FU molecular PK-PD [9] See text for 
details. 
 

ables of the model correspond to concentrations in each compart-
ment of the parent drug capecitabine and of its three metabolites: 
5’DFCR, 5’DFUR and the active one 5-FU. Enzyme kinetic pa-
rameters and plasma/tissue binding rates were inferred from in vitro 
data in human liver and intestinal cells. The model accurately pre-
dicted blood concentrations in cancer patients of all four com-
pounds over time. A sensitivity analysis was performed on parame-
ters to identify the ones that most in uenced capecitabine PK. 5-FU 
blood concentration was most in uenced by DPYD hepatic activity.  

2.4.2. Oxaliplatin (l-OHP) Molecular PK-PD  

 Oxaliplatin PK-PD is rather simple as the drug is not metabo-
lized and directly targets DNA. Indeed, it exerts its action on cells 
by creating irreversible oxaliplatin-DNA adducts that subsequently 
yield double-stranded breaks in the DNA. An ODE-based model of 
oxaliplatin PK-PD has been designed in which variables repre-
sented are concentrations, either in the blood, or in the tissues [49, 
58, 59]. In this model, oxaliplatin is infused in the blood and may 
irreversibly bind to plasma proteins. The drug has been assumed to 
diffuse passively into the tissues. In the intracellular medium, ox-
aliplatin can either associate to free DNA (i.e., the drug target) or to 
reduced glutathione, that thus acts as a competitive drug inhibitor. 
In this model, DNA molecules which have been trapped by ox-
aliplatin may return to their free DNA state which represents the 
activity of excision repair enzymes. Apart from blood PK constants 
that are easily accessible, other parameters have been evaluated so 
as to produce likely behavior for the drug in tissues [59].  

2.4.3. Irinotecan (CPT11) Molecular PK-PD  

 CPT11 molecular PK and PD have been studied in human colo-
rectal adenocarcinoma Caco-2 cells which has led to the design of 
an ODE-based mathematical model [60]. Molecular pathways of 
CPT11 PK-PD are modeled according to biological data published 
in the literature and experimental results obtained in Caco-2 cells 
([61], Fig. 3). Brie y, CPT11 is bioactivated into SN38 through the 
variable CES representing the sum of all carboxylesterases activity. 
This enzymatic reaction is modeled by Michaelis-Menten kinetics. 
SN38 is deactivated into SN38G. This reaction also follows Micha-
elis-Menten kinetics in which the mathematical variable UGT 
stands for the sum of all UGT1As enzymatic activities. The intra- 



Physiologically Based Mathematical Models to Optimize Therapies Against Current Pharmaceutical Design, 2014, Vol. 20, No. 00    5 

cellular uptake of CPT11, SN38 and SN38G is assumed to be pas-
sive and modeled as a free diffusion across a membrane. CPT11 
and SN38 efflux are mediated respectively by ABC_CPT (mainly 
standing for the sum of activities of ABCB1, ABCC1, ABCC2) and 
ABC_SN (for ABCC1, ABCC2, ABCG2). Efflux follows Micha-
elis-Menten kinetics as experimentally demonstrated in the litera-
ture. Diffusion from inside to outside of the cells is neglected.  

 As regards its pharmacodynamics, CPT11 is an inhibitor of 
TOP1, an enzyme present in all nucleated cells [61]. The function 
of TOP1 is to relax DNA which may be supercoiled by several 
processes including replication and transcription. TOP1 binds to 
DNA and cuts one strand which is thus able to rotate around the 
molecule. Then TOP1 dissociates from DNA allowing the recon-
nection of the broken strand. CPT11 and its active metabolite SN38 
prevent TOP1 religation by creating DNA/TOP1/drug complexes 
which can spontaneously dissociate but have a longer lifetime than 
DNA/TOP1 complexes. Collisions between those ternary reversible 
complexes and replication or transcription mechanisms convert 
them into irreversible covalent DNA damage which triggers DNA 
repair and possibly leads to cell cycle arrest and apoptosis. In the 
mathematical model, CPT11 ability to bind to TOP1 is neglected so 
that SN38 is the only molecule able to stabilize DNA/TOP1 com-
plexes into DNA/TOP1/SN38 ones. Those ternary complexes are 
able to spontaneously dissociate or could be converted into irre-
versible complexes after collision with transcription or replication 
mechanisms (Fig. 3). The amount of TOP1 complexes on the DNA 
is the output of the model since it has been experimentally corre-
lated with CPT11 cytotoxicity both in vitro and in cancer patients 
[60]. Parameters of this CPT11 PK-PD model have been estimated 
from experimental data in Caco-2 cells combined with information 
from literature.  

 CPT11 is known to trigger the induction of ABC transporters, 
responsible for the efflux of the drug and its metabolites outside of 
the cells. Overexpression of those transporters prevents drug accu-
mulation in the intracellular medium, therefore decreasing drug 
efficacy. A critical clinical concern lies in the design of CPT11-
based therapeutic strategies which eradicate a maximum number of 
cancer cells despite their ability to become resistant. In order to 
address this issue, the above-mentioned model of CPT11 molecular 

PK-PD has been supplemented with a new model of CPT11-
induced overexpression of ABC transporters [62]. The proposed 
molecular mechanism leading to ABC transporter induction con-
sists in the activation by CPT11-induced DNA damage of nuclear 
factors which then promote the expression of ABC transporters. 
This assumption is consistent with experimental results in cancer 
cell lines which show that DNA double-stranded breaks resulting 
from CPT11 exposure activate the nuclear factor NF- B which 
enhances ABCB1 expression. In the same way, chemical stress may 
activate the nuclear factor Nrf-2 which is known to promote the 
expression of ABCG2, ABCC1 and ABCC2 [62]. In the model, 
nuclear factor activation by CPT11 is phenomenologically repre-
sented by an S-shape function which shows a steep increase when 
DNA damage exceeds the induction threshold. Indeed, experimen-
tal results show that CPT11 induces a rapid and transient activation 
of the nuclear factor NF B which is dose-dependent and rapidly 
saturates when the dose of CPT11 is increased. This modeling 
choice results in a persistent overexpression of transporter mRNA 
and protein amounts which lasts after the drug exposure that is con-
sistent with experimental literature as the reversal of transporter 
induction was observed only after two months in cultured cell lines 
[62].  

 Finally CPT11 PK-PD model at the tissue level has been 
adapted to build a whole-body physiologically based model for 
mice [63]. It is constituted of seven compartments which represent 
the simulated organs. The rst compartment stands for the liver 
which plays a critical part in CPT11 metabolism. Then the two 
main toxicity targets of the drug which are the intestine and the 
bone marrow are modeled, as well as the blood, and the tumor to 
account for drug efficacy. Finally, the Non-Eliminating Tissue 
(NET) compartment represents all other tissues such as muscles or 
skin. CPT11 and its metabolites circulate in and out of the tumor, 
the bone marrow, the NET and the liver compartments through the 
blood circulation. Concerning the intestine, it is modeled by two 
compartments which represent the cells of the intestinal mucosa and 
the intestinal lumen. A bidirectional transport is assumed between 
the mucosa and the lumen. Moreover, the drug and its metabolites 
can be transported from the intestinal cells to the liver through the 
hepatic portal vein. The entero-hepatic circulation is modeled by a 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Mathematical model of CPT11 molecular PK-PD [60] See text for details. 
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drug transport from the liver to the intestinal lumen which stands 
for biliary excretion. Finally, renal clearance is modeled as degrada-
tion terms for CPT11, SN38 and SN38G in the blood compartment. 
The intestinal lumen compartment also presents degradation terms 
accounting for CPT11 and SN38 intestinal clearance, SN38G being 
exclusively eliminated through the kidneys. Each compartment 
contains an adaptation of the mathematical model of CPT11 tissue 
PK-PD [60]. Kinetics parameters of the model were partially esti-
mated both from blood and tissue pharmacokinetics data in mice 
[63].  

2.5. Linking PK-PD Models to Cell Population Level: Drug 

Targets  

 The above-described mathematical models of drug PK-PD 
simulate as computational events the molecular fates of the drugs 
from their infusion to their activities in the intracellular compart-
ment. To bridge the gap between the molecular and functional ef-
fects of anticancer drugs, it is convenient to link those models with 
cell population representations which simulate the dynamics of the 
cell population in response to the molecular effect (Fig. 1). In 
particular, it is of interest to describe how the intracellular drug 
activity affects cell death and proliferation, and how this is re ected 
at the cell population level (reviewed in [46]).  

 Cytotoxic drugs aim at killing cells, either by directly launching 
cell apoptosis, or inducing a blockage in a phase of the division 
cycle where long-term survival is impossible. The simplest way to 
model drug-induced cell death is a direct increase of death rates. 
However, many anticancer drugs are phase speci c which justifies 
representing the four phases of the cell cycle in the population 
model. In age-structured models of the cell division cycle, where 
cell cycle phases are distinct, separated by transition rates, it is also 
possible, rather than enhancing death rates, to act on phase transi-
tions (so-called checkpoints, mainly between G1 and S, and be-
tween G2 and M phases). We allude here at McKendrick-like PDE 
models in which inputs of drug may be considered as impacting 
different death terms in phases or transition rates between phases 
[46].  

 On the contrary, cytostatic drugs do not directly kill cells but 
rather slow down their proliferation by turning down molecular 
pathways which enhance the rate of entry into the cell cycle (e.g., 
Cetuximab which targets EGFR). Thus, cytostatic drug effect 
mainly keep cells in a quiescence state. A possible way to represent 
the effect of cytostatic drugs is to use age-structured models in 
which cell cycle phases are not necessarily detailed, keeping only 
one proliferative phase, and introducing one quiescent compart-
ment. One may thus represent cytostatic effects by a contrasted fate 
at the end of mitosis, sending proliferating cells either back into the 
division cycle, or to a sideway representing a quiescent phase from 
which they cannot come back to proliferation [52]. From a theoreti-
cal point of view, such a model displays the advantage to be still 
linear and thus amenable to asymptotic analysis by investigating its 

rst eigenvalue, or Malthus exponent.  

 Finally, one may want to represent the effects of anti-
angiogenic drugs on cell population dynamics. There are a lot of 
models dedicated to speci cally represent the action of these anti-
cancer agents that do not act directly on the cancer cell populations 
themselves, but on their vascular environment. The representation 
of their effects obviously depends on the prior choice of a model 
concerning angiogenesis. Anti-angiogenic drugs have been consid-
ered in particular in ODE models [16, 64] and in PDE models, 
physiologically structured or not [55, 65-67]. In these models, they 
act by decreasing the ”carrying capacity” of the tumor, or they 
choke progression in the cell cycle at the G1/S transition.  

2.6. Circadian Control of Cell Physiology and Drug PK-PD  

 Most biological functions in mammals such as rest-activity, 
body temperature or hormonal secretions display rhythms of period 

between 20 and 28 hours called circadian rhythms [9]. This cir-
cadian organization induces variations in the toxicity and efficacy 
of many anticancer drugs with respect to their circadian time of 
administration and should therefore be taken into account in thera-
peutics optimization.  

 Circadian changes are coordinated by the suprachiasmatic nu-
clei (SCN), an endogenous pacemaker located in the hypothalamus. 
SCN functions display an intrinsic genetically-determined period 
which is entrained and calibrated at precisely 24 hours by environ-
mental synchronizers such as the alternation of days and nights, 
socio-professional activities and meal timing. This central pace-
maker controls the molecular circadian clock present in each nucle-
ated cell through physiological signals. The cellular molecular 
clock is constituted of interconnected regulatory loops involving 
about 15 clock genes such as CLOCK, PER, BMAL, or REV-
ERB . Those genes display circadian rhythms in their expression 
and generate in turn circadian oscillations of various gene and pro-
tein amounts. In particular, many enzymes involved in drug me-
tabolism, cell cycle, DNA repair or apoptosis display circadian 
variations and induce rhythms in the toxicity and efficacy of many 
anticancer drugs.  

 Circadian rhythms in mammals physiology result in variations 
in the toxicity and efficacy of many drugs with respect to their cir-
cadian time of administration, named chronotoxicity and chronoef-
ficacy. Concerning mCRC, numerous clinical trials have compared 
chronotherapeutics administration schemes to their paired constant-
rate infusion schedule lasting an integral multiple of 24 hours and 
involving the same drug doses [9]. In particular, two international 
randomized phase III trials have compared the chronomodulated 
scheme ChronoFLO5 to an equivalent constant delivery in 278 
patients with mCRC. ChronoFLO5 combines the daily delivery of 
oxaliplatin over 11.5 hours with peak ow rate at 4: 00 p.m. and 
that of 5-FU/LV over 11.5 hours with peak ow rate at 4: 00 a.m., 
for 5 consecutive days. The other cohort of patients received the 
same doses of the same three drugs, at a constant rate over the 
same5-day span. In those trials, chronomodulated delivery reduced 
the incidence of grade 3-4 mucositis by vefold and halved the 
incidence of peripheral sensory neuropathy [9]. A third randomized 
trial has compared the chronomodulated administration of the same 
three drugs over 4 days (ChronoFLO4) to a conventional constant-
rate infusion over 2 days (FOLFOX2) in 564 patients with mCRC. 
The main endpoint of this study which was overall survival did not 
differ as a function of treatment schedule. However, the relative 
risk of an earlier death on ChronoFLO4 was signi cantly increased 
by 38% in women and decreased by 25% in men compared with 
conventional delivery. A recent meta-analysis of these three ran-
domized trials involving 842 patients in total con rms that the 
chronomodulated infusion achieves similar or worse efficacy com-
pared with conventional delivery in women. Conversely, in men, 
the ChronoFLO treatment signi cantly increases tumor response 
and survival compared with constant delivery, independently of all 
other prognostic factors. This result highlights the need for chrono-
therapeutic personalization in which chronomodulated administra-
tion schemes would be tailored according to the patient circadian 
and genetic pro le. To address this issue, mathematical models of 
the circadian clock and its control on anticancer drug PK-PD have 
been designed.  

 First, several molecular models of the cellular circadian clock 
have been developed involving different levels of complexity [68–
71]. In particular, Goldbeter et al. take into account the regulatory 
effects of clock genes and their proteins together with their post-
translational regulation. Molecular interactions between the cir-
cadian clock and the cell cycle through the circadian control of 
Wee1 and p21 have been mathematically studied using ODE-based 
models [29, 72, 73]. The in uence of circadian clock gene knock-
outs on the cell cycle has been studied to further validate the mod-
els [73]. Then, several approaches have been undertaken to model 
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cell proliferation and its circadian control at a cell population scale 
in the presence or absence of pharmacological control. Physiologi-
cally based PDE models taking into account the cell cycle phases 
have been extended to integrate the circadian control of death rates 
and cell cycle phase transitions [54, 74]. These models enable a 
theoretical study of cell proliferation under circadian control. Then, 
starting from these PDE-based models and with additional mathe-
matical assumptions, delay differential equations can also be de-
rived to model circadian-controlled cell proliferation [75]. An 
alternative approach involving agent-based models to simulate the 
cell behavior has also been proposed [43, 58]. Finally, chronoPK-
PD models have been designed, at the level either of a single cell, 
of a cell population, or of the whole organism, for the three main 
cytotoxic drugs used in mCRC treatments: 5-Fluorouracil [9], ox-
aliplatin [49] and irinotecan [60, 63]. These ODE-based molecular 
models integrate circadian variations of genes and proteins involved 
in the PK-PD of the different drugs at stake.  

3. MATHEMATICAL APPROACHES TO OPTIMIZATION 

OF MCRC TREATMENTS 

3.1. Pitfalls Encountered in the Clinic: Unwanted Toxic Side 
E ects and Drug Resistance in Tumors 

 How to di erentiate the responses to treatments of healthy tis-
sues from those of tumors, so as to avoid being more (or at least not 
less) harmful than bene cial to patients? And how to predict and 
avoid evolution of cancer cell populations towards drug resistance? 
These are the two main problems faced by clinicians in the treat-
ment of cancers that limit the use of increasing drug doses. Note 
that it is a general problem in therapeutics that involves, mutatis 
mutandis, other diseases characterized by uncontrolled proliferation 
of an aggressive population of agents that live at the expense of 
normal cell populations in an organism, in particular in the eld of 
antibiotherapy, virology and parasitology. 

 This problem has often been considered from an only static 
point of view, taking into account upper limits for drug doses, and 
lower limits for between-courses intervals, supposed to protect the 
patient from toxic adverse effects, or taking as objects of study two 
different given cancer populations, a drug sensitive one and a resis-
tant one. However, we advocate here for a more dynamic and con-
tinuous approach, considering simultaneously the instantaneous 
effects of anticancer drugs on healthy tissues and on tumors for the 
toxicity issue on the one hand, and on the other hand drug resis-
tance to a given drug in a cancer cell population as a continuous 
phenotypic trait structuring the population, amenable to evolution 
under the environmental pressure of a drug or of a combination of 
drugs.  

 The toxicity issue requires identi cation of clear differences 
between healthy and cancer cell populations, and it has been pro-
posed to take advantage of different behaviors of control of proli-
feration and of pharmacodynamics by circadian clocks in these two 
populations. This has led to different studies [44, 45, 49, 54, 59], 
involving or not the cell division cycle, according to physiological 
considerations, but not with actual molecular targets. These studies 
are reported below in the Section Circadian chronotherapeutics. As 
regards the drug resistance issue, it has been considered from a 
molecular point of view, as mentioned in the Section Approved 
chemotherapy regimens against mCRC and reviewed in [7]. From 
the point of view of evolution towards resistance, following a Dar-
winian vision, it has been studied using a phenomenological (eco-
logical-like) population dynamics model structured according to a 
phenotypic trait in [76] with simulations representing the effect on 
proliferation in cell populations of cytotoxic and cytostatic drugs in 
general.  

3.2. Resistance Due to ABC Transporter Overexpression 

 Tumor cells may become resistant to anticancer agents after 
prolonged exposure. Those drug-induced molecular changes or 

mutations may highly modulate the drug activity and should there-
fore be taken into account in therapeutics optimization. In particu-
lar, multidrug resistance (MDR) is characterized by the ability of 
cancer cells to become simultaneously resistant to many anticancer 
drugs. A possible cellular mechanism of MDR is the drug-
modulated induction of ATP-Binding Cassette (ABC) transporters 
which actively pump molecules outside of the cells. The enhance-
ment of ABC transporter expression in tumor tissues prevents anti-
cancer drugs from accumulating in the intracellular medium and 
therefore decreases their efficacy.  

 To the best of our knowledge, three published works propose 
mathematical models for ABC transporter induction by anticancer 
drugs. A mathematical model of doxorubicin PK-PD includes 
transporter overexpression which is assumed to be directly propor-
tional to the intracellular drug concentration [77]. However, this 
modeling assumption does not render an account of the experimen-
tally observed threshold on drug concentrations above which resis-
tance is triggered. Moreover, this model allows the quantity of ABC 
transporters to grow to in nity in the case of large drug concentra-
tions, which is not the case in the two following studies.  

 Another work models the molecular PK-PD of 5-FU and in-
cludes the drug-induced transporter over-expression [9]. In this 
model, the nuclear factor remains activated as long as the intracellu-
lar drug concentration exceeds an induction threshold. However, 
this may not be experimentally accurate since NF B kinetics in 
the presence of CPT11 consists in a transient activation of few 
hours which vanishes before the drug removal [62]. As regards to 
optimization of drug administration, this modeling choice implies 
that killing a maximum number of cancer cells would be achieved 
by an exposure to a dose below the induction threshold during a 
long period in order not to trigger the resistant mechanism. 

 Finally, in the third study which focus on CPT11 PK-PD, 
authors assumed that ABC transporter overexpression results from 
the activation by drug-induced DNA damage (and not directly by 
drug concentration as in [9]) of nuclear factors which then promote 
the expression of ABC transporters. Authors then theoretically op-
timized exposure to CPT11 given as a single agent or combined 
either with ABC transporter inhibitors, or with inhibitors of nuclear 
factors. Considering a sole cancer cell population endowed with the 
ability of inducing their transporters, they concluded that, for any 
drug combination, the highest concentration of CPT11 should be 
administered in order to kill a maximum number of cancer cells, 
despite the triggering of resistance [62]. On the contrary of the 
model published in [9], this model concludes that the resistance 
mechanism is going to be triggered anyhow and that the highest 
tolerable dose should be given during the rst cell exposure in order 
to kill a maximum number of cancer cells before they overexpress 
their transporters and become resistant. Then authors considered a 
population of healthy cells which were assumed to be identical to 
cancer cells except that they were not able to become resistant. 
Optimal schemes were de ned as the ones which maximized DNA 
damage in cancer cells under the constraint of DNA damage in 
healthy cells not exceeding a tolerability threshold. The optimal 
therapeutic strategy consisted in combining CPT11 with ABC 
transporter inhibitors as it achieved a complete reversal of resis-
tance by means of the lowest concentrations of CPT11 [62].  

3.3. Optimization: From Investigation on Grids to Optimal 
Control  

 Optimization of cancer treatments may be understood in differ-
ent ways: it may be quite intuitive, based on graphical estimation by 
varying parameters on grids, more rational and less visual when 
using numerical optimization algorithms, but also in the ideal case 
completely analytical, using theorems that yield the proven optimal 
solution when it is possible, which is not always the case. Whatever 
theoretical it may be, it always aims at decreasing the number of 
tumor cells, if possible eradicating them, but the optimization prob-
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lems considered differ according to the constraints taken into ac-
count: limiting toxic side effects on healthy cell populations, or, 
less frequently because mechanisms of drug resistance are multiple 
and not easy to represent, avoiding the development of resistant 
subpopulations of cancer cells.  

 In the case of toxicity constraints, L2 or L1 criteria (with optimi-
zation methods leading to more complex analysis in the case of L1 

criteria) have been used in optimization procedures, and the con-
straints on cell populations are often xed, for instance to an a pri-
ori optimal average of the healthy cell population number [59]. 
However, in the perspective of continuous infusion treatments, it is 
natural to simultaneously take into account healthy and cancer cell 
population numbers, i.e., to design optimal infusion strategies as a 
time sequence of instantaneous trade-offs between maximal tumor 
cell kill and minimal healthy cell kill, i.e., using L , rather than L2 

or L1, criteria. This point of view is developed in particular in [49], 
where it is shown that, provided that reasonable hypotheses are 
satis ed, the searched for maximum or minimum (in this case, more 
precisely, the minimum of a Lagrangian) is a differentiable function 
of the infusion pro le.  

 Graphical optimization, performed by simulations, is a possible 
rst approach used when attempting to solve an optimal control 

problem; it may be performed by varying parameters of a given set 
of control functions representing here anticancer drug infusion 

ows in PK-PD models: [44, 45, 78], but it soon nds its limits.  

 Numerical (algorithmic) optimization methods take into ac-
count the effects of drugs on both healthy (to be preserved) and 
cancer (to be hit as hard as possible) cell populations. In [79, 80], 
the authors, starting from G.W. Swan’s works [85] on optimal con-
trol applied to medicine, represent toxicity constraints on a healthy 
cell population (supposed to be the hematopoietic tissue) by both 
constant upper bounds on the drug concentrations and by constant 
lower bounds on the healthy cell population, and propose optimized 
drug delivery protocols. The same point of view is also presented in 
[49, 54, 59], designing a Lagrangian, linear combination between 
the objective function on cancer cells and the constraint function on 
healthy cells, both continuous functions [49, 54, 59], and the Uzawa 
or the Arrow-Hurwitz algorithms to compute gradients and yield 
numerical solutions to the optimization problem, which are opti-
mized drug delivery ows as functions of time. The objective and 
constraint functions are cell population densities [49] or their 
growth exponents [54, 59].  

 On more theoretical grounds (i.e., showing theorems that lead 
to actually analytic solutions, rather than proposing numerical op-
timization schedules that are shown to converge numerically, but do 
not elicit the solutions as a function of the parameters of the prob-
lem), Kimmel and Swierniak [81], and Ledzewicz, d’Onofrio and 
Schättler (see e.g., [82]), the latter group working on Hahnfeldt’s 
model of tumor growth with angiogenesis [64], controlled by both a 
cytotoxic and an antiangiogenic drug, have proposed optimal drug 
infusion strategies justi ed from a theoretical point of view. Such 
theoretical optimal solutions may then become benchmarks for 
practically more feasible computations, that in principle lead to 
only suboptimal solutions, as shown in [83, 84]. Note also that ear-
lier works on optimal control by Swan [85] and by Costa and Bold-
rini [86, 87], using a theoretical point of view, take into account 
both the toxicity and the resistance (with a focus on the latter) con-
straints.  

3.4. Optimizing Circadian Chronotherapeutics 

 The circadian organization of living organisms under therapeu-
tic control modulates the response to anticancer drug depending on 
their time of administration. Circadian clocks exert their in uence 
both on the target cell populations (e.g., by controlling cell cycle 
checkpoints [88]) and drug metabolism enzymes. The chronothera-
peutic optimization problem can be formulated as the de nition of 
objective (e.g., maximization of therapeutic efficacy on cancer 

cells) and constraint functions (e.g., tolerability thresholds). This is 
illustrated in a proof of principle study of in silico chronotherapeu-
tics with oxaliplatin in [9, 49]. Parameter identi cation is performed 
on tumor growth curves in mice, with a simpli ed PK-PD model 
based on the jejunal toxicity and the antitumor efficacy of ox-
aliplatin. The solution to the optimal control problem is a theoreti-
cally optimized non trivial drug infusion ow. The treatment con-
straints critically determine the optimal chronotherapeutics sched-
ule. Interestingly, constant rate infusions always achieve worse 
therapeutic outcomes than optimized time-scheduled regimens in 
these models.  

 Another study addresses the optimization of CPT11 circadian 
delivery in human cultured cells [60]. The above mentioned data-
calibrated model of CPT11 PK-PD was used in numerical optimiza-
tion procedures to compute theoretically optimal exposure schemes 
for Caco-2 cells. Cells synchronized with a seric shock were con-
sidered as healthy cells and non-synchronized cells as cancer ones 
as the circadian organization is often disrupted in tumor tissues [9]. 
The adopted therapeutic strategy consisted in maximizing DNA 
damage in cancer cells under the constraint that DNA damage in the 
healthy population remained under a tolerability threshold. They 
considered administration schemes in the form of a cell exposure to 
an initial extracellular concentration of CPT11, over 1 to 27 hours, 
starting at a particular circadian time (CT). For all considered 
doses, the optimal exposure scheme consisted in administering 
CPT11 over 3 hours 40 to 7 hours 10 starting between CT2h10 and 
CT2h30 which corresponded to 1 hour 30 to 1 hour 50 before the 
nadir of carboxylesterases (CES) protein amount. The optimal 
schemes were not centered on the nadir of rhythm but rather ex-
tended after it, when UGT, ABC_CPT and ABC_SN amounts were 
higher and therefore protected more effciently healthy cells. For 
any maximum allowed toxicity, the optimal duration did not exceed 
7 hours 10, highlighting the need for short exposure durations to 
optimally exploit the temporal difference between healthy and can-
cer cells. Regarding efficacy, those optimal schemes induced twice 
as DNA damage in cancer cells as in healthy ones. A clinical inter-
pretation can be obtained by rescaling to 24 hours those results for 
Caco-2 cells that displayed a period of 26 hours 50. Thus, an opti-
mal administration of CPT11 to cancer patients should result in the 
presence of the drug in the blood during 3 hours 30 to 6 hours 30, 
starting 1 hour 30 to 1 hour 40 before the minimum value of CES 
activity in the patient.  

3.5. Metronomic Therapies  

 The words ‘metronomic therapy’ were coined in a 2000 article 
by D. Hanahan [89] under the suggestive rst words of its title stat-
ing that ‘less is more, regularly’, meaning by this that rather than 
giving high doses of anticancer drugs during a short period of time 
followed by a long ‘recovery’ interval, it is better to deliver, for a 
given total delivered dose, small quantities of a drug on a regular 
time schedule, without long interruptions in the chemotherapy 
course. It has rstly found a rationale based on inhibition of tumor 
neoangiogenesis, but more recently other hypotheses have been 
proposed, relating its successes to other causes, such as activation 
of the immune response or induction of tumor dormancy [90–92]. It 
might also be related to the concept of adaptive therapy, advocated 
by R. Gatenby [93], according to which the tumor, seen as a hetero-
geneous population of cells obeying evolutionary principles, should 
be controlled in its development (and not eradicated) by delivering 
limited drug doses in a regular way, so as to maintain inside the 
tumor a bulk of drug-sensitive tumor cells, supposed to contain the 
development of a drug-resistant tumor cell clone, that would other-
wise ll the whole tumor and lead the treatment to certain failure.  

 The biological rationale for this therapeutic strategy [64] is 
usually (and has initially been) presented as efficiently limiting 
tumor neoangiogenesis, which thrives during treatment interrup-
tions, allowing tumors to regrow even stronger, which leads treat-



Physiologically Based Mathematical Models to Optimize Therapies Against Current Pharmaceutical Design, 2014, Vol. 20, No. 00    9 

ments to failures. Note that metronomic therapies are also sup-
ported by another recent model [94] based on a previous multiscale 
physiological model of tumor growth with angiogenesis [55]. It is 
also noteworthy that on different bases, without involving neoangi-
ogenesis, but in a chronotherapeutic setting, other theoretical stud-
ies [59, 74] have also led to the conclusion that avoiding treatment 
interruptions during long time intervals, but on the contrary admin-
istering a chemotherapy on a 24 hour-periodic basis with a short 
actual drug infusion time during this 24 hour-period, is an optimal 
(in fact only suboptimal, in as much as in its principle it searches 
for necessary, but not sufficient, conditions of optimality) strategy.  

 A theoretical study of the involvement of tumor neoangiogene-
sis together with the in uence of circadian clocks in combined 
treatments has not been done so far, to our knowledge; however, 
note that in the now classical metronomic therapy setting, theoreti-
cal optimal control strategies combining cytotoxic and antiangio-
genic drugs have been proposed by d’Onofrio, Ledzewicz and 
Schättler [82], as already mentioned in the Optimization section.  

4. CONCLUSIONS AND FUTURE PROSPECTS 

 Current clinical chemotherapy against mCRC involves combi-
nations of several drugs that have different mechanisms of action. 
Taking into account drug interactions between cytotoxic agents has 
not been done so far, to our knowledge, in molecular models. Yet, 
since these drugs use the pathway of the general blood circulation, 
often linking -irreversibly or not -to plasma transport proteins, their 
blood pharmacokinetics may be affected by such interactions, be it 
only in a competitive way, to be transported towards peripheral 
tissues or eliminated via biliary or urinary excretion. This remains a 
challenge to design precise qualitative and quantitative whole-body 
PK models.  

 Although it has not been done so far to our knowledge, the 
study of combination of cytotoxic and cytostatic drugs is of particu-
lar interest in the case of mCRC. It is possible to add a representa-
tion of cytostatic drug activity in age-structured models with targets 
for cytotoxic drugs acting on death rates. Indeed, reversing the con-
sideration of the effects of cytotoxic drug treatments on cell cycle 
phase transitions as presented in [54] to mainly cytostatic effects, in 
as much as they do not directly impact death rates, it is possible to 
use these two different kinds of targets in the same physiologically 
structured cell population model. This can be done by a simple 
model as the one proposed by Gabriel et al. [52], in which cy-
tostatic effects (in this case, identi ed as erlotinib acting on non-
small cell lung carcinoma PC-9 cells in culture) consist in sending 
proliferating cells (in G1 -phase if one considers cell cycle phases) 
to a sideway (= the quiescent G0 -phase) from which they cannot 
come back to proliferation, this effect being added to a model in 
which cytotoxic effects are represented by a direct action on death 
rates, as proposed in [59]. Representations of combinations of drugs 
exerting their actions on both targets: death rates for 5-FU, ox-
aliplatin and irinotecan, G1 /S phase transition for growth factor 
inhibitors (mainly monoclonal antibodies today in the clinic, but 
also tyrosine kinase inhibitors and possibly CDK inhibitors), should 
thus bene t from age-structured models involving combinations of 
PK-PD systems with output on both these modeled targets in 
healthy and cancer proliferating cell populations.  

 Several efforts have been undertaken to personalize medicine 
based on gene polymorphisms, so called pharmacogenomics. In the 
case of mCRC, UGT1A1 polymorphism may predict severe toxicity 
of CPT11 [95]. Here, gene mutation is directly correlated to 
changes in UGT1A1 activity. However, over the last decades, only 
few gene polymorphisms have showed clinical relevance which 
might be explained by the lack of correlation between single nu-
cleotide polymorphisms with molecular activities [21]. Therefore, 
to allow personalized medicine, one should advocate phenotypic 
measurements in patients prior to any treatments.  

 Numerous studies are in progress to allow patient-tailored 
therapies based on measurements before drug administration. For 
instance, the CIME cocktail is designed to assess the activity of 
major drug metabolism pathways in patients [96]. The cocktail is 
composed of several chemicals that are substrates for the main me-
tabolism pathways. Once the cocktail is administered, 20 substrates 
and metabolites are measured in the patient’s plasma which allows 
quantitatively assessing the different metabolic rates. Another kind 
of studies consists of cell culture of patients’ samples. For instance, 
the expression and activity of TOP1, the drug target of CPT11, have 
been assessed in patient’s healthy and cancer intestinal tissues [97, 
98].  

 Another type of phenotypic measurements concerns the moni-
toring of biological rhythms of the patient over 24 hours, so called 
circadian rhythms. Minimally- or non-invasive procedures are 
nowadays available to provide high quality and reliable data about 
the patient circadian clocks and their coordination [9]. Frequent 
sampling over several days provides an insight into the Circadian 
Timing System (CTS) of the patient. Chronobiology rhythms can 
be measured in patients in several ways. Rest-activity rhythms can 
be monitored through actimetry which has been considered as the 
method of choice regarding reliability, convenience and continuity 
in recordings [9]. Then temperature rhythms can be non-invasively 
assessed using different devices. Salivary samples may also be 
collected in order to measure gene expression levels in the oral 
mucosa, those of cortisol and melatonin being considered as rele-
vant circadian biomarkers in cancer patients [9]. Moreover, cell 
culture of patient’s samples may allow the determination of the 
patient’s intrinsic period length: Brown et al. have determined the 
period length of 19 humans using cell culture of broblasts from 
skin samples [99]. The average value from all subjects was found 
equal to 24.5 h which closely matches reported average values for 
human circadian physiology in the absence of external synchroniz-
ers.  

 In conclusion, what should actually personalized medicine con-
sist of, in particular for colorectal cancer therapies, and how is it 
related to treatment optimization? Although promising in its princi-
ples, pharmacogenomics may not be enough to draw personalized 
indications of drug delivery schedules in the clinic. Beyond com-
panion diagnostics based on -very few -genotypes, it seems at least 
as necessary to use phenotypical characterizations of patient 
pro les, as proposed, e.g., by Meyer et al. [21] in a recent review 
article in which in particular the relationship between genotype and 
phenotype is examined in details. Personalizing anticancer treat-
ment on a molecular basis should consist in optimizing the therapy 
according to the gene expression pro les of healthy and cancer cells 
of the patient and to their phenotypes, relevant for different ‘omics’ 
that do not all depend on gene expression. Molecular differences 
between normal and tumor tissues may be exploited in all these 
‘omics’ dimensions in order to maximize the treatment efficacy and 
minimize its toxicities. Personalization of a given treatment ought 
to be achieved by characterizing a patient’s pro le with respect to 
its response to the drugs at stake, then optimization of the drug 
delivery schedules, should be adapted to the patient by determina-
tion of relevant individual parameters. Indeed, in the case of colo-
rectal cancer as in the case of most complex treatments in medicine, 
the aim of physiologically based mathematical models is to take 
into account relevant physiological characteristics of patients, so as 
to individualize optimized general treatments, i.e., optimized on a 
parametric basis amenable to be adapted to instances of actual pa-
tients. Actually personalized medicine must consist of such con-
junction of theoretically optimized treatments on physiological 
bases with their tailoring to individual patients, if we want it to 
make real sense.  
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